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Abstract: Wave energy has emerged as a focal point in marine renewable energy research. Accurate
prediction of wave power plays a pivotal role in enhancing power supply reliability. This paper intro-
duces an innovative wave power prediction method that combines seasonal–trend decomposition
using LOESS (STL) with a dual-channel Seq2Seq model. The decomposition model addresses the
issue of component redundancy in current input decomposition methods, thereby uncovering key
components. The prediction model improves upon the limitations of current prediction models that
directly concatenate multiple features, allowing for a more detailed consideration of both trend and
periodic features. The proposed approach begins by decomposing the power sequence based on
tidal periods and optimal correlation criteria, effectively extracting both trend and periodic features.
Subsequently, a dual-channel Seq2Seq model is constructed. The first channel employs temporal
pattern attention to capture the trend and stochastic fluctuation information, while the second channel
utilizes multi-head self-attention to further enhance the extraction of periodic components. Model
validation is performed using data from two ocean buoys, each with a five-year dataset. The proposed
model achieves an average 2.45% reduction in RMSE compared to the state-of-the-art method. Both
the decomposition and prediction components of the model contribute to this increase in accuracy.

Keywords: wave power prediction; seasonal and trend decomposition; temporal pattern attention;
dual-channel sequence to sequence; multi-head self-attention

1. Introduction

Ocean energy holds vast prospects for development and is being closely scrutinized
as a significant renewable energy source [1]. Wave energy shares similarities with wind
and solar energy in terms of its renewable and environmentally friendly characteristics.
The average wave energy density in most global marine areas exceeds 10 kW/m [2],
indicating the substantial exploitable energy inherent in these fluctuations, thus endowing
wave energy with significant energy storage potential. Considering that oceans cover 71%
of the Earth’s surface, the widespread distribution of wave energy receives substantial
attention on a global scale. Currently, wave energy converters (WECs) are experiencing
rapid development, with many advanced WECs undergoing testing or deployment, such
as the Wave Dragon WEC, Kaimei WEC, and TAPCHAN WEC [3,4].

The inherent variability, intermittency, and randomness of wave energy pose chal-
lenges to the stability of WECs’ power output. Grid dispatch requires reliable future power
generation information to establish appropriate future power allocation. Wave energy
generation is a viable option for powering islands and coastal cities [5], but the instability
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of its output presents a potential threat to the safe operation of small island grids. As WECs
will be integrated into coastal city grids on a larger scale in the future, the issue of power
output instability will become even more pronounced. Therefore, accurate prediction of
wave energy generation is crucial for providing effective power output information to
the grid, facilitating grid dispatch optimization, and enhancing the stability of the power
system. Predictions are also essential for optimizing the operation of mechanical, electrical,
and control systems in wave energy devices to enhance system efficiency.

1.1. Recent Investigations

Significant progress has been achieved in forecasting wind and solar power, with
numerous forecasting systems deployed worldwide in wind farms and solar power stations.
However, wave power forecasting faces its own unique set of challenges. These challenges
include the multitude of factors influencing wave formation and the frequent fluctuations
in offshore meteorological conditions. Nevertheless, the success of wind and solar power
forecasting has inspired research into wave power forecasting. Similarly, methods for
predicting wave power can be categorized into physical methods, statistical methods, and
artificial intelligence methods. Physical methods primarily rely on numerical models, such
as SWAN and WAVEWATCH-III [6,7], to simulate the evolution of waves in the ocean.
These models solve mathematical equations like the Navier–Stokes equations to predict
wave propagation, deformation, and energy transfer. Information such as wave height
and wave period, obtained through these predictions, is combined with the generation
characteristics of WECs to forecast wave power. This approach enables wave power
forecasting on a larger scale and can yield accurate results within shorter forecast time steps.
However, its performance may degrade for specific offshore locations and longer forecast
time steps. Additionally, the substantial computational costs limit the application of this
method. Statistical methods depend on historical time series data and utilize techniques
like parameter estimation and curve fitting to establish mapping relationships between
historical and forecasted sequences. In [8], waves are typically decomposed into wind
waves and swell waves. The modified ensemble empirical mode decomposition (MEEMD)
method is used to decompose swell wave height, while an ARIMA model is applied to
predict future wave heights. Simultaneously, an Archimedes wave energy converter is
used to estimate power generation for the next hour. In [9], a detailed distribution of
significant wave height and wave period is established by analyzing a substantial volume
of historical wave observations, allowing for the derivation of wave power density through
mathematical formulations. However, this method is suitable only for predicting wave
power at coarse resolutions and necessitates a substantial historical dataset and forecasted
wave parameters to assist in power predictions. This also underscores the interdependency
among wave parameters, thereby resulting in lower uncertainty in wave power predictions
compared to wind power forecasts. While statistical methods can accurately predict
electricity generation power for a short period into the future, their accuracy rapidly
decreases as the time horizon increases.

Artificial intelligence (AI) methods, including artificial neural networks (ANNs), offer
superior non-linear fitting capabilities when compared to statistical methods. In recent
years, deep learning techniques such as convolutional neural networks (CNNs) and long
short-term memory networks (LSTMs) have gained significance in applications across
various fields. In the field of wave power forecasting, many researchers are actively explor-
ing this approach. In [10], researchers performed a feature analysis on WEC parameters,
including pressure, speed, flow, and torque, using principal component analysis (PCA).
Subsequently, they leverage data-driven methods like support vector machines (SVM),
LSTM, and neural networks (NNs) to forecast power generation for the next 20 time steps.

Despite employing principal component dimensionality reduction to mitigate exces-
sive data features, singular parameter mode identification is still lacking. On a different
note, in [11], input signals encompassing pressure, speed, voltage, and current from WECs
are utilized within a prediction model, and CNNs are employed to extract features from



Energies 2023, 16, 7515 3 of 17

multiple input parameters, accurately predicting power values for six hours. The CNN
model is employed to perform convolution on feature dimensions, allowing for the extrac-
tion of multi-scale features. However, due to limitations in the number of convolutional
kernels, it cannot simultaneously conduct multi-scale analysis on all variables. In [12],
hybrid machine learning models are employed to predict wave energy flux for the next
1 h, and a multi-objective gray wolf optimization technique is utilized to optimize the
prediction model. Comparative results suggest that methods based on ensemble empirical
mode decomposition (EEMD) yield the highest prediction accuracy. In [13], a multi-task
learning approach is adopted to simultaneously predict wave height and wave energy flux
at multiple buoy locations, achieving multivariate forecasting with a single model. The
model can achieve simultaneous predictions of wave height, period, and energy. Neverthe-
less, its wave power predictions do not account for the operational characteristics of WECs,
but rather focus solely on forecasting the maximum energy inherent in the waves. In [14],
a correlation between wave height, period, and power is established through a power
matrix. The input sequence is decomposed using the empirical wavelet transform (EWT),
and a CNN is used to reconstruct each one-dimensional sub-band into a two-dimensional
form, considering information from both time intervals and sequence intervals. The EWT
method effectively decomposes various parameters, yet it still lacks variable selection to
eliminate redundancy. Furthermore, the trend and fluctuation components are trained
using a single CNN network, thereby preventing the maximization of feature learning
across all components simultaneously.

These studies demonstrate the extensive application of AI methods in wave power
forecasting, offering substantial potential for improving prediction accuracy and model ap-
plicability. Despite the limited volume of the current literature on wave power forecasting
research, most of the existing studies opt for an initial mode decomposition, among which
the EWT decomposition employed by Ni [14] has exhibited superior results. However,
the current mode decomposition methods lack effective component selection, leading to
component redundancy, which subsequently affects the outcomes of the models. Further-
more, AI-based prediction methods continue to concatenate individual components and
subsequently utilize baseline models such as CNNs for forecasting, thus lacking precision
in modelling both trend and periodic information.

1.2. Objective of This Study

This paper presents an innovative wave power prediction model that utilizes seasonal–
trend decomposition using LOESS in conjunction with a dual-channel Seq2Seq model to
forecast power generation for the forthcoming 24 h. The proposed decomposition model is
capable of addressing the issue of component redundancy inherent in existing decomposi-
tion methods, thereby facilitating the identification of critical components. Furthermore,
the prediction model enhances the limitations in current forecasting models that directly
concatenate multiple features, allowing for a more detailed consideration of trend and
periodic features.

The contributions of this paper are summarized as follows:

1. To mitigate the issue of component redundancy in the current forecasting decompo-
sition step, this paper employs STL and leverages the principle of minimal residual
correlation to extract trend and seasonal sequences.

2. To address the shortcomings in current forecasting models that directly concatenate
multiple features, this paper strengthens the extraction of trend and periodic features
using the dual-channel Seq2Seq model, thereby augmenting the model’s ability to
mine historical features effectively.

3. The proposed model is compared with baseline models and other ‘decomposition-
prediction’ models. The results demonstrate that the proposed model surpasses the
performance of other models, with both STL and the dual-channel Seq2Seq model
contributing to enhanced predictive accuracy.
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The structure of the remaining sections in this paper is as follows: Section 2 covers the
principles and purposes of the various modules utilized in the model. Section 3 provides a
detailed examination of the proposed model, based on STL and the dual-channel Seq2Seq
model. Section 4 outlines the methods employed for experimental validation and discusses
the results. Finally, Section 5 presents the conclusions.

2. Basic Theoretical Foundation
2.1. Wave Power Modelling

Similar to wind turbines’ power curves, the WEC has a power matrix model, often
referred to as a wave power matrix (WPM). The WPM incorporates two essential variables:
wave height and wave period. Through interpolation, it can determine the electrical power
output of a WEC for any given wave parameter combination. Due to variations in the
design of wave energy devices, their respective WPMs differ. Various types of WPMs are
discussed in [15]. Each WEC is optimized to attain maximum power output at specific
combinations of wave height and wave period, resulting in distinct operational frequencies
and wave periods for individual WECs. Depending on environmental conditions, the
operational states of a WEC can be categorized as follows: (1) before cut-in for power
absorption capability limitation, (2) operating, and (3) cut-out for safety. A study conducted
by A. Babarit [16] investigated eight different working principles of WECs and found
significant similarities among these devices. Their performance indicators were in the same
order of magnitude, approximately 1. The annual absorbed energy per root mean square of
the power take-off (PTO) force was estimated to be around 2 MWh/kN.

2.2. Seasonal–Trend Decomposition Using LOESS

Locally weighted scatterplot smoothing (LOESS) is a non-parametric, locally weighted
smoothing method utilized for data smoothing. It accomplishes this by fitting a low-degree
polynomial in proximity to each data point. STL [17] is a time series decomposition tech-
nique employed to break down time series data into three primary components: seasonal,
trend, and residual components. The seasonal component represents the periodic patterns
within the time series. STL has gained widespread application and has garnered significant
recognition and success across various fields [18,19].

The decomposition process of STL comprises both an internal and an external loop.
The internal loop refers to the stage where the original time series data are decomposed
into low-frequency components such as trend and seasonality. Within the internal loop,
the LOESS method is employed to fit the seasonal and trend components, providing
a smoothed estimate of the original data. The outcome of this stage is a preliminary
decomposition of seasonality and trend, wherein noise and high-frequency fluctuations
persist. In contrast, the external loop encompasses a more intricate decomposition of high-
frequency components, including residuals. This is based on the preliminary seasonal and
trend components obtained from the internal loop. In the external loop, further smoothing
is applied to the previously acquired seasonal and trend components, resulting in a more
precise estimate of high-frequency fluctuations. This step produces a more accurate residual
component, housing high-frequency noise and fluctuations unexplained by seasonality
and trend.

To summarize, the STL method’s internal and external loops collaborate to address the
low-frequency and high-frequency components of time series data, respectively. The STL
method effectively decomposes time series data, capturing variations at different scales,
including seasonality, trend, and residual components. The specific decomposition process
is illustrated in Figure 1.
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2.3. Seq2Seq Based on LSTM

LSTM is a deep learning model widely used for modelling and predicting sequential
data. LSTM was first introduced by Hochreiter and Schmidhuber in 1997 [20]. Serving as an
extension of recurrent neural networks (RNNs), LSTM was specifically designed to address
the challenge of the vanishing gradient problem often encountered by RNNs when dealing
with lengthy sequences. By incorporating gating mechanisms, LSTM can adaptively update
its internal state, effectively capturing data variations across different time scales. This
adaptability translates into exceptional performance when dealing with diverse time series
data. LSTM has shown remarkable efficacy in various domains, including natural language
processing [21], time series analysis [22], and computer vision [23]. Figure 2 illustrates the
structure of an LSTM unit at time t. Its formal expression is provided in Table 1.
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Table 1. LSTM computational formula.

LSTM Structure Expression Formula

Input gate it = σ(Wxi·xt + Whi·ht−1 + bi)
Forget gate ft = σ(Wxf·xt + Whf·ht−1 + bf)

Cell gate ˜
ct = tanh(Wxc·xt + Whc·ht−1 + bc)

Output gate ot = σ(Wxo·xt + Who·ht−1 + bo)

Cell state ct = ft � ct−1 + it �
˜
ct

Hidden state ht = ot � tanh(ct)

In the equations provided, σ represents the sigmoid function. Wxi, Whi, and bi denote
the weight matrices and bias vectors for the input gate. Wxf, Whf, and bf represent the
weight matrices and bias vectors for the forget gate. Wxc, Whc, and bc stand for the weight
matrices and bias vector for the cell state. Wxo, Who, and bo indicate the weight matrices
and bias vectors for the output gate. � represents element-wise multiplication.

The sequence-to-sequence (Seq2Seq) architecture was first introduced by Ilya Sutskever et al. [24].
This architecture was initially designed to address translation tasks in natural language pro-
cessing and is now widely used in time series forecasting [25–27]. As illustrated in Figure 3,
it begins by taking a sequence as input and then utilizes an encoder to generate a vector.
This vector encapsulates the hidden information of the original sequence. Subsequently,
the decoder is employed to decode this vector into a vector of the desired length.
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2.4. Temporal Pattern Attention

Temporal pattern attention (TPA) is a novel attention mechanism proposed by Shun-
Yao Shih [28]. In contrast to conventional attention mechanisms that usually focus solely
on information from the current time step to determine relevance, TPA is tailored for the
prediction of diverse time series data. It enables attention to span across feature dimensions,
distinguishing it from traditional mechanisms. The structure of TPA is shown in Figure 4.
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TPA initially applies convolution to t − 1 hidden vectors from LSTM, where k convo-
lution kernels can be set, and the convolution window w is often set to the total number of
time steps. This operation can be formulated as follows:

Hi,j =
w

∑
k=1

hi,(t−w−1+k) ×Cj,T−w+l (1)

In this equation, Hi,j signifies the convolution result obtained by convolving the j-th
convolution kernel with the i-th hidden vector in the feature dimension, while hi,(t−w−1+k)
represents the hidden vectors subjected to convolution and Cj,T−w+l is the j-th filter.

αi = sigmoid((Hi)
TWaht (2)

The TPA weight calculation layer performs weighted operations on the convolution
results and the last hidden vector ht from the LSTM encoder. The weight for the i-th hidden
vector is represented as αi. Wa is the weight matrix.

h′t = Whht + Wv

n

∑
i=1

αiHi (3)

h′t represents the ultimate output of TPA, achieved by concatenating and summing
the last hidden layer vector with the weighted hidden layer vectors. Both Wh and Wv are
weight matrices.

2.5. Multi-Head Self-Attention

The multi-head self-attention mechanism was first introduced by Vaswani et al. in their
seminal 2017 paper titled “Attention Is All You Need” [29]. It serves as a core component
of the Transformer model. Periodic recurring information often encompasses long-term
dependencies, necessitating the consideration of correlations spanning multiple time steps.
The multi-head mechanism of self-attention allows the model to simultaneously learn
multiple distinct attention weights. This capability enables the model to capture intricate
relationships between different time steps and to discern periodic patterns of varying
lengths [30].

For the calculation process of the i-th multi-head self-attention, the formulation is
as follows:

Compute the linear transformations for Query (Q), Key (K), and Value (V):
Qi = Q×WQi
Ki = K×WKi
Vi = V×WVi

(4)

where WQi, WKi, and WVi are weight matrices used for linear transformations.
Calculate the attention scores:

AttentionScore(Qi, Ki) = Qi × (Ki)
T (5)

Perform scaling and Softmax operation:

AttentionWeight(Qi, Ki) = Softmax
(

AttentionScore(Qi, Ki)/
√

dk

)
(6)

where dk represents the dimension of the key vectors.
Compute the output for each head:

Headi = AttentionWeight(Qi, Ki)×Vi (7)
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Concatenate the outputs from all heads and obtain the final multi-head self-attention
output through a linear transformation:

MultiHeadOutput = concat(Head1, Head2, . . . , Headh)×WO (8)

where WO represents the weight matrix used for the final linear transformation.

2.6. Performance Evaluation

To validate the effectiveness of the model proposed in this paper, a comparative
analysis is conducted using the following three evaluation metrics.

Root mean absolute error (RMSE):

RMSE =

√√√√ 1
n

n

∑
i=1

(yi −
ˆ
yi)

2

cap
(9)

Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣∣∣yi −
ˆ
yi

∣∣∣∣
cap

(10)

Determination coefficient (R2):

R2 = 1− ∑n
i=1 (yi −

ˆ
yi)

2

∑n
i=1 (yi − y)2 (11)

where yi and
ˆ
yi represent the actual and predicted values at time i, and y represents the

mean of the actual values. N is the length of the time series, and cap is the rated capacity of
the wave energy converter.

3. Composition of the Proposed Model

In current wave power forecasting, modal decomposition methods like EWT are em-
ployed to process the model’s inputs, enhancing the model’s ability to extract fine-grained
details. Modal decomposition excels at extracting periodic information from different
modes. Physical processes at specific scales exhibit dominant periodic characteristics, and
modal decomposition methods can introduce components without physical significance
when applied across all scales. Moreover, an excessive number of components can burden
the feature extraction process of the prediction model.

In this study, we employ STL to extract a trend sequence and dominant periodic
seasonal sequence. To capture both large-scale trend information and efficiently extract
primary periodic information and small fluctuations from seasonal sequences, we propose
a dual-channel Seq2Seq prediction model. The wave power prediction process based on
STL and the dual-channel Seq2Seq model can be summarized as follows:

Step 1: Conduct STL decomposition guided by the tidal period and the principle of
maximum correlation to extract trend and seasonal sequences.

Step 2: Utilize the dual-channel Seq2Seq model to derive predictive results.

3.1. Determination of STL Decomposition Parameters

When conducting STL, it is essential to determine the decomposition period and
window width. The selection of the decomposition period bears substantial physical
significance and should be made in conjunction with the wave energy’s periodicity. Tide
cycles introduce fluctuations in ocean water levels, exerting a discernible influence on the
dynamics of wave propagation. During high tide, rising water levels tend to dampen wave
propagation speeds, while during low tide, falling water levels can conversely accelerate
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wave propagation [31]. This intricate interplay can result in variations in wave amplitude
and frequency. In light of these considerations, this study aligns the STL decomposition
period with the tidal cycle, owing to its direct relevance to the behavior of waves.

The residual sequence encapsulates irregular fluctuations or noise that cannot be
accounted for by the trend and seasonality components. Efforts are made to remove
random noise from the residual sequence, making it closer to white noise, thus resulting in
a cleaner and more meaningful decomposition outcome. The choice of the decomposition
window width affects the effectiveness of STL decomposition. Here, a proposed method,
as illustrated in Formula (12), is introduced. This method centers on the minimization of
the autocorrelation within the residual sequence to determine the appropriate parameter.

w∗ = argmin

[
i=n

∑
i=1

f(i, w)

]
(12)

where w∗ represents the optimal window width, and f(i, w) is the i-th order lag autocorre-
lation coefficient of the time series with a window width of w.

3.2. The Dual-Channel Seq2Seq Prediction Model

The proposed dual-channel Seq2Seq model is depicted in Figure 5. The Seq2Seq model
comprises two distinct channels.
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In the first channel, the input is constructed by concatenating the original sequence
and the trend sequence across feature dimensions. The trend sequence exhibits relative
smoothness and cannot capture other fluctuating information. Therefore, it is concatenated
with the original sequence to create the input. Nevertheless, a simple concatenation of in-
puts could potentially compromise the model’s ability to extract trend features and impede
its capacity to discern fine-grained features within the original sequence. To address this
challenge, TPA is introduced after the Seq2Seq encoder. TPA conducts convolutions across
feature dimensions, enabling it to explore distinctions and similarities among features.
Its weighting module condenses the encoder’s features, and the resulting TPA-processed
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hidden layer vector serves as the initial state for the decoder. And a zero vector is used as
the decoder’s input.

The second channel takes the seasonal component as its input, with the aim of en-
hancing the extraction of periodic features. An LSTM-based Seq2Seq is also used for
encoding and decoding operations in this channel. To better extract periodic features from
the sequence, a cosine sequence is generated based on the tidal cycle, and this cosine cycle
sequence is used as the input for the decoder. By incorporating future tidal conditions
into the decoder, the decoder can take into account forthcoming physical information,
thereby providing more precise guidance for the model’s learning strategy. This approach
enhances the accuracy of the model in predicting wave power and enables it to better
adapt to dynamically changing environmental conditions. Then, the decoder’s output is
processed through multi-head self-attention to weigh similar information, culminating in
the final output of the second channel.

The outputs from both channels are concatenated, and a fully connected layer is used
to produce the final prediction result.

4. Results and Discussion
4.1. Data Preparation

The dataset employed in this investigation was sourced from the National Data
Buoy Center, bearing the station identifiers 46001, situated at coordinates (56◦18′1′′ N,
148◦1′6′′ W), and 46029, at (46◦9′48′′ N, 124◦29′12′′ W). The temporal resolution of the two
datasets is one hour. Within the dataset, an array of parameters is encompassed, including,
but not limited to, wind velocity, wave amplitude, and wave frequency. Although these
five years of data exhibit a semblance of completeness, it is pertinent to acknowledge
the presence of occasional lacunae and spurious entries. For brief intervals of absent or
erroneous data, the method of spline interpolation was judiciously employed to imbue
continuity, whereas protracted periods of such data aberrations were judiciously omitted
from the ensuing analysis.

The WPM selected for this study is “Pelamis”. This wave energy conversion device
was utilized in the world’s first commercial wave energy project in Portugal during the
year 2021. The relationship between wave height, wave period, and power is depicted
in the 3D graph shown in Figure 6. Different colors indicate different power levels, with
darker colors indicating lower power values.
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For dataset 46001, the data spanning the years 2016, 2017, 2018, and 2020 are used for
the training dataset, while the data for the year 2021 are used for the testing dataset. For
dataset 46029, the data spanning the years 2015 to 2018 are the training dataset, and the
year 2019 is the testing dataset. To facilitate model training and ensure uniform scaling
among variables, this paper employs the min–max normalization technique.

Xi =
xi − xmin

xmax − xmin
(13)

Respectively, Xi and xi represent the values prior to and subsequent to the normaliza-
tion process, while xmax and xmin, respectively, denote the maximum and minimum values.

The model takes into account the power values observed over the preceding 24 h
period as input and utilizes this information to forecast the power values for the ensuing
24 h. Samples are stratified utilizing a rolling window methodology, as exemplified in
Figure 7. Consequently, a single value is simultaneously predicted in 24 different samples,
each representing the predictive performance across various time intervals. This approach
provides a larger dataset and facilitates the analysis of power prediction effectiveness across
different time spans.
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4.2. STL Results

The buoy’s behavior is predominantly subject to the semi-diurnal tide, with an ap-
proximate period of 12 h and 25 min [32]. Therefore, the chosen decomposition interval is
set at 12 h. And the optimal window width is 5. In accordance with the suggested optimal
decomposition criteria, both the training and testing datasets are independently subjected
to decomposition. A selection of decomposition outcomes for the 2016 data in dataset 46001
is depicted in Figure 8.
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4.3. Dual-Channel Seq2Seq Prediction

In the Seq2Seq model, the second channel employs cyclic decoding, as elucidated
in Figure 9, conveying information about future tidal heights. The designated period is
configured to be 12 h and 25 min. Grid search was employed for parameter optimization
across all models, and key parameters for the proposed model are as follows: the first
channel’s dense layer dimensions are (2, 48), encoder feature dimensions are (48, 128),
and decoder dimensions are (128, 24); the second channel’s dense layer dimensions are
(2, 30), encoder feature dimensions are (30, 96), and decoder dimensions are (96, 24). The
fully connected output layer dimensions are (48, 24). The multi-head attention mechanism
utilizes four heads.
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Figure 10 portrays the forecasting outcomes for the test dataset at distinct time in-
tervals, specifically at the 1st, 6th, 12th, and 24th time steps. The wave power exhibits
diminished values during the mid-year period, juxtaposed with elevated values at the
outset and conclusion of the entire year, delineating a conspicuous annual oscillation. On
the whole, the proposed model yields satisfactory predictions, effectively tracking the
multifarious patterns in wave power throughout the year. Notably, the forecast results at
the sixth time step closely mirror the actual values, underscoring the model’s capacity to
capture historical trends and undulations within the initial 6 h. While the predictions at the
24th time step exhibit a degree of temporal lag and may not precisely encapsulate the zenith
and nadir of power values, they nonetheless succeed in encapsulating the overarching
power trends.

4.4. Comparison of Results

This study selected the baseline CNN and ANN model, EWT_CNN, and EWT_Dual-
channel Seq2Seq as comparative models. The proposed model, which combines STL and
dual-channel Seq2Seq, consistently yielded superior results.

To showcase the practical forecasting capabilities of the model for dataset 46001,
Figure 11 presents the model’s predictions at various time horizons. With the increase in
time steps, there is a noticeable trend of growing prediction errors across all models. This
phenomenon arises due to the limited information inherent in historical data, leading to
a diminishing predictive capacity over longer time spans. Subplots (a) and (b) display
the predictions of all four models for the first and sixth time steps. Notably, all models
except for the CNN and ANN perform admirably in tracking the actual values. Subplots
(c) and (d) exhibit the model predictions for the twelfth and twenty-fourth time steps,
where STL_Dual-channel Seq2Seq outperforms EWT_CNN in capturing longer-term trend
features. Consequently, the decomposition of input data for prediction models proves
effective in mitigating the escalation of prediction errors.
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Table 2 provides a comprehensive view of the evaluation metrics for the four models
across different prediction time steps. The proposed model consistently outperforms its
counterparts at each time step. In contrast, the baseline model’s results exhibit linear-like
trends in RMSE, MAE, and R-squared, with the lowest predictive accuracy among the
comparative models. In contrast, the other three “decomposition-prediction” models show
relatively stable RMSE and MAE trends in the early time steps, with errors starting to
exhibit linear growth at a certain point. These models also demonstrate R-squared values
that are relatively stable and close to 1 in the early time steps, with errors beginning
to decrease linearly after a certain point. This observation underscores the capability of
“decomposition-prediction” models to capture periodicity and maintain prediction accuracy
within specific time intervals. And evaluation metrics of dataset 46029 in Appendix A show
similar results.

Table 2. Performance evaluation of prediction models.

Time
Step

STL_Dual-Channel
Seq2Seq

EWT_Dual-Channel
Seq2Seq EWT_CNN CNN ANN

RMSE
(%)

MAE
(%) R2 RMSE

(%)
MAE
(%) R2 RMSE

(%)
MAE
(%) R2 RMSE

(%)
MAE
(%) R2 RMSE

(%)
MAE
(%) R2

1 4.96 3.01 0.97 5.10 3.03 0.97 6.82 4.12 0.95 6.75 4.05 0.95 6.79 4.05 0.95
2 4.88 2.99 0.97 5.15 3.16 0.97 6.61 3.91 0.95 8.29 5.03 0.93 8.31 5.00 0.92
3 4.86 3.05 0.98 5.05 3.12 0.97 6.16 3.75 0.96 10.03 6.22 0.89 10.06 6.02 0.88
4 5.00 3.10 0.97 5.08 3.15 0.97 5.70 3.54 0.97 11.63 7.38 0.86 11.68 6.98 0.86
5 5.05 3.19 0.97 5.11 3.19 0.97 5.50 3.37 0.97 13.15 8.51 0.82 13.25 8.61 0.81
6 5.05 3.19 0.97 5.10 3.21 0.97 6.11 3.62 0.96 14.47 9.53 0.78 14.47 9.33 0.77
7 4.88 3.01 0.97 5.22 3.17 0.97 7.42 4.43 0.94 15.65 10.46 0.74 15.72 10.00 0.73
8 5.25 3.12 0.97 6.00 3.60 0.96 9.07 5.49 0.91 16.68 11.29 0.71 16.69 10.88 0.70
9 6.63 3.94 0.95 7.49 4.52 0.94 10.78 6.64 0.88 17.61 12.02 0.67 17.59 11.52 0.67
10 8.26 5.00 0.93 9.12 5.61 0.91 12.36 7.74 0.84 18.49 12.70 0.64 18.45 12.70 0.63
11 9.80 6.06 0.90 10.63 6.67 0.88 13.79 8.78 0.80 19.30 13.36 0.61 19.37 13.78 0.59
12 11.29 7.10 0.87 12.03 7.74 0.85 15.11 9.77 0.76 20.06 14.03 0.58 20.05 14.18 0.57
13 12.66 8.12 0.83 13.32 8.76 0.81 16.33 10.73 0.72 20.76 14.60 0.55 20.80 14.43 0.54
14 13.88 9.07 0.80 14.49 9.73 0.78 17.44 11.63 0.68 21.44 15.19 0.52 21.52 15.11 0.51
15 15.00 9.97 0.76 15.60 10.64 0.74 18.45 12.48 0.64 22.07 15.77 0.49 22.18 15.62 0.48
16 16.03 10.80 0.73 16.68 11.54 0.71 19.37 13.27 0.61 22.66 16.32 0.46 22.54 16.12 0.45
17 17.01 11.59 0.70 17.77 12.43 0.67 20.22 14.00 0.57 23.17 16.81 0.44 23.15 16.51 0.44
18 17.98 12.39 0.66 18.80 13.28 0.63 20.99 14.67 0.54 23.62 17.26 0.41 23.73 17.06 0.41
19 18.95 13.18 0.62 19.75 14.09 0.59 21.68 15.31 0.51 24.03 17.67 0.39 24.33 17.37 0.39
20 19.81 13.89 0.59 20.58 14.84 0.56 22.30 15.90 0.48 24.39 18.03 0.38 24.53 18.23 0.36
21 20.52 14.49 0.56 21.28 15.50 0.52 22.87 16.45 0.45 24.69 18.33 0.36 24.92 18.23 0.35
22 21.14 15.05 0.53 21.90 16.13 0.50 23.39 16.96 0.43 24.95 18.61 0.35 25.36 18.21 0.33
23 21.70 15.57 0.51 22.45 16.72 0.47 23.86 17.43 0.40 25.18 18.83 0.34 25.91 19.13 0.32
24 22.22 16.09 0.48 22.95 17.29 0.45 24.29 17.86 0.38 25.42 19.07 0.32 26.22 19.24 0.30

Figure 12 presents the average evaluation metrics for all time steps for each model,
with subplots (a) and (b) representing the results for dataset 46001 and dataset 46029,
respectively. In dataset 46001, the proposed STL_Dual-channel Seq2Seq model outperforms
the EWT_CNN model, demonstrating a reduction of 2.66% in RMSE and 1.86% in MAE.
Furthermore, employing EWT_Dual-channel Seq2Seq over EWT_CNN leads to a 2.08%
decrease in RMSE and a 1.29% reduction in MAE, highlighting the effectiveness of the pro-
posed dual-channel Seq2Seq model. Additionally, STL_Dual-channel Seq2Seq outperforms
EWT_Dual-channel Seq2Seq, achieving a further decrease of 0.58% in RMSE and 0.57%
in MAE, emphasizing the superiority of the STL method over EWT. In comparison to the
ANN, the CNN exhibits a slight advantage in the R2 metric, while yielding similar results
in the other two metrics. The baseline model lags behind the ‘decomposition-prediction’
model overall. The magnitude of errors varies somewhat between the two datasets, with
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the proposed model still outperforming the EWT_CNN model by 2.2% in terms of RMSE
for dataset 46029. This indicates the strong applicability of the proposed model.
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5. Conclusions

This paper introduces an innovative wave power prediction model based on STL
and dual-channel Seq2Seq architecture. A correlation-based optimal strategy is proposed
to determine the decomposition window width, resulting in the best trend and seasonal
components. Subsequently, a dual-channel Seq2Seq prediction model is designed. In the
first channel, the TPA module is harnessed to extract features from the original sequence
and trend component, thereby elucidating trend information and intricate details. The
second channel employs multi-head self-attention and cyclic decoding to augment the
extraction of periodic information from the seasonal component.

The performance of various models is evaluated and validated using five years of wave
data from two buoys. The proposed model, along with other “decomposition-prediction”
models, consistently exhibits lower errors compared to the baseline CNN model, confirming
the effectiveness of the “decomposition-prediction” approach. Additionally, in dataset
46001, EWT_Dual-channel Seq2Seq outperforms EWT_CNN, achieving a reduction of 2.08%
in RMSE and 1.29% in MAE, highlighting the effectiveness of the dual-channel Seq2Seq
model. Furthermore, STL_Dual-channel Seq2Seq exhibits a further reduction of 0.58% in
RMSE and 0.57% in MAE compared to EWT_Dual-channel Seq2Seq, demonstrating the
efficacy of the STL method. The proposed model achieves an average 2.45% reduction in
RMSE compared to EWT_CNN. The combination of STL and dual-channel Seq2Seq results
in the highest prediction accuracy.

In summary, the proposed model excels in extracting periodic and trend features
from historical information, thereby enhancing the accuracy of wave energy prediction.
The current research solely utilizes wave energy power sequences for power prediction,
without considering the influence of atmospheric physical mechanisms. Wave energy is
affected by complex meteorological conditions such as wind speed and ocean currents. To
enhance predictive accuracy for higher resolutions and longer forecast horizons, future
research should analyze the impact of these factors. Both this study and current research
predominantly employ theoretical power generation data for model training and prediction.
When forecasting using actual wave energy generation data in the future, algorithms will
also need to analyze the impact of the operational characteristics of different wave energy
devices on the prediction outcomes.
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Appendix A

Table A1. Performance evaluation of prediction models of dataset 46029.

Time
Step

STL_Dual-Channel
Seq2Seq

EWT_Dual-Channel
Seq2Seq EWT_CNN CNN ANN

RMSE
(%)

MAE
(%) R2 RMSE

(%)
MAE
(%) R2 RMSE

(%)
MAE
(%) R2 RMSE

(%)
MAE
(%) R2 RMSE

(%)
MAE
(%) R2

1 2.82 1.91 0.98 2.90 2.12 0.98 6.82 2.35 0.97 3.96 2.77 0.97 4.41 4.05 0.96
2 2.84 2.01 0.98 3.01 2.31 0.98 6.61 2.55 0.97 4.97 3.49 0.95 5.35 5.00 0.94
3 2.79 1.97 0.98 3.06 2.35 0.98 6.16 2.69 0.97 6.12 4.31 0.92 6.44 6.02 0.91
4 2.78 1.97 0.98 3.14 2.41 0.98 5.70 2.78 0.97 7.17 5.00 0.89 7.53 6.98 0.88
5 2.80 1.98 0.98 3.17 2.42 0.98 5.50 2.89 0.97 8.12 5.62 0.86 8.52 8.61 0.85
6 2.84 2.00 0.98 3.07 2.35 0.98 6.11 3.12 0.96 8.95 6.17 0.83 9.37 9.33 0.82
7 2.92 2.04 0.98 2.97 2.28 0.98 7.42 3.53 0.95 9.70 6.69 0.81 10.12 10.00 0.79
8 3.17 2.21 0.98 3.33 2.53 0.98 9.07 4.06 0.93 10.37 7.21 0.78 10.78 10.88 0.76
9 3.41 2.41 0.98 4.24 3.16 0.96 10.78 4.65 0.91 10.96 7.67 0.75 11.35 11.52 0.73
10 3.68 2.61 0.97 5.31 3.86 0.94 12.36 5.24 0.89 11.51 8.10 0.73 11.88 12.70 0.71
11 4.41 3.12 0.96 6.33 4.53 0.92 13.79 5.80 0.86 12.03 8.53 0.70 12.38 13.78 0.68
12 5.22 3.72 0.94 7.30 5.16 0.89 15.11 6.32 0.83 12.51 8.95 0.68 12.86 14.18 0.66
13 6.09 4.38 0.92 8.18 5.78 0.86 16.33 6.83 0.81 12.96 9.36 0.65 13.31 14.43 0.63
14 6.82 4.95 0.90 8.98 6.33 0.83 17.44 7.30 0.78 13.42 9.74 0.63 13.77 15.11 0.61
15 7.57 5.52 0.88 9.71 6.84 0.81 18.45 7.76 0.76 13.85 10.09 0.60 14.20 15.62 0.58
16 8.39 6.07 0.85 10.39 7.33 0.78 19.37 8.18 0.73 14.27 10.43 0.58 14.62 16.12 0.56
17 9.27 6.64 0.82 11.04 7.81 0.75 20.22 8.60 0.71 14.67 10.77 0.56 15.04 16.51 0.53
18 10.14 7.19 0.79 11.63 8.27 0.72 20.99 9.00 0.68 15.05 11.10 0.53 15.43 17.06 0.51
19 10.89 7.64 0.76 12.19 8.70 0.69 21.68 9.36 0.66 15.42 11.40 0.51 15.80 17.37 0.48
20 11.48 7.99 0.73 12.66 9.08 0.67 22.30 9.70 0.64 15.76 11.69 0.49 16.16 18.23 0.46
21 11.89 8.24 0.71 13.07 9.42 0.65 22.87 10.04 0.62 16.09 11.96 0.47 16.49 18.23 0.44
22 12.19 8.45 0.69 21.90 9.74 0.63 23.39 10.36 0.60 16.39 12.22 0.45 16.81 3.14 0.42
23 12.54 8.74 0.68 22.45 10.04 0.61 23.86 10.70 0.57 16.68 12.46 0.43 17.11 3.63 0.40
24 12.87 9.05 0.66 22.95 10.34 0.59 24.29 11.03 0.55 16.94 12.69 0.41 17.38 4.26 0.38

References
1. Shadman, M.; Roldan-Carvajal, M.; Pierart, F.G.; Haim, P.A.; Alonso, R.; Silva, C.; Osorio, A.F.; Almonacid, N.; Carreras, G.;

Maali Amiri, M.; et al. A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives.
Sustainability 2023, 15, 1740. [CrossRef]

2. Yan, J.; Mei, N.; Zhang, D.; Zhong, Y.; Wang, C. Review of Wave Power System Development and Research on Triboelectric Nano
Power Systems. Front. Energy Res. 2022, 10, 966567. [CrossRef]

3. Zhang, Y.; Zhao, Y.; Sun, W.; Li, J. Ocean Wave Energy Converters: Technical Principle, Device Realization, and Performance
Evaluation. Renew. Sustain. Energy Rev. 2021, 141, 110764. [CrossRef]

4. Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F. On the Potential Synergies and Applications of Wave Energy Converters: A
Review. Renew. Sustain. Energy Rev. 2021, 135, 110162. [CrossRef]

http://www.ndbc.noaa.gov
https://doi.org/10.3390/su15021740
https://doi.org/10.3389/fenrg.2022.966567
https://doi.org/10.1016/j.rser.2021.110764
https://doi.org/10.1016/j.rser.2020.110162


Energies 2023, 16, 7515 17 of 17

5. Gao, Q.; Khan, S.S.; Sergiienko, N.; Ertugrul, N.; Hemer, M.; Negnevitsky, M.; Ding, B. Assessment of Wind and Wave Power
Characteristic and Potential for Hybrid Exploration in Australia. Renew. Sustain. Energy Rev. 2022, 168, 112747. [CrossRef]

6. Sun, R.; Cobb, A.; Villas Bôas, A.B.; Langodan, S.; Subramanian, A.C.; Mazloff, M.R.; Cornuelle, B.D.; Miller, A.J.; Pathak, R.;
Hoteit, I. Waves in SKRIPS: WAVEWATCH III Coupling Implementation and a Case Study of Tropical Cyclone Mekunu. Geosci.
Model Dev. 2023, 16, 3435–3458. [CrossRef]

7. Amarouche, K.; Akpınar, A.; Rybalko, A.; Myslenkov, S. Assessment of SWAN and WAVEWATCH-III Models Regarding the
Directional Wave Spectra Estimates Based on Eastern Black Sea Measurements. Ocean. Eng. 2023, 272, 113944. [CrossRef]

8. Wu, F.; Jing, R.; Zhang, X.-P.; Wang, F.; Bao, Y. A Combined Method of Improved Grey BP Neural Network and MEEMD-ARIMA
for Day-Ahead Wave Energy Forecast. IEEE Trans. Sustain. Energy 2021, 12, 2404–2412. [CrossRef]

9. Guillou, N. Estimating Wave Energy Flux from Significant Wave Height and Peak Period. Renew. Energy 2020, 155, 1383–1393.
[CrossRef]

10. Ni, C. Data-driven Models for Short-term Ocean Wave Power Forecasting. IET Renew. Power Gen 2021, 15, 2228–2236. [CrossRef]
11. Ni, C.; Ma, X. Prediction of Wave Power Generation Using a Convolutional Neural Network with Multiple Inputs. Energies 2018,

11, 2097. [CrossRef]
12. Lu, H.; Xi, D.; Ma, X.; Zheng, S.; Huang, C.; Wei, N. Hybrid Machine Learning Models for Predicting Short-Term Wave Energy

Flux. Ocean. Eng. 2022, 264, 112258. [CrossRef]
13. Gómez-Orellana, A.M.; Guijo-Rubio, D.; Gutiérrez, P.A.; Hervás-Martínez, C. Simultaneous Short-Term Significant Wave Height

and Energy Flux Prediction Using Zonal Multi-Task Evolutionary Artificial Neural Networks. Renew. Energy 2022, 184, 975–989.
[CrossRef]

14. Ni, C.; Peng, W. An Integrated Approach Using Empirical Wavelet Transform and a Convolutional Neural Network for Wave
Power Prediction. Ocean. Eng. 2023, 276, 114231. [CrossRef]

15. Rasool, S.; Muttaqi, K.M.; Sutanto, D.; Hemer, M. Quantifying the Reduction in Power Variability of Co-Located Offshore
Wind-Wave Farms. Renew. Energy 2022, 185, 1018–1033. [CrossRef]

16. Babarit, A.; Hals, J.; Muliawan, M.J.; Kurniawan, A.; Moan, T.; Krokstad, J. Numerical Benchmarking Study of a Selection of Wave
Energy Converters. Renew. Energy 2012, 41, 44–63. [CrossRef]

17. Cleveland, R.B.; Cleveland, W.S. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–33.
18. Li, W.; Jiang, X. Prediction of Air Pollutant Concentrations Based on TCN-BiLSTM-DMAttention with STL Decomposition. Sci.

Rep. 2023, 13, 4665. [CrossRef]
19. Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.D.S. Aggregating Prophet and Seasonal Trend Decomposition for Time Series

Forecasting of Italian Electricity Spot Prices. Energies 2023, 16, 1371. [CrossRef]
20. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
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