
Citation: Mubarak, H.; Sanjari, M.J.;

Stegen, S.; Abdellatif, A. Improved

Active and Reactive Energy

Forecasting Using a Stacking

Ensemble Approach: Steel Industry

Case Study. Energies 2023, 16, 7252.

https://doi.org/10.3390/en16217252

Academic Editors: Javier Contreras

and Yonghao Gui

Received: 3 October 2023

Revised: 17 October 2023

Accepted: 24 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Improved Active and Reactive Energy Forecasting Using a
Stacking Ensemble Approach: Steel Industry Case Study
Hamza Mubarak 1 , Mohammad J. Sanjari 1,* , Sascha Stegen 2 and Abdallah Abdellatif 3

1 School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia;
hamza.mubarak@griffithuni.edu.au

2 School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia;
s.stegen@griffith.edu.au

3 Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya,
Kuala Lumpur 50603, Malaysia; 17221028@siswa.um.edu.my

* Correspondence: m.sanjari@griffith.edu.au

Abstract: The prevalence of substantial inductive/capacitive loads within the industrial sectors
induces variations in reactive energy levels. The imbalance between active and reactive energy within
the network leads to heightened losses, diminished network efficiency, and an associated escalation
in operating costs. Therefore, the forecasting of active and reactive energy in the industrial sector
confers notable advantages, including cost reduction, heightened operational efficiency, safeguarding
of equipment, enhanced energy consumption management, and more effective assimilation of
renewable energy sources. Consequently, a range of specialized forecasting methods for different
applications have been developed to address these challenges effectively. This research proposes
a stacked ensemble methodology, denoted as Stack-XGBoost, leveraging three distinct machine
learning (ML) methods: extra trees regressor (ETR), adaptive boosting (AdaBoost), and random
forest regressor (RFR), as foundational models. Moreover, the incorporation of an extreme gradient
boosting (XGBoost) algorithm as a meta-learner serves to amalgamate the predictions generated by
the base models, enhancing the precision of the active/reactive energy consumption forecasting using
real time data for steel industry. To assess the efficacy of the proposed model, diverse performance
metrics were employed. The results show that the proposed Stack-XGBoost model outperformed
other forecasting methods. Additionally, a sensitivity analysis was conducted to assess the robustness
of the proposed method against variations in input parameters.

Keywords: active/reactive energy forecasting; industrial energy consumption; short-term forecasting;
energy management; machine learning; ensemble model

1. Introduction

In recent times, the global population’s substantial increase has led to a notable rise in
electricity demand. To meet this demand, power plants have been relying on conventional
fossil fuels, such as oil, coal, and gas, for electricity generation. However, these traditional
energy sources have had adverse environmental impacts due to the emission of carbon
dioxide (CO2) and other harmful gases, contributing to global warming [1]. Consequently,
urgent actions from researchers, governments, and policymakers are imperative to explore
alternative sources and promote their implementation. Renewable energy sources (RES),
including windmills and solar photovoltaic (PV), present viable alternatives to conven-
tional energy [2,3]. As a result, embracing RES and electric vehicles (EVs) emerges as an
ideal solution to address these pressing challenges. Nevertheless, the increasing number
and variety of electronic devices have posed challenges in efficiently connecting each cus-
tomer’s active and reactive power demand [4]. In contemporary power systems, persistent
challenges involving periodic and structural power shortages in addition to significant
peak–valley disparities have endured over short periods. These issues have raised concerns
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regarding resource depletion and the necessity to bridge the gap between power generation
and consumption [5,6]. However, In light of the fourth industrial revolution, businesses
have realized that integrating Industry 4.0 solutions confers competitive advantages and
fosters opportunities for enhanced sustainable management [7,8]. Therefore, real-time data
gathering and predictive analytics are harnessed through big data analytics and Artificial
Intelligence (AI) and forecasting methodologies [9]. Hence, the introduction of active and
reactive energy forecasting has been employed to address these specific challenges, particu-
larly within the industrial sector, where the prevalence of inductive and capacitive loads
surpasses that of the residential sector. These techniques address the modern industrial
demands, encompassing aspects like flexibility, heightened productivity, improved market
demand forecasting, optimization of resources within and beyond industrial units, and
promoting sustainable manufacturing processes [10].

Numerous prior studies have addressed the forecasting of energy consumption de-
mand. To accomplish this task, diverse methodologies have been employed, encompassing
statistical, machine learning (ML), and deep learning (DL) techniques [11]. The selection of
these methods is contingent upon the specific characteristics and requirements of each prob-
lem, leading to the consideration of distinct forecasting periods, namely, short, medium,
and long-term horizons, depending on the application at hand. Regarding statistical meth-
ods, the authors in [12] utilized an autoregressive moving average approach to predict the
electric arc furnace reactive power demand. Moreover, the work in [13] introduced a mixed
regression clustering methodology for medium-term reactive power forecasting (spanning
one month to a year ahead) in transmission grids. Furthermore, the work in [14] presented
a generalized additive model for short-term reactive power forecasting at the interface
between distribution and transmission grids. In addition, different statistical methods,
including linear regression [15], K-nearest neighbors (KNN) [16], and CUBIST [17], were
employed to forecast energy consumption. According to [17], compared to other models,
such as KNN and liner regression, the results revealed that the CUBIST attained the best
performance by achieving the lowest error value when applying it on data for small-scale
steel industry in South Korea. The proposed statistical models exhibited promising results,
especially for substations with reactive power behaviors characterized by low variability.
However, despite applying statistical methods for active/reactive energy demand forecasts,
these techniques, grounded in mathematical statistics, demonstrate limited robustness and
accuracy when dealing with intricate non-linear systems [18].

AI technologies based on data-driven ML techniques are employed to cope with the
drawbacks of statistical methods by producing adaptable predictions that highlight the
non-linear correlation between features and potential outcomes. For example, single ML
models were proposed in order to address the active power consumption problem. In [19],
an RF was proposed for short-term energy consumption prediction in multiple buildings.
The outcomes indicate that the RF model surpassed other models, exhibiting superior
performance with approximately 49.21% and 46.93% lower mean absolute error (MAE) and
mean absolute percentage error (MAPE), respectively, in comparison to alternative models,
including random trees. In addition, limited works take into account the forecasting of re-
active energy consumption. For instance, a support vector machine (SVM) was used in [20]
to forecast the grid reactive power one day ahead, whereas a Fuzzy logic was proposed
in [21] to predict the wind farm reactive power one hour ahead. Further, seven different
ML models were proposed in [22] to forecast energy demand for building heating systems.
The results disclosed that the Extreme Learning Machine (ELM) surpassed the other model
in performance. However, single models showed a deficiency compared to the hybrid
ML models in forecasting active/reactive energy consumption, as stated in [23]. Hence,
hybrid ML models were employed to attain better results. A hybrid ML prediction model
Jaya-ELM with online search data was employed in [24] to forecast residential electricity
consumption. The proposed Jaya-ELM model, incorporating online search data, exhibits
noteworthy reductions of 34–51.2%, 43.03–53.92%, and 41.35–54.85% in Root Mean Squared
Error (RMSE), MAPE, and MAE, respectively, when compared to other benchmark models.
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In addition, three occupancy estimation algorithms based on ML, including decision tree,
SVM, and artificial neural networks (ANN), have been chosen and assessed for their ability
to accurately estimate occupancy status during each season of a building energy model [25].
The building energy simulation, validated using estimated occupancy data, demonstrated
a notable enhancement in the accuracy of energy consumption estimation, and it exhibited
a close alignment with the actual energy usage profiles. Finally, an ensemble learning tech-
nique, referred to as ‘Ensemble Bagging Trees’ (EBT), is employed, utilizing data derived
from meteorological systems as well as building-level occupancy and meters for energy
demand forecast for residential buildings [26]. The results demonstrated that the proposed
EBT model achieved enhanced accuracy in predicting the hourly energy demand of the
test building, as indicated by the MAPE, which ranged from 2.97% to 4.63%. Although ML
models are extensively employed for active/reactive energy forecasting, nevertheless, they
encounter challenges such as nonlinear relationships, high-dimensional data, temporal de-
pendencies, seasonal patterns, the interpretability of models, their generalization capability,
and issues related to scalability [27].

However, due to the integration of automated meters, the electrical companies are
capable of monitoring the dynamic variations in active/reactive power requirements,
thereby accessing abundant and updated data streams. Consequently, DL models have
been posited to address the challenges encountered by ML models. Various applications
of DL models for active/reactive energy predictions are made possible by high-resolution
measurements [10]. Models based on DL capture complicated time-series features and
produce adaptable forecasting by leveraging sophisticated computational capabilities and
processing inclusive data inputs. Single DL methods were used to address this issue. For
example, in [28], a one-dimensional convolutional neural network was presented to forecast
the wind farm reactive power resolving the delay duration of static VAR compensators.
The forecasting of the reactive load using dual input LSTM was addressed in [29], where
the results revealed that accurate prediction of reactive load at each bus help to fine control
of reactive voltage. Hybrid DL models were also proposed to cope with the energy demand
problem when it comes to enormous and complicated datasets [30]. For example, a DL
model based on LSTM and autoencoder was proposed in [31] to predict the electric energy
consumption for a household one hour ahead. The proposed model managed to attain
the lowest MAE and MSE with a value of 0.3953 and 0.3840, respectively. Additionally,
multistep short-term electricity load forecasting utilizing a Residual Convolutional Neural
Network (R-CNN) with a multilayered Long Short-Term Memory (ML-LSTM) architec-
ture was employed in [32]; the results showed that the proposed model outperformed
the other models since the R-CNN layers are employed to extract spatial features, while
the ML-LSTM architecture is integrated for sequence learning. Another DL model based
on CNN-LSTM was used in [33] and validated using a household dataset. A landmark-
based spectral clustering (LSC) along with CNN-LSTM was proposed in [34] to predict
the household energy consumption in power grids. The results prove that the proposed
LSC-CNN-LSTM surpasses other models by achieving the lowest RMSE and MAE val-
ues of 17.54 and 9.74, respectively. While DL models have demonstrated proficiency in
active/reactive energy forecasting, several challenges are encountered in utilizing them for
reactive energy prediction. These encompass the requirement for abundant labeled data,
the risk of overfitting due to intricate model architectures, complexities in deciphering
model decisions, and the considerable computational resources essential for training and
deployment [35].

Table 1 summarizes the recent works that consider forecasting the active/reactive
energy using different ML and DL models. According to Table 1, it can be observed that
the majority of preceding studies in the realm of ML ensemble models have predominantly
addressed the prediction of active and reactive energy consumption through the lens of
a regression task [12–14,17]. This has been accomplished by leveraging statistical models
and incorporating RF methodologies at the foundational level [19]. Still, the intrinsically
dynamic character of active/reactive energy consumption time-series data, intertwined
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with its intricate reliance on various parameters and autoregressive tendencies, engenders
substantial complexity in prognosticating it via singular computational intelligence tech-
niques, such as a standalone ensemble model [20–22]. In addition, these techniques prove
inadequate in discerning nonlinear behavior intrinsic to time-series data, subsequently
leading to diminished predictive efficacy. Moreover, the employment of DL was used to
solve these problems. Nevertheless, these techniques showed a promising result, but these
approaches have a complex architecture and demands enormous computer resources such
as CNN [28], LSTM [29], and the combination between them [32–34]. Furthermore, it is
noteworthy that a substantial portion of prior research efforts has mostly centered around
datasets pertaining to residential contexts [36]. Surprisingly, scant attention has been
directed towards industrial settings, despite the fact that industrial operations typically
involve significantly elevated levels of active/reactive energy consumption owing to the
utilization of diverse machinery and equipment. Thus, the consequential implications of
effectively managing such energy consumption in the industrial sector to curtail expenses
have been overlooked. Finally, the statistical test in order to evaluate the model’s sensitivity
have been overlooked in most of the previous work.

To surmount these inherent constraints, the present research endeavored to tran-
scend the established norm by embracing an enhanced approach—utilizing a one-level
stacked ensemble model. This ensemble configuration incorporates the Adaboost, ETR,
XGBoost, and RFR models, amalgamating their distinct strengths to counteract the mul-
tifaceted challenges posed by the intricate and nonlinear nature of energy consumption
data. This strategic approach promises to yield enhanced predictive accuracy and reliability
in forecasting. In this work, ETR’s inherent capability to grasp intricate data patterns in
active/reactive energy consumption forecasting was harnessed. AdaBoost, renowned for
its competence in handling prediction tasks with minimal bias errors and adeptly avoid-
ing overfitting during training, was also incorporated. Furthermore, the study leveraged
the advanced fitting proficiency of RFR and its remarkable resilience to low-information
scenarios, where the XGBoost was employed to amalgamate the predictive outputs of
each underlying model. The integration of XGBoost in the role of a meta-learner not
only facilitated the aggregation of individual model predictions but also encompassed
the quantification of model-specific errors and the uncertainty stemming from data noise.
As a result, the collaborative utilization of these techniques culminated in significantly
enhanced forecast accuracy. In this context, the distinctive contributions of this study, when
juxtaposed with earlier research endeavors, can be succinctly summed up as follows:

• A stacking ensemble model, denoted as Stack-XGBoost, was meticulously formulated
to serve as a foundational framework for active/reactive energy consumption forecasts.
This model is designed to facilitate predictions for time horizons of 15 min, 30 min,
and one hour ahead. It leverages a modest-sized dataset from the steel industry, with
minimal hyperparameter tuning requirements.

• The efficacy of the proposed Stack-XGBoost model was assessed through a compre-
hensive performance evaluation using real-world data from the steel industry.

• The performance of the proposed Stack-XGBoost model was benchmarked against
various proposed models using diverse sensitivity metrics, demonstrating its superior
robustness and efficacy.

The paper’s organization is structured as outlined below: Section 2 elucidates the
data preparation and analysis of key parameters. Section 3 expounds on the methodology
for the proposed Stack-XGBoost model, addressing the forecasting of active/reactive
energy consumption. Section 4 provides an in-depth exploration of results and discussions,
juxtaposing the proposed Stack-XGBoost with alternative models. Finally, Section 5 presents
the paper’s conclusions.
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Table 1. A comprehensive summary of the recent works regarding forecasting active/reactive energy.

Methodology Reference Model Input Parameters Output Resolution Dataset Sensitivity Analysis Application Areas

Statistical

[12] ARMA Three-phase supply voltages and
currents Half-cycle Mobarakeh steel industry

×

Industry

[13] A mixed regression
clustering

Historical data for active and reactive
power 1 month to a year ahead National transmission grid Transmission Grids

[14] Generalized Additive
Model

Active and reactive power in addition
to weather data One to two days ahead Grid data Distribution and

Transmission Grid

[17] CUBIST Active and reactive energy, CO2,
power factor One hour ahead small-scale steel industry Industry

Machine Learning

[19] RF Historical data for active energy
consumption

One hour and one day
ahead

5 different building
datasets Buildings

[20] SVM Current, voltage, load active power,
and load reactive power

One day ahead

From Energy Management
System (EMS)

Grids
[37] Ensemble neuro-fuzzy Historical load data and the

temperature A real load profile in Iran

[21] Fuzzy logic Actual voltage and current Manjil wind farm Wind farm

[22] ELM Weather data, indoor temperature,
time data 40 min ahead Office building dataset

Buildings

[24] Jaya-ELM with online
search data

Historical residential electricity
consumption and online search data - Residential electricity

consumption dataset

[26] Ensemble Bagging Trees
Metrological data, electricity data, time

of the day, type of load, and
workday type

One day ahead
building energy

management system
(BEMs) of Rinker Hall

Deep
Learning

[28] 1D-CNN Actual voltage and current Extremely short t ≤ 0.02 s Manjil wind farm Wind farm

[29] DL-LSTM Historical active/reactive data and
workday type 15 min ahead The power grid in Hainan

Province Grids

[31] LSTM and autoencoder

Global active/reactive power, global
intensity, voltage, sub-metering 1, 2,

and 3

One hour ahead Household electric power
consumption (IHEPC)

Buildings
[32] R-CNN with ML-LSTM One hour and a day ahead IHEPC and commercial

PJM datasets

[33] CNN-LSTM 1 min, 1 h, 1 day, and
1 week ahead IHEPC

[34] LSC-CNN-LSTM One hour ahead

Stack model Current study Stack-XGB

Active and reactive energy, CO2, lead
and lag power factor, load type,

workday type, number of seconds
from midnight

15, 30, and 60 min ahead Steel industry SRC and KTC Industry
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2. Data Preparation and Key Parameters Analysis

This part of the paper demonstrates the data preparation and key parameters for the
used dataset, in addition to comprehensive analysis regarding the interactions between the
parameters and their impact on the active and reactive energy consumption. Finally, the
section elaborates the performance metrices that are employed to assess the efficiency of
the developed model.

2.1. Data Partitioning

Data preparation and partitioning have been verified to positively impact model
convergence. The process encompasses several steps, including data collection, organizing
inputs and outputs, segmentation, and standardization using various techniques. The
dataset was compiled during a one-year period from 1 January 2018 to 31 December
2018, with a 15 min interval, sourced from DAEWOO Steel Co., Ltd. in Gwangyang, South
Korea [38]. This company is engaged in the production of multiple types of coils, steel plates,
and iron plates. The energy consumption data is stored in a cloud-based system, accessible
through the website of the Korea Electric Power Corporation, Naju-si, Republic of Korea
(pccs.kepco.go.kr) [39], which provides perspectives on daily, monthly, and annual energy
consumption figures. Moreover, the energy consumption data for the steel industry’s
machine equipment is collected through smart meters, with supplementary details on
energy consumption also being stored in a cloud-based system. The key parameters are
encompassed in the dataset, which include variables such as active energy consumption
(EP ), leading reactive energy (E+Q ), lagging reactive energy (E−Q ), leading power factor
(PF+), lagging power factor (PF−), CO2 information (t[CO2]), load type, number of seconds
from midnight (t), day of the week, and week status.

The objective is to forecast the active and reactive energy (the lag and lead); hence,
the samples are averaged and scaled based on the proposed forecasting horizon (half
and one hour). Furthermore, the dataset is partitioned into distinct training and testing
sets, maintaining an 80:20 ratio. Eventually, data normalization was achieved through
the utilization of the standard deviation. The progression of these procedural stages is
delineated by the subsequent Equations (1)–(4). Equation (3) represents the pre-training
standardization of the data, and Equation (4) incorporates the difference between the actual
data forecasted to assess the testing effectiveness in relation to the trained network.

µ =
1
N

N

∑
i=1

Ei (1)

σ =

√
∑N

i=1 (Ei − µ)2

N
(2)

Z =
(Ei − µ)

σ
(3)

Z = σ·Z + µ (4)

where the symbol µ represents the mean, the energy is represented by Ei, and σ denotes
the standard deviation of the dataset under consideration. Moreover, N corresponds to the
size of the dataset, whereas Ei signifies the value of each energy point within the dataset.
Finally, Z represents normalization of the data point while the original value of the data
point can be represented by Z.

2.2. Principal Component Analysis

This section focuses on examining the interrelationships among the variables within
the dataset. To commence, the correlation between active energy consumption and lagging
reactive energy consumption is notably strong at 0.9, as depicted in Figure 1. Furthermore, a
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substantial correlation is observed between CO2 emissions and active energy consumption,
registering a value of 0.9, along with a value of 0.89 in relation to lagging reactive energy
consumption. The correlations among the remaining variables exhibit weaker associations.
Notably, the correlation between leading and lagging reactive energy consumption is dis-
tinctly high yet negatively oriented, standing at −0.94. To provide further clarification,
Figure 2 illustrates the positive correlation between active energy and lagging reactive
energy. This signifies that, when one of these factors increases, the other also tends to
increase, and conversely, when one decreases, the other follows suit. In contrast, a weak
correlation between active energy and leading reactive power is observed, indicating a
negative relationship between these two variables. Figure 3 illustrates the interdependence
between leading and lagging reactive energy. As discernible from the graphical representa-
tion, these two forms of reactive energy demonstrate inverse relationship. This signifies
that an elevation in leading reactive energy corresponds to a reduction in lagging reactive
energy, and vice versa. Furthermore, Figure 4 elucidates the operational intricacies of
both reactive energy categories within a single day. For example, when lagging reactive
energy attains a non-zero value, leading reactive energy remains at zero, and vice versa. In
conclusion, Figure 5 conclusively demonstrates a direct correlation between CO2 emissions
and both active energy and lagging reactive energy. This observation signifies that elevated
active energy consumption leads to increased CO2 emissions into the atmosphere, primarily
driven by the higher levels of active energy generation from conventional power plants.
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Figure 6 presents the utilization profiles for both active energy consumption and
lead/lag reactive energy consumption. Evidently, the factory initiates its operations at
approximately 8 AM and concludes them around 8 PM on a daily basis. Concerning active
energy consumption, Figure 6a portrays distinct consumption trends across the whole
period. Consumption ascends notably between 8 AM and 12 PM, as well as from 2 PM to
5 PM. It is noteworthy that the factory remains operational even during the weekend, with
Saturday exhibiting a consumption peak at 4 PM. In the context of lead reactive energy, as
depicted in Figure 6b, a divergent pattern emerges. Particularly, days like Saturday and
Sunday manifest heightened lead reactive energy, primarily attributed to the activation
of specific capacitive load equipment and machinery. Contrarily, the behavior of lagging
reactive energy showcases elevated consumption on Sunday, Tuesday, and Monday, and
that can be interpreted by using different inductive load on these specific days. During
days characterized by active lead reactive energy, such as Monday, Tuesday, Wednesday,
Thursday, and Friday, the lagging reactive energy remains negligible. In the case of the
lagging reactive energy, the lagging reactive energy appears to be high in the morning
around 9 AM and during the period of 11 AM to 12 PM during the weekdays, as shown in
Figure 6c. While the lagging reactive energy is linked to inductive loads and may lead to
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voltage reduction and decrease operational efficiency, leading reactive energy is introduced
through shunt capacitors installation and has the potential to enhance the overall efficiency
of the electrical system, particularly in terms of the power factor. Finally, in the realm of
industrial and commercial domains, it bears significance to emphasize the imperative of
adept reactive energy management and optimization. This endeavor holds the potential to
substantially enhance energy efficiency while concurrently curtailing operational expenses.
In general, a prevailing scenario entails lagging reactive energy, a consequence primarily
attributable to the prevalence of inductive loads inherent to these environments. However,
it is pivotal to recognize that both lagging and leading reactive energy can give rise to
multifaceted challenges, encompassing concerns pertaining to equipment efficacy, energy
expenditure, and the overarching stability of the system.
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2.3. Forecast Model Performance Indices

Equations (5)–(8) are employed to assess the predictive accuracy of all models with
respect to active/reactive energy. These evaluation metrics offer insight into various facets
of forecast accuracy. For instance, Equation (5) delineates the computation of the Root Mean
Square Error (RMSE), serving as the initial measurement criterion. Equation (6) expounds
upon the Mean Square Error (MSE), while Equations (7) and (8) elucidate the calculation of
the Coefficient of Determination (R2) and the Mean Absolute Error (MAE) in sequence.

RMSE =

√√√√ 1
N

N

∑
i=1

(Êi − Ei)
2 (5)

MSE =
1
N

N

∑
i=1

(
Êi − Ei

)2 (6)

R2 = 1− ∑N
i=1
(
Êi − Eavg

)2

∑N
i=1
(
Ei − Eavg

)2 (7)

MAE =
1
N

N

∑
i=1
|(Êi − Ei)| (8)

where N represent to the size of the dataset, and it is notable that the variables denoted as
Ei and Êi, respectively, embody the actual and prognosticated values, whereas Eavg signifies
the average of the actual values.

3. The Proposed Forecast Models

This section of the study reveals the developed methodology and, in addition, pro-
vides a comprehensive account of the development process of the Stacking-XGBoost model.
Subsequent to the construction of the Stacking-XGBoost model, its validation will be carried
out using a small-scale steel industry dataset. Furthermore, the model’s performance will
be evaluated utilizing applicable performance indices to validate the effectiveness of each
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proposed model. The methodologies employed in this work are delineated within this
section. This approach assesses and classifies supervised learning methodologies across var-
ious independent variables, classifying them into three distinct groupings. These groupings
encompass bagging and boosting ensemble strategies, in addition to the Stack-XGBoost
model proposed for this study. The concept of an ensemble of regressions endeavors to
construct a further effective model through an amalgamation of outcomes derived from
multiple regression models. In addition, bagging ensembles serve to curtail model variance
while concurrently training subordinate models in parallel. Within this context, the ETR
and the RFR stand as predominant manifestations of bagging methodologies. The ensemble
boosting techniques strive to mitigate model bias through a progressive process of training
multiple models to augment each preceding one. The AdaBoost and XGBoost stand out as
the most prevalent exemplars among the prevailing boosting methods.

3.1. Random Forest Regressor

The RFR represents an ensemble-based ML technique rooted in the bagging paradigm,
orchestrating the fusion of numerous trees. Within the RFR framework, a voting mechanism
is harnessed to enhance the performance of multiple foundational learners, particularly
decision trees (DT) in that specific research. This approach boasts distinctive attributes,
including bootstrap sampling, randomized feature selection, out-of-bag error estimation,
and the construction of full-depth decision trees [40,41]. The RFR is assembled from an
ensemble of decision trees, wherein classification and regression trees notably benefit
from this association. In tandem with the RFR, the classification and regression trees
methodology experiences augmentation. Remarkably, the RFR obviates the necessity for
cross-validation due to its inherent capability to function out-of-bag error approximation
through the forest construction procedure. It is posited that the impartiality of out-of-bag
error valuation holds true throughout a multitude of testing scenarios.

The training procedure of an RFR can be succinctly outlined as follows. The RFR
draws a bootstrap sample from the original dataset in the initial stage. Subsequently, each
bootstrap sample acquired in the first phase proceeds to construct an unpruned regression
tree, incorporating the subsequent adjustments in the subsequent phase. A random subset
(n) of input variables is considered at each decision node, from which the optimal split
among them is determined. This process of sampling and splitting is iteratively repeated
across successive nodes. This iterative process persists until the stipulated number of trees
has been generated. Finally, when making predictions on new data, the RFR aggregates the
forecasts of all the generated trees, resulting in an averaged prediction.

Nonetheless, the process of identifying an optimal arrangement of if-statements that
align with the logged data is referred to as model improvement or training. Therefore,
training involves an optimization procedure with an objective function aimed at minimizing
a disparity among a forecasted value, denoted as fn(xi; θn), and the actual recorded values
Ei as described in Equation (9).

OFRFR= min
θ

∑i (fn(xi; θn)− Ei)
2 (9)

The choice for fn(xi; θn) typically involves calculating the mean of the records that
satisfy a specific if-statement condition. A valid concern can arise regarding how to prevent
the model from generating an excessively long if-statement for each record in the dataset.
This is mitigated by imposing constraints on the tree, including a maximum depth and
number of branches, which prevents such overfitting. Moreover, the model’s efficiency
is evaluated by employing a dataset that it has not encountered during training. Finally,
the ultimate outcome of a random forest regressor Êi is the average estimate of M trees, as
illustrated in Equation (10).

Êi =
∑M

m=1 fn(X; θn)

M
(10)
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3.2. Extra Trees Regressor

ETR is an ensemble ML technique rooted in the bagging framework and represents an
evolution of the random forest algorithm, rendering it a relatively novel approach [42]. ETR
operates by constructing an ensemble of unpruned regression trees through a traditional
top-down process. Analogous to the approach of RFR, ETR also employs a randomized se-
lection of features for training each individual base estimator. However, ETR differentiates
itself by embracing a distinctive strategy in node splitting. While RFR identifies the optimal
split, ETR, in contrast, employs randomness to select the best feature and its corresponding
value for node division [43]. Furthermore, while RFR relies on bootstrap replication for
training its predictive model, ETR takes a distinct route by utilizing the entire training set to
train each regression tree within the forest. This strategic departure effectively diminishes
the likelihood of overfitting in ETR, as evidenced by the superior performance verified
in [42]. In the context of classification trees, the objective values assigned to the leaf nodes
can represent specific anticipated outcomes, while in the case of regression trees, they
correspond to the median of the training data. For the regression trees, the classification of
the leaves is accomplished by employing local sample averaging of the outcome variable
along with forecast values as outlined in [44]:

Êi =
1
M

M

∑
m=1

em(i) (11)

where M represents the number of decision trees while em(i) denotes the prediction of
the m-th decision tree for the input i. The quantity of trees generated determines the
extent to which the diversity among ensemble models is mitigated [42]. It is worth noting
that ETRs surpass individual trees in terms of computational efficiency and predictive
effectiveness [44].

3.3. Extreme Gradient Boosting

XGBoost stands as a supervised ML approach rooted in the realm of boosted trees [45].
It signifies an enriched and scalable realization of the Gradient Boosting (GB) methodol-
ogy, which systematically amalgamates feeble foundational models to engender a more
resilient overarching model. The XGBoost process commences by fitting the input data to
the primary base model. Subsequently, another model is fit to the residual of the previ-
ous iteration, thereby amplifying the learning capacity of the initial model. This residual
refinement procedure persists until the specified criteria are met. The final outcome is
ascertained through the amalgamation of the outputs of all the base models. Moreover,
XGBoost adroitly safeguards against overfitting by incorporating a regularization part into
its objective function. Comparatively, GB’s learning process exhibits greater swiftness com-
pared to XGBoost, attributed to optimizations within the system, parallel computing, and
distributed computation techniques [46]. GB employs a termination criterion grounded in
a negative loss metric in tree splitting, while XGBoost favors a depth-first strategy. Through
a reverse pruning mechanism, XGBoost leverages the maximum depth parameter to refine
the tree. The construction of sequential trees within the XGBoost framework is achieved
through parallel implementation. The reciprocity between XGBoost’s outer and inner loops
elevates algorithmic efficiency, with the inner loop computing the characteristics of the tree
while the outer loop navigates its leaf nodes. This strategic interchange contributes to the
overall proficiency of the algorithm. Finally, Equation (12) explains the formulation of the
XGBoost model.

OFXGB(t) = L(t) + Ω( ft) (12)

L(t) = l
(

Ei, Êi
(t−1)

+ ft(xi)
)

and Ω( ft) = αT +
1
2

λ ‖w‖2 (13)

In this context, the variable l signifies a differentiable convex loss function, where Ei

represents the actual value, Êi
(t−1) signifies the forecast from the previous round at time
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t − 1, and ft(x) represents the subsequent decision tree in round t. Furthermore, Ω( ft)
represents the regularization term, while T stands for the total number of constructed
trees. The parameters α, w, and λ, respectively, correspond to the learning rate, the weights
assigned to leaves, and the regularization parameter.

The tree’s capacity for generalization improves as the function value decreases. In
order to make OFXGB simpler, a second-order Taylor expansion is employed on the objective
function. By removing the constant terms and reformulating the function, the objective
function OFXGB can be expressed as depicted in Equation (14).

OFXGB(t) =
T

∑
j=1

∑
i∈Ij

gi

wj +
1
2

∑
i∈Ij

hi + λ

w2
j

+ αT (14)

Here, gi and hi symbolize the first and second derivatives of the loss function l,
respectively. Moreover, jth designates the leaf node, Ij refers to the sample on the jth leaf
node, and wj represents the score value. The optimal solution w∗j of the optimization
problem in Equation (9) can be formulated using the partial derivative, as illustrated in
Equation (15).

w∗j = −
∑i∈Ij

gi

∑i∈Ij
hi + λ

(15)

The optimum value of the objective function can be calculated by substituting Equation
(10) into Equation (9), as depicted in Equation (16).

OFXGB(t) = −
1
2

T

∑
j=1

∑i∈Ij
gi

∑i∈Ij
hi + λ

+ αT (16)

During the training process, XGBoost constructs decision trees to improve the existing
model until achieving a satisfactory level of forecasting performance.

3.4. The Adaptive Boosting

The AdaBoost ML model is rooted in the boosting paradigm, serving as a foundation
for various algorithms tailored toward classification and regression concerns [47,48]. Nev-
ertheless, in contradistinction to other boosting algorithms, the AdaBoost methodology
distinguishes itself as an iterative process that changes its learning trajectory according
to the errors engendered by its base learners. The main principle of the AdaBoost model
resides in the construction of a resilient learner by amalgamating feeble base learners,
iteratively generated during each cycle. Hence, these base learners’ judicious weighting
and amalgamation assume pivotal significance. Multiple models can serve as potential
base learners within the AdaBoost framework. Notably, DTR and linear regression (LR)
constitute AdaBoost’s most frequent choices for base learners. In this context, the authors
of this work have opted for LR as the designated base learner for AdaBoost.

3.5. Stack-XGBoost

Stacked generalization, commonly referred to as stacking, represents an extra en-
semble learning methodology devised by Wolpert [49], which has garnered substantial
traction across diverse domains since its inception. Stacking orchestrates the consolidation
of outcomes from various models such as random forest and AdaBoost, among others,
with the objective of training a novel meta-learner for final predictions. The underpinning
framework of stacking is structured on a dual-tiered algorithmic architecture. The initial
tier comprises an array of algorithms denoted as base learners, while the succeeding tier
encompasses a meta-learner recognized as a stacking algorithm. The first-tier learners
frequently encompass distinct base models; however, stack ensembles can also be con-
structed utilizing identical base learner models [50]. These first-tier learners are honed to
forecast outcomes employing the original dataset. Subsequently, the predictions from each
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base learner are aggregated to form a novel dataset, encompassing forecasts generated by
these foundational learners. The second-tier meta-learner then employs this amalgamated
dataset to generate the ultimate prediction. The primary role of the meta-learner is to rectify
errors stemming from the base models by fine-tuning the ultimate prediction output. It is
important to note that multiple stacking layers are feasible, with each level’s prediction
serving as an input for the ensuing one. Stacking emerges as one of the best-sophisticated
ensembles learning techniques. It adeptly mitigates both bias and variance, effectively
averting overfitting concerns.

This study emphasizes the capabilities inherent in stacked ML models, exemplified
through a flexible implementation that embodies an ensemble architecture. The core objec-
tive of this stacking approach resides in the quest to discern the optimum amalgamation of
models catering to active and reactive energy forecasting. As a result, four distinct stack
models are instantiated, as depicted in Figure 7 The base learner constitutes the distinct
learning algorithm employed to generate predictions from the dataset. On the other hand,
the meta-learner undertakes the task of amalgamating the predictions derived from the
base learners to formulate a conclusive prediction. In addition, the meta-learner’s role
involves acquiring the knowledge of effectively fusing the outputs of the base learners,
thereby optimizing the comprehensive predictive performance.

The preparation of the training dataset for the meta-model involves a five-fold cross-
validation of the base models, with the out-of-fold predictions serving as the foundation for
this dataset. The comprehensive process underlying the proposed Stack-XGBoost model
is graphically depicted in Figure 8, whereas the sequential steps involved in creating and
evaluating the proposed model are illustrated in Figure 9. Finally, the sequential stages of
the developed Stack-XGBoost model unfold as follows:

Stage 1: The first stage is selecting the dataset and checking on its variables; the
selected dataset is for the small-scale steel industry, and it includes active energy consump-
tion, lag/lead reactive energy consumption, lag/lead power factor, CO2, time and date,
number of seconds from midnight, load type, week status, and the day of the week.

Stage 2: The subsequent phase involves data preprocessing and scaling. The gath-
ered data is averaged and scaled in accordance with the chosen forecasting horizon, as
outlined in Section 2.1. Subsequently, the data is partitioned into training and testing sets,
maintaining an 80:20 ratio.

Stage 3: The initial tier of the Stack-XGBoost framework comprises the foundational
models (XGBoost, AdaBoost, and RFR). These foundational models conduct predictions for
the active/reactive energy consumption through a five-fold cross-validation approach. The
default configuration settings of the XGBoost algorithm as implemented in the scikit-learn
(sklearn) library have been employed in this study.

Stage 4: The second tier of the Stack-XGBoost framework comprises a Meta-Regressor
(XGBoost), which accepts the aggregated forecasts of the base models (M*Pi) as input
to generate the ultimate prediction. The processing time is determined through parallel
computational techniques, involving the computation of processing time at the initial stage,
specifically the maximum time within the first layer, as well as the processing time required
for the meta-learner within the second layer.

Stage 5: Finally, the evaluation of the developed Stack-XGBoost method is conducted
utilizing the performance indices outlined in Section 2.3.
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4. Results and Discussion

Within this work, a total of eight regression-based models (namely, RFR, XGBoost,
AdaBoost, ETR, Stack-ETR, Stack-XGBoost, Stack-AdaBoost, and Stack-RFR) were system-
atically trained to predict active/reactive energy, as delineated in the Methodology section.
The performance of each model was rigorously assessed using the dedicated testing dataset.
Following individual training using distinct performance metrics such as RMSE, MAE,
MSE, and R2, the evaluation was conducted. Finally, diverse active/reactive forecasting
scenarios were taken into account, encompassing 15 min, 30 min, and one hour ahead.

4.1. Scenario 1: Active/Reactive Energy Forecast (One Hour Ahead)

This first scenario will meticulously examine the outcomes derived from the fore-
casting results for active/reactive energy, specifically focusing on one hour ahead. This
assertion is substantiated by the model’s accomplishment of the lowest RMSE, MAE, and
MSE values for active energy, along with lagging and leading reactive energy. These com-
mendable findings of scenario 1 are comprehensively outlined in the accompanying Table 2.
In general, it can be observed from the results that the Stack-XGBoost model, as proposed in
this scenario, showcased exceptional performance by attaining the most accurate outcomes
with less error.

To exemplify, the Stack-XGBoost model demonstrated a remarkable RMSE value of
1.38 for active energy, 0.61 for lead reactive energy, and 0.65 for lagging reactive energy.
This outperformed the Stack-ETR and Stack-AdaBoost models, which achieved values of
1.62, 0.62, 0.7, and 1.54, 0.62, 0.69, respectively. Furthermore, the proposed Stack-XGBoost
exhibited the lowest MAE and MSE, registering values of 0.8 and 1.9 for active energy,
surpassing other models like Stack-ETR and Stack-AdaBoost, which yielded MAE and MSE
values of 0.87, 2.07, and 0.22, 0.39, respectively. In the realm of lead reactive energy, the
proposed model achieved an impressive MAE value of 0.2 and a MSE value of 0.38.
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In contrast, the AdaBoost and RFR models exhibited subpar performance, showcasing
the highest RMSE values of 1.88 and 1.76, respectively. The outcomes for the leading and
lagging reactive energy models mirror this pattern. To provide a deeper understanding of
the forecasting outcomes, Figure 10 visually presents the forecasted values alongside the
actual values for various models. The depiction reveals that the models achieved reasonable
approximations for active, lead reactive, and lag reactive energy, with the lines closely
following the path of the actual data. However, concerning active energy, the model’s
predictions sometimes diverge from the actual values, as indicated by the discrepancies
between the lines and the actual data. This can be attributed to the higher RMSE values for
specific models compared to others, a trend further evident in Figure 10a. For Figure 10b,c,
the majority of lines correspond well with the actual values, reflecting the high R2 values
for most of the proposed models. Overall, it can be seen that the stacked models perform
better than the single model according to the performance mercies.

Table 2. The forecasting results for the proposed Stack-XGBoost in scenario 1 compared to other
models for one hour ahead.
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Figure 10. The forecasting results of the proposed Stack-XGBoost for scenario 1 (one hour ahead) 
for (a) active energy, (b) leading reactive energy, and (c) lagging reactive energy. 

  

Figure 10. The forecasting results of the proposed Stack-XGBoost for scenario 1 (one hour ahead) for
(a) active energy, (b) leading reactive energy, and (c) lagging reactive energy.

4.2. Scenario 2: Active/Reactive Energy Forecast (30 Min Ahead)

In the second scenario, the outcomes of the forecasting results for the active/reactive
energy for a half hour ahead is presented. Overall, it is evident that the Stack-XGBoost
model developed in this work demonstrated superior performance by achieving the most
favorable results, as evidenced by the attainment of the lowest RMSE, MAE, and MSE
values for the active energy and the lagging/leading reactive energy, as presented in the
accompanying Table 3.
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Table 3. The forecasting results for the proposed Stack-XGBoost in scenario 2 compared to other
models for 30 min ahead.
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To illustrate, the Stack-XGBoost model achieved a RMSE value of 1.16, 0.41, and 0.48
for the active energy, lead reactive energy, and lag reactive energy, respectively, surpassing
the Stack-ETR, Stack-RFR, and Stack-AdaBoost models, except for the E+Q , where the
Stack-ETR achieved the same results, and the models attained RMSE values for the EP ,
E+Q , E−Q of 1.31, 0.41, 0.49 for Stack-ETR, 1.36, 0.43, 0.49 for Stack-RFR, and 1.28, 0.44,
0.49 for Stack-AdaBoost, respectively. Further, the proposed Stack-XGBoost managed to
obtain the lowest the MAE and MSE with a value of 0.62 and 1.35, respectively, for the
active energy, surpassing the other models, such as Stack-ETR and Stack-AdaBoost which
achieve a MAE and MSE value of 0.75, 1.71 and 0.67, 1.63, respectively. In the case of the
lead reactive energy, the proposed model obtained a value of 0.17 for the MAE and 0.18 for
the MSE, which is the lowest compared to the other proposed models.

On the contrary, the AdaBoost and RFR models exhibited poor performance, recording
the highest EP RMSE values of 1.62 and 1.89, respectively. The other results for the leading
and lagging reactive energy follow the same pattern.

To give more insight into the forecasting results, Figure 11 shows the predicted values
along with the real values for different models. It can be seen that the models approximately
predicted the active, lead reactive, and lag reactive energy, where the lines most match the
ground truth line. However, in the case of the active energy, it is obvious that the lines
match the ground truth line. Still, sometimes it mismatches it, which can be interpreted by
the higher RMSE values for some models compared to other models and can also be seen
in Figure 11a. For Figure 11b,c, most the lines are matched with the actual value, which can
be interpreted by the high R2 values for most of the proposed models. It is worth noting
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that the Stack models perform better than the single models as shown in Table 3. Further,
it can be observed that the RMSE, MAE, and MSE values are smaller in the 30 min ahead
forecasting compared to the one hour ahead forecasting, which can be explained by using a
greater number of samples to train the models, resulting in more accurate solutions.
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Figure 11. The forecasting results of the proposed Stack-XGBoost for scenario 2 (half hour ahead) 
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4.3. Scenario 3: Active/Reactive Energy Forecast (15 Min Ahead)

The final scenario will elaborate on the attained results of the forecasting for the
active/reactive energy for the next 15 min. This is substantiated by the achievement
of the lowest values for RMSE, MAE, and MSE in relation to the active energy and the
lagging/leading reactive energy, as illustrated in Table 4 for scenario 3. Overall, it can
be seen that the Stack-XGBoost model, as proposed in this work, showcases exceptional
performance by attaining the least error with high R2.

Table 4. The forecasting results for the proposed Stack-XGBoost in scenario 3 compared to other
models for 15 min ahead.
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To elucidate, the Stack-XGBoost model has achieved remarkable results, as evidenced
by its RMSE values of 0.69, 0.13, and 0.22 for active energy consumption, leading reactive
energy, and lagging reactive energy, respectively. These outcomes demonstrate its supe-
riority over the Stack-ETR, Stack-RFR, and Stack-AdaBoost models, except for the cases
of E+Q and E−Q , where Stack-RFR achieved identical results. Specifically, the Stack-ETR,
Stack-RFR, and Stack-AdaBoost models yielded RMSE values of 0.9, 0.16, and 0.27 for EP ;
0.88, 0.16, and 0.23 for E+Q ; and 0.81, 0.17, and 0.26 for E−Q , respectively. Furthermore,
the proposed Stack-XGBoost model outperformed its counterparts in terms of MAE and
MSE, showcasing values of 0.35 and 0.47 for active energy consumption, surpassing Stack-
AdaBoost and Stack-RFR, which displayed MAE and MSE values of 0.36, 0.66 and 0.41,
1.29, respectively. In the case of E+Q , the proposed model achieved an MAE of 0.05 and an
MSE of 0.02, emerging as the frontrunner among the proposed models. Moreover, for E−Q ,
the proposed Stack-XGBoost model demonstrated the lowest MAE and MSE values, with
figures of 0.09 and 0.05, respectively.
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On the other hand, the AdaBoost and RFR models displayed subpar performance,
registering the highest RMSE values for EP forecasting at 1.23 and 1.13, respectively. A
similar trend was observed in the results for leading and lagging reactive energy forecasting.
To provide deeper insights into the forecasting results, Figure 12 visually presents the
predicted values juxtaposed with the actual values for the various models. Notably, the
models exhibited satisfactory predictions for active, lead reactive, and lag reactive energy,
with the plotted lines closely aligning with the ground truth line. The fluctuations observed
in the graphs represent variations in both active and reactive energy consumption during
the specified timeframe. It is evident that energy consumption is not consistent throughout
this period. Therefore, the fluctuations in consumption are contingent on the specific
consumption levels at each juncture due to the dynamic behavior of steel companies’
active/reactive energy consumption. Hence, understanding this dynamic behavior is
crucial for optimizing energy usage and improving the efficiency and sustainability of steel
manufacturing processes.
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Figure 12. The forecasting results of the proposed Stack-XGBoost for scenario 3 (15 min ahead) for
(a) active energy, (b) leading reactive energy, and (c) lagging reactive energy.

Particularly noteworthy is the alignment of the proposed model’s predictions with
the ground truth line for active energy, corroborated by high R2 values (0.9996 for EP ,
0.9997 for E+Q , and 0.9998 for E−Q ) indicating an excellent fit to the dataset, as depicted
in Figure 12a–c. In Figure 12b,c, a substantial portion of the lines closely corresponds with
the actual values, a correlation supported by high R2 values across most of the proposed
models. It is worth highlighting that the Stack models showcased superior performance
in comparison to the single models, a trend also substantiated in Table 4. Furthermore,
it is apparent that the 15 min ahead forecasting exhibited smaller RMSE, MAE, and MSE
values compared to the 30 min and one hour ahead forecasting. This can be attributed to
the increased number of training samples, enabling the models to generate more accurate
predictions by leveraging a larger dataset.

In conclusion, Figure 13 aptly demonstrates the convergence of the forecasted out-
comes generated by the models with the actual values, offering a multifaceted view. Ob-
serving the figure, it becomes evident that the proposed Stack-XGBoost model outperforms
the other models, exhibiting an almost indistinguishable resemblance to the actual values.
Subsequently, the Stack-RFR model also exhibits commendable performance by consis-
tently achieving the lowest RMSE values for both models. In contrast, models like XGBoost
exhibit suboptimal performance, as evidenced by instances where the plotted points deviate
from the reference line. This substantiates the assertion that the stacked models exhibit
superior predictive capability compared to individual models. This pattern is consistent
across all scenarios.

4.4. Sensitivity Indices

Sensitivity analysis entails the assignment of a “sensitivity index” to every input
of a model. Calculating these indices involves several methods, which are relatively
straightforward when the model is mathematically well-defined. Nevertheless, in more
intricate scenarios, deriving these sensitivity indexes presents challenges [51]. Statistical
methodologies can be used to numerically ascertain these sensitivity indexes by changing
the model’s inputs and assessing their influence on the model’s output. A substantial body
of research has been dedicated to sensitivity analysis, as evident in numerous published
works. Based on the existing literature, sensitivity analysis can be classified into three main
techniques: screening, local, and global sensitivity. The subsequent sections aim to evaluate
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the ramifications of input variability on the output by recognizing the part of output
change accredited to peculiar inputs or input sets. The domain of sensitivity assessment
involves a multifaceted range of metrics designed to evaluate the sensitivity of a model [52].
Noteworthy among these sensitivity metrics are the Standardized Regression Coefficient
(SRC) and Kendall’s tau coefficient (KTC). Subsequently, comprehensive elucidation of
these indices is presented in the ensuing sections.
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The SRC evaluates the strength of the relationship among an output variable Y and
a specific input variable Xi through the application of a LR model. The R2 value of this
linear model, known as the correlation coefficient, plays a pivotal role in determining
the precision and reliability of the SRC [53]. The subsequent equation represents the
mathematical formulation of the linear model (Equation (17)).

Y = βo +
K

∑
i=1

βiXi (17)

V(Y) =
K

∑
i=1

βi
2V(Xi) (18)

SRCi =
βi

2V(Xi)

V(Y)
(19)

where the variables Xi are assumed to be independent, the variance of Y is demonstrated
in Equation (18), and the SRC sensitivity indicator of the variable Xi can be determined
by using Equation (19). Finally, βi

2V(Xi) indicates the influence of the variable Xi in the
variance of Y. Hence, the SRC index expresses the variance of Y effect from variable Xi.

Finally, the KTC calculates the numerical linkage among two calculated variables. It
functions as a non-parametric hypothesis test for evaluating statistical interdependence,
with the coefficient denoting rank correlation, where the rank correlation signifies the
resemblance in data orderings when ranked based on every respective variable.
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The Sensitivity Analysis Outcomes for the Developed Techniques

To commence the discourse, this section will primarily concentrate on dissecting
the findings concerning the 15 min forecast horizon; analogous trends are observed in
the case of the other proposed timeframes. The outcomes of the sensitivity assessment,
employing various sensitivity matrices, have been tabulated in Table 5. The SRC serves as
a rank correlation metric, gauging the monotonic connection among two variables without
assuming a direct interrelation. The SRC’s scale spans from−1 to 1, where−1 represents an
impeccable negative monotonic relationship, 1 denotes an impeccable positive monotonic
relationship, and 0 signifies the absence of any monotonic association. In this particular
context, the SRC coefficients are calculated to be 0.9976, 0.9802, and 0.9994 for the EP , E+Q ,
and E−Q , respectively. These calculated values underscore a robust positive monotonic link
among the real and forecasted values, indicating that as one parameter decreases, the other
parameter also tends to follow suit. Such findings elucidate the model’s commendable
ability in accurately capturing and representing this interrelationship.

Table 5. The results of the sensitivity indices for the proposed models using the 15 min ahead results.
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ETR 
𝐸௉  0.9957 0.9668 𝐸ାொ   0.9638 0.9638 𝐸ିொ  0.9955 0.9737 

Stack-ETR 
𝐸௉  0.9927 0.9482 𝐸ାொ  0.9548 0.958 𝐸ିொ  0.9954 0.9735 

Stack-XGB 
𝐸௉  0.9976 0.9765 𝐸ାொ  0.9802 0.9702 𝐸ିொ  0.9994 0.9927 

Stack-AdaBoost 
𝐸௉  0.9947 0.964 𝐸ାொ  0.956 0.9398 𝐸ିொ  0.9938 0.9595 

Stack-RFR 
𝐸௉  0.9961 0.9687 𝐸ାொ  0.972 0.9397 𝐸ିொ  0.9954 0.9746 

5. Conclusions 
This work proposes a stacked ensemble methodology, denoted as Stack-XGBoost, for 

active/reactive energy consumption, leveraging three distinct ML methods, including 
ETR, AdaBoost, and RFR, as base learner models. Further, the incorporation of an extreme 
gradient boosting (XGBoost) algorithm as a meta-learner serves to amalgamate the pre-
dictions generated by the base models, enhancing the precision of the active/reactive en-
ergy consumption forecasting using real-time data for the steel industry. The proposed 
models were  applied to a real-time dataset related to the small-scale steel industry and 
validated using different performance metrics, such as RMSE, MAE, MSE, and R2. The 
results revealed that the Stack-XGBoost model showed the best results in terms of RMSE, 
MAE, and MSE as compared to the alternative proposed models. In addition, it simulta-
neously achieved the highest R2 value among the evaluated models. Furthermore, a thor-
ough sensitivity analysis was conducted, encompassing critical parameters such as the 
Standardized Regression Coefficient and Kendall’s tau coefficient. This in-depth evalua-
tion underscored the model’s resilience in the face of input parameter variations, affirming 
its robustness and reliability. Finally, the endeavor of forecasting active/reactive energy 
within the industrial sector carries significant implications that span a wide range of ad-
vantages. These encompass preserving financial resources, enhancing energy efficiency, 

Concluding the examination of correlation measures, the KTC emerges as another
rank-centric metric, contrasting the tally of concordant pairs against discordant pairs
within the dataset. Analogous to the earlier coefficients, KTC spans from −1 to 1; here, −1
means a flawless negative association, 1 shows an impeccable positive association, and 0
suggests an absence of any discernible association. In the ongoing analysis, the KTC values
attributed to the Stack-XGBoost model are computed as 0.9765 for EP , 0.9702 for E+Q ,
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and 0.9927 for E−Q . These values affirm a robust positive correlation between the ground
truth and estimated values, thereby reinforcing the precision of the proposed model’s
prognostications and its commendable performance. All three coefficients closely align
with the model’s forecasting against the actual values. Thus, the coefficients’ proximity to
1 underscores the Stack-XGBoost model’s capacity for accurately predicting the targeted
variable. Finally, the Stack models have shown robust performance in comparison to the
other proposed models.

5. Conclusions

This work proposes a stacked ensemble methodology, denoted as Stack-XGBoost,
for active/reactive energy consumption, leveraging three distinct ML methods, includ-
ing ETR, AdaBoost, and RFR, as base learner models. Further, the incorporation of an
extreme gradient boosting (XGBoost) algorithm as a meta-learner serves to amalgamate the
predictions generated by the base models, enhancing the precision of the active/reactive
energy consumption forecasting using real-time data for the steel industry. The proposed
models were applied to a real-time dataset related to the small-scale steel industry and
validated using different performance metrics, such as RMSE, MAE, MSE, and R2. The
results revealed that the Stack-XGBoost model showed the best results in terms of RMSE,
MAE, and MSE as compared to the alternative proposed models. In addition, it simul-
taneously achieved the highest R2 value among the evaluated models. Furthermore, a
thorough sensitivity analysis was conducted, encompassing critical parameters such as the
Standardized Regression Coefficient and Kendall’s tau coefficient. This in-depth evaluation
underscored the model’s resilience in the face of input parameter variations, affirming its
robustness and reliability. Finally, the endeavor of forecasting active/reactive energy within
the industrial sector carries significant implications that span a wide range of advantages.
These encompass preserving financial resources, enhancing energy efficiency, ensuring
equipment protection, complying with regulatory requirements, maintaining grid stability,
and fostering improvements in environmental sustainability.

This study’s limitation is underscored by its focus on a singular dataset (steel industry
dataset) for validating the proposed approach, consequently constraining the applicability
of the obtained insights to consumption patterns in diverse industries and varying temporal
contexts. To mitigate this limitation, the forthcoming expansion of this research will entail
subjecting the proposed methodology to testing across disparate datasets representing
various industries and geographical regions. Moreover, the deployment of the model
within an end-to-end system will be pursued, facilitating an assessment of its efficacy under
diverse circumstances. This deployment strategy is poised to enable ongoing enhancements
and refinements grounded in real-time data analysis. The following recommendations for
advancing the forecasting of active/reactive energy consumption in industrial sectors are
succinctly outlined as follows:

1. The selection of Stack-XGBoost in this study was driven by its characteristics de-
lineated in the previous work and the empirical evidence it showcased. Still, there
remains untapped potential for further enhancement, particularly in light of the
ongoing evolution of novel deep learning models.

2. Incorporating hyperparameter optimization can significantly augment the model’s
predictive capabilities and merits consideration for future refinement.

3. Expanding the scope by integrating additional parameters that interrelate with the
active/reactive energy aspects, such as weather conditions, holds promise. The
utilization of feature selection techniques can play a pivotal role in identifying the
most pertinent variables.

4. The investigation of meta-heuristic techniques for active/reactive energy forecasting can
be contemplated by employing them for the purpose of tuning the model parameters.

5. Finally, a compelling avenue for exploration involves subjecting the proposed model
to real-time analysis and assessing its performance and pragmatic utility within
industrial energy management systems [54].
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Nomenclature

Acronyms
ML Machine learning
ETR Extra Trees Regressor
RFR Random Forest Regressor
XGBoost Extreme Gradient Boosting
AdaBoost Adaptive Boosting
RES Renewable energy sources
PV Solar Photovoltaic
EVs Electric Vehicles
DR Demand Response
AI Artificial Intelligence
DL Deep Learning
MAPE Mean absolute percentage error
RMSE Root Mean Square Error
MSE Mean Square Error
R2 Coefficient of Determination
MAE Mean Absolute Error
SVM Support vector machine
ELM Extreme learning machine
ANN Artificial Neural Network
LR Linear regression
EBT Ensemble Bagging Trees
R-CNN Residual Convolutional Neural Network
ML-LSTM multilayered Long Short-Term Memory
LSC Landmark-based spectral clustering
DT Decision trees
GB Gradient Boosting
SRC Standardized Regression Coefficient
KTC Kendall’s tau coefficient
Symbols
Ei Actual values of energy
Êi Forecasted Values of energy
Eavg Average of the actual values of energy
Z Normalized collected data
Z Actual collected data
µ Mean value
σ Standard Deviation
N Dataset’s Size
M Number of decision trees for ETR
em(i) Prediction of the m-th decision tree for the input i
l A differentiable convex loss function
ft(x) Subsequent decision tree in round t
Ω( ft) Regularization term
T Total number of constructed trees of XGBoost
α Learning rate
w Weights assigned to leaves
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λ Regularization parameter
gi and hi First and second derivatives of the loss function
jth Leaf node
wj Score value
Subscripts
EP Active energy consumption
E+Q Leading reactive energy
E−Q Lagging reactive energy
PF+ Leading power factor
PF− Lagging power factor
t[CO2] CO2 information
t Number of seconds from midnight
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