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Abstract: High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is a promising candidate as a lithium-ion
battery cathode material to fulfill the high-energy density demands of the electric vehicle industry. In
this work, the design of the experiment’s methodology has been used to analyze the influence of the
ratio of the different components in the electrode preparation feasibility of laboratory-scale coatings
and their electrochemical response. Different outputs were defined to evaluate the formulations
studied, and Derringer–Suich’s methodology was applied to obtain an equation that is usable to
predict the desirability of the electrodes depending on the selected formulation. Afterward, Solver’s
method was used to figure out the formulation that provides the highest desirability. This formulation
was validated at a laboratory scale and upscaled to a semi-industrial coating line. High-voltage
1 Ah lithium-ion pouch cells were assembled with LNMO cathodes and graphite-based anodes and
subjected to rate-capability tests and galvanostatic cycling. 1 C was determined as the highest C-rate
usable with these cells, and 321 and 181 cycles above 80% SOH were obtained in galvanostatic cycling
tests performed at 0.5 C and 1 C, respectively. Furthermore, it was observed that the LNMO cathode
required an activation period to become fully electrochemically active, which was shorter when
cycled at a lower C-rate.

Keywords: lithium-ion batteries; LNMO; high voltage cells; design of experiments; pouch cells

1. Introduction

Lithium-ion batteries (LIBs) are, nowadays, the dominating battery technology [1].
They were initially implemented in small electronic devices [2]. Still, in past years, they have
enabled the substitution of classic combustion engines and promoted the electrification
of new models of vehicles [2,3]. The automotive industry is pushing to produce even
better batteries, which leads to a continuous evolution of the chemistries implemented
in electric vehicles [4,5]. A few years ago, nickel-cobalt-manganese/aluminum oxides
(LiNixMnyCozO2/LiNi0.8Co0.15Al0.05O2, NMC/NCA) were the cathode materials designed
for the transition from an oil-consuming to an electric engine-based fleet due to their high
energy density [6,7]. Nevertheless, in recent years, lithium iron phosphate (LiFePO4, LFP)
has gained interest, as its robustness, safety, and cycling stability are higher and the absence
of Co and Ni makes it cheaper [8,9]. The benefits of LFP are significant, but the energy
density of this material is limited by its lower working voltage (3.2 V) [10,11].

Other materials have attracted the attention of the research community or have even
been implemented in commercial cells. The first commercial LIBs consisted of lithium cobalt
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oxide (LiCoO2, LCO) as the cathode material [12]. It can provide high-rate and cycling
performances, but its high content of Co makes it more expensive than other chemistries.
Furthermore, its low thermal stability is another disadvantage for its implementation in
electric vehicles [3]. LiNiO2 (LNO) is an interesting candidate for high-energy applications
as it could be analogous to NMC and NCA (consisting of Ni as the sole transition metal).
Thus, it has a high specific capacity (the highest among those discussed) due to its high
Ni content at a higher working voltage than that of LFP. However, the negative aspects
of NMC and NCA are more noticeable in this material. Its thermal and electrochemical
stability are low [13], and the costs of Ni, together with some geopolitical disagreements
with one of its leading exporters (Indonesia) [14,15], make it recommendable to limit the
content of Ni in the cathode material. On the other hand, spinel LiMn2O4 (LMO) is a much
cheaper material, based on an abundance of manganese, and it works at high voltage,
which is positive for high-energy applications [16]. However, the main disadvantage of
LMO is its low structural stability, which has its origin in the Jahn–Teller distortion [17] and
manganese dissolution due to the 2Mn3+ →Mn4+ + Mn2+ disproportionation reaction [16].
A usual strategy to avoid the former is doping the material with other metals [17].

In this context, LiNi0.5Mn1.5O4 (LNMO) can be considered an interesting alternative
to LMOI Its working potential is ca. 4.7 V vs. Li, higher than that of LMO, and the presence
of nickel provides a higher capacity (theoretically 147 mAh·g−1 [18], even if the practical
capacity is usually lower). In addition, the mitigation of the Jahn–Teller effect makes this
material a good alternative for high-energy applications [19]. Furthermore, the absence of
cobalt in its composition is another significant advantage from a commercial perspective.
Nevertheless, one of the main advantages of this material, i.e., its high working potential,
becomes its main disadvantage when facing this cathode with graphite anode to obtain
a high working voltage. This voltage is excessive for the state-of-the-art electrolytes and
undergoes oxidative decomposition [20]. In addition, the surface of LNMO is transformed
into the highly insulating rock salt, NiO [21]. A recent work by Jusys et al. studied gas
evolution by means of DEMS of LIBs based on a LNMO cathode, graphite anode, and LP30
electrolyte, evidencing that Ni4+ catalyzed the dehydrogenation of the organic carbonates
even after the decay of current to zero, indicating that the degradation processes can occur
in the absence of Faradaic currents [22]. The main strategies to avoid this reaction consist of
modifying the surface of LNMO [23–27], doping this material with other elements [28–34],
using electrolyte additives [35–39] or alternative electrolytes [40] and separators [41,42],
and following electrochemical methods [43] to avoid degradation reactions. Furthermore,
it has been evidenced that it is possible to boost the energy density of the cells based on
a LNMO cathode by combining it with high-capacity Si-based anodes if the electrolyte is
carefully chosen [44].

Another disadvantage of LNMO is its limited electronic conductivity, which hinders
its use in commercially attractive high-loading electrodes [45]. Conductive additives are
therefore needed to work with this material. In addition, high-loading electrodes can also
suffer from lower adhesion strength to the current collector compared with low-loading
electrodes, which is mitigated with the increase in binder content. Both conductive and
binder additives are electrochemically inactive; the higher their concentration in the for-
mulation, the lower the energy density of the electrodes. Thus, it is necessary to minimize
their presence without affecting the electrochemical performance and manufacturability of
the electrodes. In fact, as Frith et al. [46] mentioned in a recent work, “When carrying out
research focusing on industrial product development, researchers should develop products
that solve a problem rather than develop a solution that needs to find a problem to solve”.
This means not limiting the research to the evaluation of the materials at the laboratory
scale but proposing formulations and/or techniques that can be realistically upscaled to
industrial-scale coating lines. Ue et al. also suggested a similar idea [47]: “the knowledge
generated at academia must be brought to our society assessed by the technological criteria
used in industry”. This was the driving force motivating this work, where a cathode for-
mulation based on LNMO active material was optimized and upscaled to a semi-industrial
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coating line. The second motivation was to propose a formulation using water as solvent
instead of the current state-of-the-art organic solvent-based systems to decrease the carbon
footprint of LIBs. There are interesting works that report alternative LNMO electrode
manufacturing methods; dry-coating [48] and chemical vapor deposition [25] are examples
of them. Nevertheless, we believe that it might be too early to produce electrodes via
these techniques and expect that the current electrode manufacturing industry can be more
easily adapted to water-based processing. Di Giorgio et al. compared the LNMO electrodes
produced in aqueous (with carboxymethyl cellulose, CMC, as binder) and organic media
(with polyvinylidene fluoride, PVDF, as binder) [43]. Waterborne electrodes outperformed
those subjected to organic processing in terms of cycling performance. This improvement
was attributed to the more stable electrode surface for the CMC-based electrodes.

However, there are even more ambitious strategies to boost the energy density of
the lithium-based cells. On the one hand, lithium-sulfur batteries (LSBs) are a cheap,
sustainable, and promising alternative for some applications to the state-of-the-art LIBs [49].
Their gravimetric energy density is significantly high (theoretically 2600 Wh·kg−1 [50])
and may find a business niche in applications where this feature is a determining factor.
The cell chemistry of LSBs is based on the reduction of S8 to Li2S upon discharge and
its subsequent oxidation to S8 upon charge, while lithium metal is usually used in the
anode [51]. However, the intermediate products of these reactions, i.e., lithium polysulfides,
are soluble in electrolytes and undergo shuttling, decreasing the coulombic efficiency of the
cells [52]. Thus, the most significant efforts in past years have been focused on mitigating
this inconvenience [53–55]. Even if the defunction of Oxis Energy Ltd. (Abingdon, UK)
was a hard blow for the adepts of this technology, there are optimistic results published
at prototype level [56]. Apart from LSBs, there are other types of lithium metal batteries
(LMBs). In fact, lithium metal was the first anode material used in lithium batteries, which
was later replaced by carbonaceous materials [57]. Among these carbonaceous materials,
it is possible to find state-of-the-art graphite, which, in some cases, can be found blended
with silicon-based materials in commercial cells [6]. Nevertheless, the high gravimetric and
volumetric energy densities, achievable with metallic lithium, keep that old goal alive [58].
Even if the use of metallic lithium can lead to safety problems due to its reactivity and
dendrite formation, they are being commercialized combined with solid electrolytes and
special casings [59].

In any case, LSBs and LMBs are examples of mid-future technologies, and this work
aims to analyze the short-term alternatives to current LIBs. As already mentioned, LNMO
is an interesting solution to maximize the energy density of this type of batteries, which
can become more sustainable by processing the electrodes using water instead of organic
solvents. Thus, we propose a formulation optimization to maximize the electrochemical
performance and the feasibility of LNMO electrodes. This electrode optimization was
performed following the design of experiments (DoE) approach. This decision aimed to
delimit the area of analysis and explore this area in an orderly manner, maximizing the
information that could be obtained with the minimum number of samples by identifying the
influential parameters affecting different factors and pointing out an optimum combination
for the system studied [60,61]. A work by Rynne et al. [62] provides an excellent flowchart
of the steps that should be followed to conduct an efficient DoE. The objectives of the
study must initially be defined, followed by the definition of the responses, the parameters,
and the plan. Afterward, the experimental part of the study is conducted to obtain the
experimental results. Finally, it is time to refine the data to obtain a model that accurately
describes the system and draw conclusions. This mathematical model can also be used to
predict combinations that might even improve the response of those studied [62].

In this work, we report the use of a DoE matrix to obtain a mathematical model
that predicts the best formulation of cathodes with LNMO as the active material. After
obtaining and validating this formulation, its upscaling to a semi-industrial coating line is
described. The electrodes obtained from this coating were used to assemble 1 Ah pouch
cells as demonstrators which were tested under different rate capabilities.
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2. Materials and Methods
2.1. Electrode Manufacturing

The positive electrodes consisted of LiNi0.5Mn1.5O4 (LNMO, NANOMYTE SP-10
from NEI corporation, Somerset, NJ, USA) as the active material, carbon black (C-NERGY
Super C45 from IMERYS Carbon & Graphite, Paris, France) as the conductive additive,
carboxymethyl cellulose (CMC, Walocel 2000 from DOW Chemical Company, Midland, MI,
USA) as the disperser and the thickener, and non-fluorinated acrylate polymer (from ZEON
Chemicals, Louisville, KY, USA) as the binder. The percentage for each component in the
formulation varied to prepare the samples subjected to the current study. They were mixed
using water as the solvent by means of a mechanical stirrer. The solid-to-liquid (S/L) ratio
in these formulations was between 1/1 and 1/1.15. Using a doctor blade table-top coater,
the resulting slurries were coated onto a 20 µm-thick aluminum current collector (Hydro).
The loading of such coatings was 1.6 mAh·cm−2 using 130 mAh·g−1 as the reference
specific capacity of LNMO. The water of the as-coated electrodes was evaporated in a
convection oven at 60 ◦C and the coatings were later calendered at a 2 g·cm−3 density using
a laboratory-scale calendering machine (DPM solutions). The thickness of the coatings was
measured using a Mitutoyo 389–271 C micrometer.

The electrodes used to assemble the pouch cells were manufactured at CIDETEC, using
a semi-industrial coating line. On one hand, the cathodes consisted of the formulation
which provided the highest desirability among those studied at the laboratory scale (see
Section 3 for further detail). Three 250 g solid slurries were prepared and coated on the same
aluminum current collector used in the laboratory coatings. The loading of the coating was
controlled using a knife system with a variable gap, and the coating was passed through
three convection ovens at 60, 70, and 80 ◦C to dry it. In addition, 9 m of double-side coating
with a load of 1.5 mAh·cm−2 (per side) were obtained and calendered at a 2.0 g·cm−3

density. A picture of the cathode coating is displayed in Figure S1a.
The anodes used to assemble the pouch cells were also manufactured at CIDETEC,

using an electrode coating line. They consisted of 94% graphite (MEG-2C, SGL Carbon,
Wiesbaden, Germany) as the active material, 2% carbon black (C-NERGY Super C45 from
IMERYS Carbon & Graphite) as the conductive additive, CMC (Walocel 2000 from DOW) as
the disperser and the thickener, and SBR (TRD102A from JSR Micro NV, Leuven, Belgium)
as the binder. The slurry was coated onto a 15 mm-thick copper current collector (Showa
Denko Carbon, Tokio, Japan) and dried at 60, 70, and 80 ◦C. The loading and density of the
doble-side anode were 1.7 mAh·cm−2 (per side, based on a specific capacity of 355 mAh/g)
and 1.4 g·cm−3, respectively.

2.2. Physicochemical Characterization

The LNMO powder and the as-prepared and calendered electrodes were analyzed
by X-ray diffraction (XRD) to confirm the absence of degradation reactions for LNMO
upon electrode processing, using a Bruker D8 Discover diffractometer (Cu Kα radiation,
λ = 0.154 nm) equipped with a LynxEye PSD detector. The diffractograms were recorded
between 2θ = 10◦ and 85◦ at 0.003◦ s−1. The obtained data were fitted using the FULLPROF
program [63]. Furthermore, the correct dispersion of the different components in the
electrodes was confirmed means of field emission scanning electron microscopy (FE-SEM,
ULTRA plus ZEISS). The rheological behavior of the slurries was characterized using
a DHR2 rheometer from TA instruments. Finally, the adhesion strength of the coated
electrodes on the current collector was measured using a 90◦ peel test (LS1 model, Lloyd
Instrument, Bognor Regis, UK) on three stripes of 2 cm width.

2.3. Cell Assembly

The analysis of the optimum cathode LNMO-based formulation was performed in the
half coin cell (HCC) configuration. The coatings prepared with the different formulations
were cut with a diameter of 16.6 mm and dried for 16 h at 120 ◦C under vacuum conditions
to eliminate traces of water. The cell cases were cleaned with ethanol in an ultrasonic bath
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for 15 min and dried at 60 ◦C for 1 h. A disc of lithium (50 µm-thick, from Albemarle
Corporation, Charlotte, NC, USA) with a diameter of 18.2 mm was used both as a counter
and reference electrode in each cell. CR2025-type Hohsen HCCs were assembled in a dry
room with a dew point of −50 ◦C. The separator (Celgard ECT-2015), dried at 60 ◦C under
vacuum conditions, was impregnated with 50 µL of 1 mol·L−1 lithium hexafluorophosphate
in (3:7 vol%) ethylene carbonate:ethyl methyl carbonate + 1 wt% vinylene carbonate (1 M
LiPF6 in EC:EMC (3:7 wt.) + 1 wt.% VC) electrolyte, provided by Solvionic.

Electrodes for the soft-packaged pouch cells were directly cut from the obtained
coatings and calendered on the semi-industrial coating line in a semiautomatic die-cutting
unit (MTI Corp., Richmond, CA, USA). The dimensions of the cathodes and the anodes
were 9.8 cm × 5.9 cm and 10.0 cm × 6.1 cm, respectively. A picture of a cathode is shown in
Figure S1b. The drying protocols and separator used were the same as those in HCCs, and
the cells were assembled in the dry room under the same conditions. The cells consisted of
six cathodes and seven anodes per cell, which were stacked manually using a guiding tool
to guarantee stack alignment. The separator was laminated to the cathodes before stacking
with the anodes.

After stacking, the flanges (tabs) of the electrodes were ultrasonically welded to ter-
minal tabs (100 µm-thick Al (+) and Ni-plated Cu (−)), and then placed between two
half-shells of an aluminum laminated foil (ALF) pouch material and heat sealed on three
sides. Afterward, the cells were filled with 7 mL of 1 M LiPF6 in EC:EMC (3:7 wt) + 1 wt.%
of succinic anhydride (SA) electrolyte, which was provided by Solvionic. Then, the re-
maining side was thermally sealed under −850 mbar using a vacuum chamber sealer.
The cells were subjected to a routine analysis of voltage and AC resistance at 1 kHz us-
ing a Hioki BT3554 multimeter. The average resistance and voltage of the cells were
7.6 mOhm ± 0.2 mOhm and 0.10 V ± 0.03 V, respectively. Then, the cells underwent the
formation protocol (described in Section 2.4) and were brought back to the dry room for the
degassing step. In this step, one side of the cells was opened and thermally sealed again
under vacuum conditions. Finally, the routine voltage (4.23 V ± 0.11 V) and resistance
(9.4 mOhm ± 0.64 mOhm) check-up was repeated. A picture of the assembled pouch cells
is displayed in Figure S1c.

2.4. Electrochemical Testing

All the experiments were performed in a Basytec Cell Test System potentiostat at a
room temperature of 25 ◦C ± 1 ◦C controlled by air conditioning. The HCCs were left for
16 h at open circuit potential to guarantee the adequate wetting of the electrodes and the
separator. Afterward, they were subjected to three galvanostatic cycles at 0.2 C, one at 0.5 C,
three at 1 C, and one at 0.5 C, all of them between 5 V and 3.5 V. The protocol continued
with a fast discharge C-rate analysis, three at 2 C, three at 5 C, three at 8 C, and three at 10 C.
The charges of all these cycles were performed at 1 C, and a check-up cycle at 0.5 C was
intercalated between each discharge C-rate three-cycle block. Finally, the recovery capacity
of the cells was analyzed by performing three cycles at 1 C. All the cycles in the protocol
described included a constant voltage (CV) step to 0.05 C at 5 V. The testing protocol is
summarized in Table S1.

The pouch cells were subjected to a formation cycle at 0.05 C, and two at 0.1 C, all of
them between 4.8 and 3.6 V. A CV step to 0.025 C (for the 0.05 C cycle) and to 0.05 C (in the
0.1 C cycles) was set at 4.7 V to finalize the charge step. After completing the three cycles
in a full-discharged state, the cells were disconnected from the testing channels, moved
to the dry room, and degassed. After sealing under vacuum, the cells were connected
back to the potentiostat and divided into two groups of three cells each. The first group
was subjected to galvanostatic cycling at 0.5 C charge and discharge C-rate to analyze the
capacity retention of the cells. On the other hand, the other three cells were subjected
to more exigent rate-capability and cycling experiments: the first five cycles consisted of
discharges at rates of 1 C, 2 C, 3 C, 4 C, and 5 C with charges at 0.5 C, followed by four
cycles with charges at 0.1 C., 0.2 C, 0.5 C, and 1 C and discharges at a constant C-rate (1 C).
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Afterward, the cells were cycled at parallel 1 C discharge and charge C-rates. All these tests
were conducted between 4.8 and 3.6 V.

2.5. Definition of the Formulations and the Parameters for Their Evaluation

The positive electrode formulation to be optimized was composed of four different
components: LNMO, carbon black, CMC, and binder. The mathematical calculations to
obtain these formulations were conducted using Equation (1).

y =
q

∑
i=1

βixi +
q

∑
i<j

βijxixj (1)

The experimental approach used was that of a mixture design of extreme vertices
plus centroid, with each point in the experimental space being carried out in triplicate.
To determine the composition of the test points, a parallelepiped was defined (within a
tetrahedron), composed of 8 vertices plus a centroid. The proposed mathematical model
was a mixed model (linear plus quadratic) using Equation (1). Afterward, the upper and
lower limits in the formulation were defined for each of the components. This information
has been compiled in Table S2. These upper and lower limits were selected based on
the literature [36,37,48], previous experience, and recommendations by the component
providers. The selected upper and lower limits defined the experimental area in the current
study. To determine the composition of the samples to be prepared and analyzed, a matrix
(Table 1) consisting of eight corners and a centroid was defined.

Table 1. Design matrix for positive electrode formulations.

Point Type Formulation
Number LNMO wt.% Carbon

Black wt.% CMC wt.% Binder wt.%

Corners

1 91 4 2 3
2 91 4 3 2
3 90 4 3 3
4 91 5 2 2
5 89 5 3 3
6 90 6 2 2
7 89 6 2 3
8 89 6 3 2

Centroid 9 90 5 2.5 2.5

After determining the formulations (inputs) to be used in the experimental part of this
study, it was necessary to define the parameters (outputs) to evaluate these formulations.
As these formulations were designed to be implemented in the cathodes of LIBs, their
electrochemical performance must be an essential output to decide which is more suitable
for this application. Furthermore, as electrodes for high energy applications with high
working voltages, the specific capacities achievable with the different formulations at
different C-rates (0.2, 1, and 2 C) were thought to be adequate outputs for evaluating
electrochemical performance. The higher the capacity, the higher the energy, and, therefore,
the more desirable the response is. On the other hand, electrode preparation feasibility
should not be left out of the evaluation, as a formulation with excellent electrochemical
performance but that is hardly processable is not attractive for electrode manufacturers.
For this aim, the outputs selected for this feasibility group were the slope of the viscosity
vs. the shear rate curve in the rheological analysis, the viscosity at 10 s−1 shear rate,
and the adhesion strength after coating and calendering. Higher viscosities, slopes, and
adhesion strengths are desired for electrode manufacturing [64–67]. The list of parameters
used to evaluate the formulations is summarized in Table 2. In addition, the schematic
representation of the analysis flow followed in the current work is represented in Figure 1.
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Table 2. List of experimental outputs.

Parameter Group Parameter Unit Sample Optimization Criteria

Feasibility
Viscosity at shear rate = 10 s−1 Pa·s Slurry Nominal-better

Slope of the viscosity with the shear rate Pa·s2 Slurry Higher-better
Peel resistance N·m−1 Electrode Higher-better

Electrochemical
performance

Discharge capacity at 0.2 C mAh·g−1 Half coin cell Higher-better
Discharge capacity at 2 C mAh·g−1 Half coin cell Higher-better

Discharge capacity after fast cycles (at 1 C) mAh·g−1 Half coin cell Higher-better
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3. Results and Discussion
3.1. Mono-Variant Analysis

After defining the parameters for evaluating the formulations, the experimental part of
the study was initiated. The slurries were prepared and subjected to a rheological analysis.
The viscosity vs. shear rate curves obtained in this analysis can be observed in Figure S2.
All the curves showed a shear thinning behavior, i.e., the viscosity was decreased with the
shear rate [68], making them suitable to be coated on a coating line with a knife system [69].
The viscosity values at 10 s−1 and the slope for each viscosity vs. shear rate curve can be
observed in Table 3. The highest viscosities were obtained with formulations #2 and #9,
while the highest slopes were calculated from the rheological analysis of formulations #6
and #7. A quick revision of these results suggests that the increase in the carbon black
concentration entails an increase in the slope of the curve, resulting in more stable slurries.

Afterward, the slurries were coated onto the current collector and calendered to the
target density. The electrodes were subjected to XRD and FE-SEM characterization to
discard degradation reactions or morphology modifications in the LNMO upon processing
(see Figures S3 and S4 for further detail). Then, the peel strength of the coatings with
the different formulations was measured; the results obtained are compiled in Table 3.
The highest peel strength was obtained with formulation #7, consisting of 89% LNMO,
6% carbon black, 2% CMC, and 3% binder. On the other hand, the lowest value was
provided by formulation #3, with 90% LNMO, 4% carbon black, 3% CMC, and 3% binder.
The latter result is surprising as this formulation consists of the highest CMC and binder
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concentrations among those studied (together with formulation #5). This evidences that, to
boost a specific parameter, it is not enough to increase the concentration of the components
intuitively promoting this parameter; the interaction of these components with the rest is
also determining.

Table 3. Results obtained for each parameter selected for the evaluation with different formulations.
The reported results are an average of three replicates.

Formulation

Feasibility Electrochemical Performance

Viscosity
(Pa·s)

Slope
Viscosity

(Pa·s2)

Peel
(N·m−1)

0.2 C
(mAh·g−1)

2 C
(mAh·g−1)

1 C
(mAh·g−1)

1 9.60 0.36 36.8 128.28 116.47 114.64
2 27.14 0.36 20.9 127.22 108.36 108.39
3 20.94 0.33 17.4 128.02 110.32 107.72
4 13.01 0.45 24.9 128.99 120.93 117.04
5 20.09 0.40 32.4 126.58 112.07 97.36
6 15.93 0.57 29.5 125.93 116.76 117.89
7 13.54 0.54 44.6 128.25 117.10 101.81
8 19.61 0.44 31.9 128.62 118.96 110.05
9 24.10 0.49 30.9 129.29 120.10 114.31

Finally, the electrodes obtained from these coatings were subjected to electrochemical
testing in HCCs. The capacities at 0.2 C, 2 C, and 1 C for each formulation are included
in Table 3. The capacity at 0.2 C is very similar for all the samples (slightly lower for
formulation #6), but more differences arise when subjecting the cells to higher C-rates. The
highest capacity at 2 C was obtained with formulation #4, followed by formulation #9. On
the other hand, formulations #6 and #4 (in this order) provided the highest capacity at 1 C.
Thus, it is likely that the multivariant analysis will reveal a high electrochemical desirability
for formulation #4.

The mono-variant analysis aims to determine the influence of the electrode formula-
tions on the individual response to each of the parameters analyzed. Thus, Minitab software
(version 16.2.3) was used to obtain a formal functional relation between the experimental
outputs and the corresponding formulations (Equation (2)).

Output value = kLNMO·CLNMO + kCB·CCB + kCMC·CCMC + kBinder·
CBinder + kLNMO−CB·CLNMO·CCB + kLNMO−CB·CLNMO·CCMC + kLNMO−Binder·

CLNMO·CBinder + kCB−Binder·CCB·CBinder

(2)

Here, ki is the correlation coefficient and Ci the concentration of each component. The
results obtained with this method are depicted in Table S3. The statistical correlation of the
functions and the output can be evaluated based on the linear regression of these functions.
The electrode components most significantly influencing the output of each parameter and
the regression coefficient are shown in Table 4.

The results in Table 4 evidence that the hypothesis formulated when analyzing the
output of the slope of the rheological curve, i.e., the increase in the slope with the con-
centration of carbon black, was correct. Interestingly, the component most significantly
affecting the peel strength of the coatings was the carbon black, which was penalized
with the increase in its concentration. Furthermore, the increase in the CMC benefited
the rheological response of the slurry. On the other hand, the electrochemical response
was clearly improved with the increase in the LNMO and carbon black concentrations.
Nevertheless, the regression coefficient was 39.11 for the discharge capacity at 0.2 C as an
output. This was attributed to the absence of remarkable differences in the specific capacity
when the cells were discharged at this low C-rate, as previously discussed.
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Table 4. Mono-variant analysis summary: the component most significantly affecting each parameter
based on the functions obtained and the corresponding regression coefficient (R2). ↑ and ↓ are used
to express increase and decrease, respectively.

Parameter Input Output R2

Viscosity at shear rate = 10 s−1 CMC ↑ ↑ 99.79
Slope of the viscosity with the shear rate CB ↑ ↑ 99.57

Peel resistance CB ↓ ↑ 95.64
Discharge capacity at 0.2 C LNMO + CB ↑ ↑ 39.11
Discharge capacity at 2 C LNMO + CB ↑ ↑ 90.57

Discharge capacity after fast cycles (at 1 C) LNMO + CB ↑ ↑ 98.10

3.2. Multi-Variant Analysis

The mono-variant analysis allows the identification of the components more sig-
nificantly affecting the defined outputs. Still, it is necessary to conduct a multi-variant
analysis to evaluate the inputs and outputs jointly and adjust the formulation to obtain
electrodes with optimized feasibility and electrochemical performance. In that regard,
desirability, a concept introduced by E. C. Harrington [70] and later developed by Der-
ringer and Suich [71], allows the compiling of individual outputs in a single quantitative
value. The first step in this analysis consists of the conversion of the individual evaluation
criteria of the parameters in elemental desirability functions (di) with values between 0
(non-desirable) and 1 (most desirable). The functions for each of the parameters are shown
in Figure S5.

The shape of the functions is similar for the slope of the rheology curve, peel strength,
and specific capacities at 0.2 C, 2 C, and 1 C. There is a minimum value at which di is 0
below which the response is not desirable, a value above which the response is evaluated
as optimum (desirable, di = 1), and a linear regression between these two values. On the
other hand, the viscosity of the slurry cannot be evaluated following the same rule; too
high (>30 Pa·s) or too low (<5 Pa·s) viscosities make it difficult to successfully coat the
slurry in a coating line and, thus, were defined as di = 0. Nevertheless, viscosity values
between 10 and 25 Pa·s are excellent for coating and were defined as di = 1. Finally, values
between di = 0 and di = 1 were fitted following linear regression.

The next step consisted of weighting each parameter group (i.e., feasibility and elec-
trochemical performance) and each of the parameters included in these groups. Electro-
chemical performance was preferred over feasibility, weighting these factors with 75 and
25% of the overall desirability, respectively. Among the three parameters considered in the
feasibility group, it was decided that the peel strength is the most important one (50% of the
feasibility), as it is crucial for the electrode cutting and manipulation during cell assembly,
as well as contributing to the electrochemical performance (avoiding the delamination of
the electrodes). The viscosity slope and the viscosity at 10 s−1 shear rate were weighted
with 30% and 15% of the feasibility, respectively. On the other hand, the weighting of the
electrochemical performance group decreased with the increasing C-rate. These were 50%,
30%, and 20% for the specific capacity at 0.2 C, 1 C, and 2 C, respectively. The desirability
of each parameter, group of parameters, and global desirability are shown in Table S4. The
highest global desirability value was obtained with formulation #9. Nevertheless, this
only indicates that this sample is the most desirable among those studied, not necessarily
the most desirable in the defined experimentation area. To determine this most desirable
formulation, Solver’s method will be used in the sext section.

The obtained values were used to obtain a mathematical model to predict global
desirability (D), which is referred to here as Equation (3). In addition, the desirability heat
map that can be observed in Figure 2 was obtained.

D = −0.0017 [LNMO] − 1.08 [C45] − 3.13 [CMC] − 1.13 [Binder] +
0.01 [LNMO] [C45] + 0.03 [LNMO] [CMC] + 0.01 [LNMO] [Binder] +

0.05 [C45] [Binder]
(3)
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The regression coefficient for Equation (3) is 97.83%. The differences between the
experimental and the mathematical values are shown and discussed in Table S5.

3.3. SOLVER’s Method to Obtain the Cathode with the Best Formulation

Based on Equation (3), a 10th formulation was designed with the maximum global
desirability value in the working region consisting of 89.5% LNMO, 6% C45, 2.5% CMC,
and 2% binder. Furthermore, another formulation (#11) was predicted to provide even
higher global desirability but was placed out of the working region. It consisted of 89.5%
LNMO, 6% C45, 3% CMC, and 1.5% binder. The mathematical desirability for these samples
was 0.952 and 0.967, respectively. Both coatings were prepared and subjected to the same
physicochemical characterization as those used to obtain the desirability prediction function.
The results have been included in Table 5.

The feasibility, electrochemical, and global desirability values for formulation #10 were
0.861, 0.914, and 0.949, respectively. The latter value is close to the desirability calculated
from the mathematical model (0.952), evidencing the benefits of this method. As expected,
the experimental global desirability value for formulation #10 is higher than those obtained
for the samples used to build the prediction model. On the other hand, the viscosity
value obtained with formulation #11 (34.53 Pa·s) was above the highest acceptable value
defined in the multi-variant analysis (30 Pa·s). Thus, its feasibility desirability is 0 and was
discarded. This shows the importance of conducting corroboration experiments. It might
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occur that the outputs for certain parameters of the formulations calculated by Solver’s
method are close to the lower desirability limits and can be affected by the difference
between the calculated and experimental values.

Table 5. Experimental outputs and desirability values of the formulations obtained by Solver’s method,
based on the previous multi-variant analysis. The reported results are an average of three replicates.

Formulation

#10: 89.5% LNMO, 6% C45, 2.5%
CMC and 2% Binder

#11: 89.5% LNMO, 6% C45, 3% CMC,
and 1.5% Binder

Output Desirability Output Desirability

Viscosity (Pa·s) 16.82 1 34.53 0.000
Viscosity slope (Pa·s2) 0.530 0.767 0.582 0.940
Peel strength (N·m−1) 29.6 0.490 28.9 0.473

Specific capacity at 0.2 C (mAh·g−1) 128.31 0.610 124.73 0.490
Specific capacity at 2 C (mAh·g−1) 120.84 1.000 115.58 0.780
Specific capacity at 1 C (mAh·g−1) 117.83 0.930 118.06 0.940

3.4. Upscaling and Pouch Cell Testing

Formulation #10 was upscaled to the coating line, as described in Section 2.1. The
slurry consisted of 250 g of solids, which is much higher than the 30 g solids slurries
prepared at laboratory scale. Therefore, the mixing conditions, such as the stirring force
to which the slurry components were subjected, were slightly different. This required an
adjustment of the solid-to-liquid (S/L) ratio (1/0.73 at laboratory scale, 1/1.09 at pilot plant
scale). As expected, the rheological analysis (Figure S2) evidenced that the viscosity was
lower for the pilot plant slurry, which had a higher fraction of liquid phase per solvent
amount than the laboratory scale slurry. However, the difference in the viscosity was
minimal for the shear rate of the region analyzed, which could be attributed to a better
dispersion of the components. Therefore, the better the dispersion, the more water the
solid particles take, and the higher the viscosity of the slurry. After calendaring, the coating
was subjected to the adhesion strength measurement. The 90◦ peel strength test result was
slightly lower with the pilot plant coating at 26.3 N·m−1 versus the 29.6 N·m−1 obtained
at laboratory scale. In any case, the difference between the two values was minimal.
Furthermore, to conduct the peel test, it is necessary to manually clean one of the sides
of the double-side coated electrode with water and a wipe, which can affect the adhesion
strength measured on the other side.

The coatings on the electrodes were cut to later assemble the pouch cells used for the
electrochemical validation of the upscaling process. The cells comprised six 9.8 cm× 5.9 cm
double-side cathodes and seven 10 cm × 6.1 cm double-side anodes. After being filled with
electrolyte, the cells were subjected to a formation protocol consisting of one 0.05 C cycle,
followed by two 0.1 C cycles. The galvanostatic profiles of these three cycles are depicted in
Figure 3a. In the first charge, ~0.1 Ah was consumed to form the solid-electrolyte interphase
(SEI) below 4.4 Ah. Afterward, a pseudo-plateau at 4.4 V and two defined plateaus at 4.6
and 4.7 V were registered. In the subsequent discharge, complementary plateaus were
obtained at 4.35, 4.55, and 4.6 V, respectively. References in the literature [25,32,72,73]
report the presence of two main redox peaks between 4.6 and 4.8 V; two features of charge
and two (associated with each of the former) of discharge. These signals are attributed to
the redox activity of nickel (Ni2+/Ni4+). On the other hand, they also evidence that the
contribution of manganese (Mn3+/Mn4+) to the cell capacity can be observed to plateau at
~4 V. The absence of a feature with this potential suggests that the redox activity observed
at 4.35 (discharge) and 4.4 V (charge) can be attributed to the electrochemical activity of Mn.
The capacities obtained in the first charge and discharge of the cells were 1.03 and 0.85 Ah,
respectively, for a Coulombic efficiency of 82.6%. The charge–discharge capacities in the
second and third cycles were 0.83–0.82 Ah and 0.83–0.81 Ah, respectively. The increasing,
but relatively low, coulombic efficiencies in these two cycles (97–98%) suggest that part of
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the lithium is still being consumed in the formation of the SEI. These two cycles presented
the same plateaus, confirming that the same electrochemical reactions are occurring.
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Figure 3. Electrochemical results obtained with the LNMO/graphite pouch cells. (a) Galvanostatic
curves obtained in the formation step, (b) capacity evolution and capacity retention curves at 0.5 C
cycling, (c) results of the rate-capability test, and (d) capacity evolution and capacity retention curves
at 1 C. Discharge (D) and charge (C) C-rates are specified for each cycle in (c).

After finishing the formation, three of the cells were degassed and subjected to 0.5 C
cycling; the discharge capacity values and capacity retention with the cycle count are
displayed in Figure 3b. Interestingly, the capacity was increased until the maximum value
was reached in the 33rd cycle. This phenomenon was not observed in the half cells tested
in the formulation optimization study, in which the upper voltage limit was higher (5 V
in coin cells, 4.8 V in pouch cells). Nevertheless, it is possible to find the same behavior
in other works [24,74,75]. In pouch configuration, the upper voltage limit was decreased
to avoid excessive gassing due to electrolyte degradation. In Figure S7a, the galvanostatic
profiles of the 2nd and the 38th cycles are compared; it can be observed that the upper
voltage limit was reached earlier in the 2nd cycle, and that the CV step was longer than
in the 38th cycle. In addition, at first sight, the discharges almost overlap up to 0.55 Ah,
with an earlier voltage decay in the 2nd cycle. Our first thought was to attribute this
unexpected behavior to a partial consumption of the charge in SEI formation; but, if this
were the case, we would obtain low Coulombic efficiencies in these first cycles, which
was not the case (Figure S7b). In fact, Coulombic efficiency was above 100% in many
of the cycles before the previously mentioned 33rd cycle. A Coulombic efficiency above
100% means that more Li+ is being transferred from the graphite electrode to the LNMO
electrode than in the opposite way. Nevertheless, the dQ·dV−1 vs. voltage representation
of the curves in Figure S7a, displayed in Figure S7c, provides a different point of view. In
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this type of graph, each plateau in the galvanostatic profile is represented as a peak. The
flatter and longer the plateau, the sharper and larger the peak in the dQ·dV−1 vs. voltage
representation. Negative dQ·dV−1 values are used to represent the discharge, while charge
curves are plotted in the positive part of the y-axis. The first 0.1 C cycle in the formation
protocol is included as a reference. One significant difference that can be observed when
comparing the 2nd and the 38th cycles is the appearance of an addition peak at 4.67 V
during charge. This does not necessarily involve the occurrence of a new reaction and
could be attributed to the decoupling of two signals that occurred together in the 2nd cycle.
In fact, this signal is also observed in the formation cycle, which is conducted at a lower
C-rate. In these conditions, it is easier to decouple different electrochemical processes into
different plateaus. On the other hand, based on the galvanostatic curve in Figure S7a, it
was assumed that there was not any overpotential in the discharge reaction. Nevertheless,
this overpotential is evidenced in Figure S7c, as all the signals in the negative y-axis occur
at lower voltage in the 2nd cycle. The overpotential is even lower in the formation step
and conducted at a lower C-rate. However, the most significant difference is registered at
4.4–4.5 V in this region; the activity has been attributed to the redox reactions of manganese.
The previously discussed pseudo-plateaus result in a wide range of features, both upon
discharge and charge, for the formation and the 2nd 0.5 C cycles. Contrarily, two evident
peaks are observed in the 38th cycle. Thus, it can be concluded that the increase in the
capacity that can be observed during the first 33 cycles is attributed to the activation of the
redox activity of Mn. The cells cycled at 0.5 C completed 321 cycles (plus the first 32 cycles
before reaching the maximum capacity) before reaching the referential 80% SOH commonly
used as a reference to determine the end of life in Li-ion technology. In addition, they
completed 592 cycles (+32) before reaching 70% SOH.

On the other hand, the other three cells were subjected to rate-capability experiments
(Figure 3c). The first cycle was performed at 0.5 C charge and 1 C discharge C-rates. The
capacities obtained were 0.70 and 0.60 Ah, respectively. Compared with the last 0.1 C cycle
in the formation cycle (0.81 Ah), the capacity was 26% lower at 1 C. The limitations of the
discharge rate capabilities were further evidenced by the increasing the discharge C-rate
in the following cycles: 0.19, 0.11, 0.10, and 0.10 Ah, which were obtained at 2 C, 3 C, 4 C,
and 5 C, respectively. Thus, it was determined that 1 C was the most usable discharge
current with an acceptable performance, as the drop in the capacity was excessive when the
cells were subjected to higher C-rates. The charge rate capability analysis was performed
by analyzing lower C-rates (0.1 C, 0.2 C, 0.5 C, and 1 C) with discharges at 1 C. In these
discharges, the cells provided 0.62, 0.60, 0.59, and 0.59 Ah. Therefore, the discharge current
obtained was almost the same after charging the cells at the different C-rates. Afterward,
the cells were cycled using a parallel 1 C rate: the evolution of the capacity and the capacity
retention with the number of cycles is shown in Figure 3d. Again, there was an increase
in the discharge capacity with the increasing cycle count, as observed in the 0.5 C cycling.
Nevertheless, it seems that the incomplete charge was even more significant at higher
charge C-rates. Thus, the capacity was continuously increased until the 50th cycle, and the
maximum capacity was obtained in the 69th cycle. Thus, the activation of Mn is dependent
on the C-rate at which the cells are tested, with extended delay with increasing the C-rate.
The cells completed another 181 cycles at 1 C without reaching the reference 80% SOH
capacity (+68 cycles at the beginning of life before reaching the maximum capacity). This
lower cycling performance compared with the cells cycled at 0.5 C is expected, as a higher
degradation of the materials usually occurs at higher C-rates. Lower capacity retention
with an increasing C-rate has also been reported in other works [29,38]. The capacity fade
at both C-rates can be more accelerated than in LIBs with other cell chemistries, such as
NMC and, principally, LFP [76]. However, as mentioned by Yao et al. [48], this is something
common in the literature related with LNMO, as the technology is not mature enough yet.
The higher cycling stability is not a matter of just the cathode material itself, as the stability
of the other components in the cell can also condition the capacity retention. This becomes
particularly important when working with high-voltage materials; it is important that the
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rest of the cell components are stable at such a working voltage [35,40]. Furthermore, the
formation of a stable cathode-electrolyte interphase (CEI) is mandatory for enhancing the
cycle life of the LNMO cells [48,77]. The main objective of this work was to implement DoE
as a methodology for defining a robust formulation and upscaling it to a semi-industrial
coating line, with the pouch cells being assembled-and-tested demonstrators of the latter
process. Future works could be directed toward analyzing the main failure mechanism in
these cells and focusing on mitigating it.

4. Conclusions

The water-based formulation of the emerging Li-ion cathode chemistry, LNMO, was
optimized by means of DoE methodology. It was evidenced that the fraction of the different
components directly impacts the performance of the feasibility and electrochemical outputs
defined. In addition, the desirability of the different formulations studied was compared
following Derringer–Suich’s methodology, which showed that the formulation with the
highest desirability in the study consisted of 90% LNMO, 5% C45, 2.5% CMC, and 2.5%
binder. The results were used to build up a regression line to predict desirability in
the region of study, and, interestingly, the formulation with the highest mathematical
desirability was not the same as that with the highest experimental desirability. This was
attributed to small experimental deviations. Furthermore, Solver’s method was used to
predict a formulation with the maximum desirability in the region of study and outside
this region. The higher desirability of the formulation in the region of study (89.5% LNMO,
6% C45, 2.5% CMC, and 2% binder) was confirmed experimentally and the recipe was
upscaled to a semi-industrial coating line. The double-side electrodes obtained were
used to assemble 1 Ah pouch cells and then tested. It was revealed that the activation of
manganese redox activity needs an activation period, after which the maximum capacity of
the cells is obtained. Furthermore, more activation cycles are necessary for this activation
with increasing C-rate, based on our results with cells cycled at 0.5 C and 1 C. The cells
cycled at the 0.5 C rate completed over 300 cycles before reaching 80% SOH, while the
cycling performance was lower with those subjected to 1 C. Indeed, rate capability results
evidenced a significant decay in the electrochemical performance when subjecting the cells
to C-rates higher than 1 C. Overall, the optimization and upscaling of the LNMO electrode
recipe resulted in the obtaining of high-energy pouch cells of 1 Ah that could be used to
gain knowledge in the chemistry of this lithium-ion cathode material.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/en16217327/s1, Figure S1: Pictures of (a) the cathode coating after passing through the
knife, (b) a cathode, and (c) assembled pouch cells; Figure S2: Rheological studies with the different
formulations: viscosity vs. shear rate curves; Figure S3: X-ray diffraction patterns of the (a) LNMO
powder and (b) a LNMO electrode. Patterns were fitted to LNMO phase using FULLPROF software
and its theoretical reflections and the difference between the experimental and the fitting curves are
included; Figure S4: FE-SEM images of the LNMO powder and a LNMO electrode: LNMO powder
with magnification (a) X1000 and (b) X10000 and LNMO electrode with magnification (c) X1000
and (d) X10000; Figure S5: Derringer–Suich desirability functions for the different experimental
outputs under evaluation: (a) viscosity, (b) viscosity slope, (c) peel strength, (d) 0.2 C capacity, (e) 2 C
capacity, and (f) 1 C capacity; Figure S6: Rheological analyses (viscosity vs. shear rate curves) of the
laboratory-scale slurry with formulation #10 and slurry prepared for upscaling to the coating line
with the same formulation; Figure S7: (a) Voltage vs. capacity representation of the 2nd and the 38th
cycles with the pouch cells cycled at 0.5 C. (b) Coulombic efficiency of the cells subjected to 0.5 C
C-rate. (c) dQ/dV vs. voltage representation of the 2nd and the 38th cycles with the pouch cells
cycled at 0.5 C; Table S1: Testing protocol applied to the LNMO HCCs; Table S2: Components of the
positive electrodes and upper and lower limits defined for the optimization of the slurry; Table S3:
Functional relations between the concentration of the electrode components and the experimental
outputs; Table S4: Desirability of the different samples for each parameter, group of parameters and
the global desirability; Table S5: Experimental mathematical desirability values obtained for the
9 formulations in this study.
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