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Abstract: In this report, natural dyes extracted from three different, black-colored fruits were used as
photosensitizers for the construction of dye-sensitized solar cells (DSSCs). The natural dyes were
extracted from the dark-colored peels of jamun (also known as Indian black plum), black plum,
and blackberry fruit. These natural dyes contain polyphenolic compounds—most prominently
anthocyanins—which interact strongly with titanium dioxide (TiO2) semiconductors and accordingly
enhance the efficiency of DSSCs. The natural dyes extracted from the various fruits were characterized
utilizing UV-Vis and fluorescence spectroscopy. The interaction between the dyes and TiO2 was
monitored with FTIR and Raman spectroscopy. The fabricated DSSCs were characterized via current–
voltage measurements and electrochemical impedance analysis. DSSCs fabricated with jamun
produced the highest efficiency of 1.09% with a short-circuit current of 7.84 mA/cm2, an open-circuit
voltage of 0.45 V, and a fill factor of 0.31. The efficiencies of the DSSCs from black plum and blackberry
were 0.55% and 0.38%, respectively. The flow of charge occurring at the interfaces between the natural
dye and the TiO2 layers were investigated using electrochemical impedance spectroscopy (EIS). To
the best of our knowledge, this study is the first to directly compare three distinct types of black
DSSCs. Computation analysis was also carried out utilizing SCAPS-1D software (version 3.3.07),
which revealed how the type of defects in the devices impacts their performance.

Keywords: dye-sensitized solar cell (DSSC); natural dye; TiO2; current; voltage; electrochemical
impedance spectroscopy; SCAPS-1D
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1. Introduction

There is an ever-growing need for energy in every country, and the prime sources
of energy in the world are fossil fuels such as coal, natural gas, bituminous sand, and
oil. Nevertheless, these materials are deemed suboptimal sources of energy due to their
status as primary contributors to pollution, which poses their persistent use in significant
environmental challenges [1–3]. Therefore, the growth of renewable energy is crucial to
meeting the increasing energy demand of the world.

In recent times, there has been significant exploration of many types of renewable
energy, including solar, wind, hydro, biomass, and geothermal. Among them, solar energy
stands out as the most abundant resource [1–3]. Solar cells convert sunlight to electricity,
and it can be harnessed by people from all parts of the world.

DSSCs transform solar energy into electrical energy by photosensitization of the
cell [4–11]. The efficiency of this conversion depends, to a large extent, on the quality of the
dye sensitizer used in the fabrication of the solar cell [12–15]. Over the past two decades,
several classes of dyes—including ruthenium compounds, [15–20]. Porphyrins [21–23]
and cyanines [24,25] have been synthesized, characterized, and applied in the design of
efficient DSSCs. However, these dyes are at times expensive and not completely safe for the
environment. Consequently, there is growing interest in the use of natural dyes extracted
from plants as photosensitizers in the construction of DSSCs [26–35]. The use of natural
dyes in DSSCs is a promising development as a result of the following reasons: (1) most
natural dye pigments, such as anthocyanins, carotenoids, flavonoids, and chlorophylls,
have anchoring groups that strongly bind the dye to TiO2 electrodes, which allows for easy
charge transfer; (2) they are more economical since they are obtained through a simple
extraction process (cold press, solvent extraction), as opposed to an expensive chemical
synthesis process in the case of synthetic dyes; (3) plants are abundant in supply and the
natural dye can be extracted from various parts of the plants including fruit, leaves, flowers,
roots, and bark.

In this study, natural dyes from three black fruits, as shown in Figure 1, were explored
for use as sensitizers in the design of a solar cell. Since the pigment is mostly concentrated
in the peels of the fruits, the dye for sensitization was extracted from the peels.
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In addition to the experimental study, we also accomplished computational analysis
of the three DSSCs using SCAPS-1D software (version 3.3.07.) and projected different types
of defects present in the three devices as well as their energy positions, densities, and
their influence on the photovoltaic performance of the devices. Numerous types of defects,
such as oxygen vacancies (Vo), Ti interstitials (Tii), and hydroxyl groups, are commonly
present during the synthesis of TiO2 semiconductors [36–40]. These defects change the
electronic structure of TiO2, especially the oxygen vacancy (Vo), which affects the optical
and electronic properties of TiO2 [40–42]. Vo is primarily found in TiO2 at the subsurface
level, though with an applied electric field, it can be stable at the surface level of TiO2 [43,44].
The transformation of Ti4+ to Ti3+ accelerates with the increasing defect density of Vo [45].
The Ti atoms also become relaxed around the Vo by decreasing the Ti–O bond length [38].
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2. Experimental Section
2.1. Materials

The counter electrode was prepared using colloidal graphite obtained from Ted Pella,
Inc., (Redding, CA, USA). TiO2 powder (Degussa P-25) and iodide/triiodide redox couple
were used as the electrolyte medium and were purchased from the Institute of Chemical
Education of the University of Wisconsin-Madison, Department of Chemistry (Madison,
WI, USA). FTO glass slides were purchased from Hartford Glass Company (Hartford City,
IN, USA). NaOH, C3H6O, C2H5OH, and CH3COOH were purchased from Sigma-Aldrich
(St. Louis, MO, USA), and were utilized without undergoing additional purification steps.

2.2. Characterization Techniques

TiO2 paste was pasted on FTO slides employing a WS-650 Series Spin Processor
from Laurell Technologies Corporation (Lansdale, PA, USA). The performance of the cell
was evaluated applying a 150 W fully reflective solar simulator provided by Sciencetech
Inc., London, ON, Canada. The solar simulator produced a standard illumination of
air mass 1.5 global (AM 1.5 G) with an irradiation of 100 mWcm−2. The 600 Potentio-
stat/Galvanostat/ZRA, manufactured by GAMRY Instruments (Warminster, PA, USA),
was referenced. Spartan ‘14, developed by Wavefunction, Inc. (Irvine, CA, USA), was used
to perform the HOMO and LUMO computations. FTIR spectra were found with a Thermo
Nicolet iS50 FTIR. The samples were placed on a crystal of ATR-FTIR, and the spectra were
scanned within the wavenumber range of 600–4000 cm−1. Thermo Fisher Scientific Co.,
Ltd. (Waltham, MA, USA) smart Raman spectrometer model DXR was used for the Raman
study. Morphological and elemental analysis of the TiO2 photoanode was carried out with
a field emission scanning electron microscope (JSM 7100F, JEOL.COM, Peabody, MA, USA)
furnished with energy-dispersive X-ray spectroscopy for elemental analysis.

2.3. Natural Dye Extraction

Jamun is a fruit that has very light-colored flesh surrounded by a rich, dark purple
skin. The dye was extracted from the peel of the fruit due to its high concentration of
anthocyanin. The blackberries and black plum were handled in a similar fashion and the
natural dyes were extracted employing a commercial blender extractor. The dye extraction
process was performed through an order of steps. No organic solvent was used in the
extraction of the natural pigments in the jamun, blackberry, and black plumb. About
50 g of fresh whole blackberry, 50 g fresh peels of black plum, and 50 g of fresh peels of
Jamun were each placed in a commercial juicer (Big Mount Pro Juice Extractor by Hamilton
Beach) at room temperature (25 ◦C) and the juice extracted from the solid parts of the
fruit. The extracted juice was filtered and centrifuged at 6000 RPM for 30 min, followed by
decantation to remove any precipitate present in the extract. The dark-colored extract was
applied in sensitizing the respective TiO2.

2.4. Fabrication of Jamun, Black Plum, and Blackberry DSSC

The electrodes were made using a modified version of a method described in a previously
published paper [46–50]. To make the photoanode, a thin film of TiO2 was deposited using
a spin coater on the conducting side of an FTO glass, and then annealed at 380 ◦C for 2 h.
After an hour of immersion in TiCl4 solution, the TiO2-coated FTO glass was annealed once
more for 30 min. Subsequently, the substrate was submerged for an extended duration of
time, specifically overnight, in a dye solution that had been recently made. On the conductive
side of the FTO glass, colloidal graphite was applied to create the counter electrode, i.e., the
cathode. In order to create a solar cell, the corresponding dye-sensitized photoanodes and
carbon electrodes were sandwiched over a redox iodine/iodide electrolyte solution.

2.5. Simulation Methods

SCAPS is a software application designed for simulating one-dimensional solar cells,
which was developed by the Electronics and Information Systems (ELIS) department at



Energies 2023, 16, 7187 4 of 17

the University of Gent [51–53]. SCAPS captures the analytical physics of the PV device,
but it is not restricted to transport mechanisms, electric field distributions, individual
carrier current densities, or recombination profiles. SCAPS has the most AC and DC
electrical measurements when compared to other simulation software, which includes open-
circuit voltage (Voc), short circuit current density (Isc), fill factor (FF), power conversion
efficiency (PCE), quantum efficiency (QE), spectral response, generation, and recombination
profile. These physical quantities can be calculated under varying levels of lighting and
temperature, as well as in both illuminated and unilluminated conditions. Three coupled
differential equations serve as a basis for it, Poisson (1) and continuity equations for holes
(2) and electrons (3), as follows:

d
dx

(
−ε(x)

dψ

dx

)
= q[p(x)− n(x) + N+

d (x)− N−a (x) + pt(x)− nt(x)] (1)

dpn

dt
= Gp −

pn − pn0

τp
− pnµp

dξ

dx
− µpξ

dpn

dx
+ Dp

d2 pn

dx2 (2)

dnp

dt
= Gn −

np − np0

τn
+ npµn

dξ

dx
+ µnξ

dnp

dx
+ Dn

d2np

dx2 (3)

Here, the symbol ψ represents the electrostatic potential, q denotes the charge of
an electron, D represents the diffusion coefficient, G represents the generation rate, ξ
represents the permittivity, and n, p, nt, and pt represent the quantities of free holes, free
electrons, trapped holes, and trapped electrons, respectively. The term N−a denotes the
concentration of ionized acceptor-like dopants, while N+

d represents the concentration of
ionized donor-like dopants.

2.6. Device Architecture

Figure 2 is a schematic illustration of the DSSC. The default operating temperature is
set to 300 K and the illumination condition is set to the global AM 1.5 standard. The device
consists of an anode and a cathode separated by the electrolyte. The anode is made up of
an FTO-coated glass plate with a layer of dye-sensitized TiO2 film. The cathode comprises
an FTO-coated glass plate with a layer of colloidal graphite. This setup allows for the
generation of current when light is incident on the device.

2.7. Simulation Parameters

Different key parameters of the different layers of the DSSC used in SCAPS-1D soft-
ware are illustrated in Table 1. The parameters were gathered from a variety of experimental
works, some reasonable estimates, and published literature [54–61]. The defective proper-
ties of the three natural dye-sensitized TiO2 films used for our simulation study are also
shown in Table 2.

Table 1. Parameters of different layers of the DSSCs used in SCAPS-1D.

Parameters/Layers FTO TiO2 and Dye I−/I3−
(Electrolyte) Reference

Relative permittivity, εr 9 10 30 [58,60,61]
Bandgap energy (eV) 3.5 3.2 1.3 [55,56,58,60]
Electron affinity (eV) 4 4.2 2.22 [58,60]
Electron mobility (cm2/V.s) 33 200 200 [54,58–60]
Hole mobility (cm2/V.s) 8 50 100 [54,58–60]
Donor concentration, Nd (cm−3) 2.0 × 1016 1.35 × 1011 0 [58,60]
Acceptor concentration, Na (cm−3) 0 0 1.35 × 1011 [58,60]
Conduction band density of states/Nc
(cm−3) 2.2 × 1018 1.8 × 1019 1.0 × 1018 [57–60]

Valence band density of states/Nv
(cm−3) 1.8 × 1019 3.5 × 1019 1.0 × 1019 [57–60]

Radiative recombination (cm3/s) 2.3 × 10−5 2.3 × 10−5 5.0 × 10−6
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Table 2. Parameters of defects in different dye-sensitized TiO2 films used in SCAPS-1D.

Parameters/Dyes Jamun Black Plum Blackberry

Defect type Neutral Single donor Single donor
Capture cross-section electrons (cm2) 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15

Capture cross-section holes (cm2) 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15

Energetic distribution Single Single Single
Reference for defect energy level Et Above Ev Below Ec Below Ec
Energy level with respect to reference (eV) 2.2 0.2 0.1
Characteristic energy (eV) 0.1 0.1 0.1
Defect density, Nt (cm−3) 2.5 × 1017 1.0 × 1020 1.0 × 1022

3. Results and Discussion
3.1. Absorption Spectroscopy Measurements

The UV-Vis absorption spectra show the tendency of the dye to absorb photons in
order to make a transition from the ground state to an excited state for the ejection of
electrons into the TiO2 semiconductor. UV-visible spectroscopy was employed to ascertain
the photophysical properties of the natural dyes derived from three distinct black fruits.
The UV-Vis spectra are displayed in Figure 3. The spectrum shows a wavelength with
maximum absorption for the dye extracted from jamun at 550 nm, whilst the absorptions
of black plum and blackberry were shifted to a hypsochromic region and appear at 514 nm
and 513 nm, respectively. The maximum absorption that occurs in the near-visible region
(400–525 nm) is indicative of the presence of anthocyanin in the natural dyes [61,62]. On
the other hand, the band of absorption corresponding to jamun was slightly red-shifted.
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In addition, the band of transition corresponding to the dye extracted from the jamun
was broader than that of the other two fruits, which suggests that this dye has the capacity
to absorb more energy, thus improving the performance of the cell.

3.2. Emission Studies

The emission studies were employed on all three natural dyes, and the results are
shown in Figure 4. The wavelength of emission of blackberry was 571 nm, and that of black
plum was 582 nm. The emission wavelength of jamun was red-shifted to 680 nm. The
spectra of dye extracted from jamun was broader and consisted of two peaks at 605 nm
and 680 nm. The spectra of all three dyes, as displayed in Figure 4, reveal a unique
pattern of emission of jamun fruit dye compared to two other fruit dyes that exhibited
similar characteristics.

3.3. Fourier Transformed Infrared (FTIR) Analysis

The black natural dye-sensitized TiO2 electrodes were characterized with FTIR to
study the interaction between the dye and TiO2. The spectra showed signals in the range of
600–4000 cm−1, which are displayed in Figure 5.

Stretching common to all the dye-sensitized TiO2 electrodes include several weak
stretches at 1070, 1370, 1400 cm−1. A strong vibration was observed at 1640 and 3420 cm−1,
and a weak shoulder appeared at 2920 cm−1. The stretching at 3420 and 1640 cm−1 was
due to the symmetrical and bending (asymmetric) vibration of the -OH group, respectively.
The shoulder at 2920 cm−1 belongs to the saturated hydrocarbon groups, specifically
the methyl group. The stretch at 1370 cm−1 may be indicative of the O-H in the plane
deformation in anthocyanins [63]. The band at 1400 cm−1 may be attributed to the stretching
of the Ti-0-Ti unit. The stretching corresponding to the =C-O-C group in anthocyanins
accounts for a weak peak at 1070 cm−1. Among the three dyes and their anchoring
with TiO2, jamun sensitizer shows more signatures as an indication of more interaction
with this panchromatic surface, hence more effective charge transfer between these two
photodynamic substances.
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3.4. Raman Spectroscopy Analysis

The interaction between the various natural dyes and the TiO2 was further assessed
with Raman studies. Raman spectroscopy was employed to investigate the characteristics
of natural dye-sensitized TiO2 films within the spectral range of 200–3400 cm−1, as demon-
strated in Figure 6. The presence of the D and G bands observed at 1490 and 1950 cm−1,
respectively, aligns with prior research findings that associated these peaks with the signifi-
cant disorder displayed by sp3 carbons [35]. The interaction between the TiO2 nanoparticles
and the different dyes is indicated by the existence of the additional peaks.
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3.5. Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray
Spectroscopy (EDS)

FESEM imaging was carried out on the jamun dye-sensitized TiO2 to study the porosity
and morphological features of the titanium dioxides and how they allow for adsorption
and retention of the dye sensitizer. The FESEM image of the jamun dye-sensitized TiO2
together with its mapping analysis as well as the EDS of both the sensitized TiO2 film and
that of bare TiO2 is displayed in Figure 7. The image of the Jamun slide (a) displays a
sponge-like structure of the TiO2 film comprising spherical nanoparticles consistent with
reports [64]. The nanoparticles are bound to each other in an unordered fashion but without
fractures or gaps, ensuring a good interparticle connectivity, which allows for the transport
of charge. The mapping analysis (b) illustrates the presence of titanium, carbon, oxygen,
and phosphorus. The TiO2 is the main component and is revealed in the color of the image.

EDS of jamun dye-sensitized TiO2 (c) and that of the bare TiO2 (d) provide information
about the attachment of the dye to TiO2. In the case of jamun dye-sensitized TiO2 film, the
percentage of carbon present was 14.3%, whereas for that of the bare TiO2, the percentage
of carbon was 4.99%. The difference in the percentages is due to the presence of the dye on
the titanium, which increases the amount of carbon present. The jamun dye has several
carbon-rich organic molecules that are responsible for the difference in carbon content
between the dye-sensitized film and the bare TiO2.
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The TiO2-coated FTO glass was further characterized via FESEM cross-sectional imag-
ing. The performance of DSSC is influenced by the thickness of the TiO2 film [65]. The
cross-sectional image, as displayed in Figure 8, reveals the thickness of the TiO2 film on
the FTO glass. The average thickness of the TiO2 layer was estimated at 7.14 µm. This
thickness allows for the smooth transport of charge.
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3.6. Current and Voltage Characteristics

The performance of the dye-sensitized PV was assessed through the measurements
of the Voc, Isc, FF, maximum voltage (Vmax), and maximum current (Imax) of the cell,
conducted under 1 sun illumination (100 mW/cm2). The IV characteristics measurements
of the deposited solar cell are displayed in Table 3 and Figure 9. The inset in Figure 9 is
current versus voltage curve of the three DSSCs from the simulation study. The PCE of the
DSSC was computed using the formula displayed in Equation (4), where
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Voc
(V)

Isc
(mA/cm2)

Vmp
(V)

Imp

(mA/cm2)
Fill Factor Efficiency

(%)

Jamun 0.45 7.84 0.26 4.25 0.31 1.09

Black plum 0.48 3.63 0.25 2.16 0.32 0.55

Blackberry 0.45 2.96 0.24 1.58 0.29 0.38
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Figure 9. Current and voltage measurement of DSSCs fabricated with natural dye extracted from
jamun, black plum, and blackberry under 1 sun illumination at 100 mW/cm2. Inset: current vs.
voltage graph of the three DSSCs from the simulation study.

The DSSC fabricated with jamun provided the highest solar-to-electric PCE of 1.09%,
with a Voc of 0.45 V, Isc of 7.84 mA/cm2, and an FF of 0.31. In the other hand, low efficiencies
were obtained for black plum and blackberry dyes with values calculated as 0.55% and
0.38%, respectively. These results are consistent with the UV-Vis, FTIR, and Raman analyses.
Also, these experimental data are consistent with values obtained through the simulation,
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as demonstrated in the inset in Figure 9. The high congruence between the experimental
and simulation numbers provides confidence in the validity of these results.

3.7. Electrochemical Impedance Spectroscopic (EIS) Study

EIS measurements were conducted in order to assess the charge transfer efficiency and
resistance characteristics of the produced DSSCs [66–69]. EIS data are presented in Nyquist
and Bode plots, as showed in Figures 10 and 11, respectively.
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Figure 10. Nyquist plot of DSSCs fabricated with dyes extracted from jamun, black plum, and
blackberry fruits.

The Nyquist plot often exhibits two or three semicircles. A smaller semicircle observed
at a higher frequency can be attributed to the presence of a charge transfer resistance at the
interface between the cathode and electrolyte. Conversely, a bigger semicircle indicates the
existence of a charge transfer resistance at the TiO2/dye/electrolyte interface. The jamun
had lower resistance in comparison to the black plum. The lower charge transfer resistance
thus contributed to the relatively higher efficiency.

The Bode plot relates peak frequencies to the lifetime (τ) of the charge. The lifetime is
in reverse proportion to the peak frequency, as presented in Equation (5).

τ =
1

2π f
(5)
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The Bode plot of the jamun has a lower frequency, thus indicating a reasonably longer
electron lifetime, which eventually indicates higher DSSC efficiency. A long electron lifetime
is favorable for a DSSC device, as it could advance the Isc from which the efficiency of the
cell is calculated.

3.8. Correlations between Simulation and Experimental Data

The experimental data obtained were consistent with those of data generated through
computation analysis. In our simulation study, we induced different types of defects in
the dye-sensitized TiO2 films, which are illustrated in Table 2. One of the major reasons
for dye-sensitized TiO2 films’ low efficiency is the formation of various types of point
defects during their fabrication [70]. Both shallow and deep level defects can be presented
during the synthesis of TiO2. Oxygen vacancy (Vo) at the surface level of TiO2 is one of the
deep-level defects, which has an energy level above 2.2 eV from the valance band maximum
(VBM) of TiO2 [71]. The coupling between the 3D orbitals of the two under-coordinated Ti
atoms creates a σ bond that generates these deep-level defects. [72]. To match the simulation
values with experimental results, were used deep-level defects in the proposed simulation
study for the DSSC fabricated with jamun dye. For these purposes, the defect density
parameter with 2.5 × 1017 cm−3 at the energy level for 2.2 eV above the VBM of TiO2 was
used, and this simulation provided approximately the same efficiency as found with the
experimental data. On the other hand, it was reported that subsurface level oxygen vacancy
(Vo), hydroxyl group, and Ti interstitial (Tii) also create shallow-level defects in TiO2 [73].
These shallow defects can be hypothesized to occur at 0.1–0.2 eV below the conduction band
minimum (CBM) of TiO2 [73]. In our computational analysis of the other two DSSCs, we
induced shallow-level defects in them. For DSSCs of black plum and blackberry, shallow-
level defects with concentrations of 1.0 × 1020 cm−3 and 1.0 × 1022 cm−3 generated nearly
the same photovoltaic outputs as the experiment, respectively. The results of both the
experimental and computational analyses for the solar cell outputs are shown in Table 4.
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Table 4. Comparison of the experimental and computational PV performance of jamun-, black plum-,
and blackberry-based DSSCs.

Dye Voc (V) Jsc
(mA/cm2) Vmp (V)

Imp

(mA/cm2)
Fill

Factor
Efficiency

(%)

Jamun (experimental) 0.45 7.84 0.26 4.25 0.31 1.09
Jamun (simulation) 0.59 7.42 0.3 3.7 0.25 1.11

Black plum (experimental) 0.48 3.63 0.25 2.16 0.32 0.55
Black plum (simulation) 0.46 3.54 0.3 2.08 0.38 0.62

Blackberry (experimental) 0.45 2.96 0.24 1.58 0.29 0.38
Blackberry (simulation) 0.45 2.5 0.3 1.42 0.38 0.43

Because the simulation results complemented the experimental values by using the
only possible defect configurations, the model can predict that all the devices that are
subjected to high-level defects during their fabrication, which might result in poor efficiency
responses, as illustrated in Table 2. These results can also be used to predict that the DSSC
with jamun dye has deep-level defects, but the density is lower than the DSSCs with other
dyes, making its PCE higher than the others. However, we also predict that the DSSCs
with black plum and blackberry had shallow-level defects, but their densities were very
high, especially in the DSSC with blackberry dye, which has 100-fold more defects than the
DSSC with black plum. Thus, it has the lowest solar cell efficiency among the three DSSCs.

The incident light is absorbed by the solar cell, resulting in the formation of electron–
hole pairs and generates electrical energy from photon energy. For optimal overlapping
with the solar spectrum, ideal dyes should have high absorbance intensity over a broad
region that ensures the better harvesting of solar energy [74]. Dyes with high absorbance
pick up more photons with which to excite electrons in the conduction band.

In Figure 12, we compare our three natural dyes’ absorbances with the N719 dye [75].
From the 450 to 575 nm region, the N719 dye possesses high absorption of incident light
compared to the jamun, black plum, and blackberry dyes. N719 dye-sensitized TiO2 resulted
in a photovoltaic PCE of 6.45% due to its high absorbance [75] while the poor absorbance
intensity of our three natural dyes is also a reason for the low PCE in our experiment.
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4. Conclusions

Natural dyes extracted from jamun, blackberry, and black plum were characterized
and utilized in the fabrication of DSSCs. The DSSC fabricated with jamun provided the
highest solar-to-electric PCE of 1.09%, a Voc of 0.45 V, an Isc of 7.84 mA/cm2, and an FF
of 0.31. The PCEs of black plum and blackberry were 0.55% and 0.38%, respectively. The
EIS measurements, in terms of Nyquist and Bode plots, were consistent with the current
and voltage measurements. Furthermore, the results are also consistent with the UV-Vis
measurements. Natural dyes from three black fruits could be potentially used as sensitizers
in the design of a solar cell. The simulation results almost match the experimental values by
using the only possible defect properties shown in Table 2. It was predicted that deep-level
defects would be present in DSSC fabricated with jamun and shallow-level defects would
be present in DSSCs fabricated with black plum and blackberry. Defect density was highest
in the DSSC with blackberry and lowest in the DSSC with jamun. A high level of defect
density and low absorbance of the black plum and blackberry dyes were also responsible
for the low PCE of the two devices. On the other hand, experimental data showed high
absorbance of jamun, and simulation predicted low defect density in the dye, which in
combination provided the device’s best performance.
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