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Abstract: Natural gas is an eco-friendly energy source with low carbon emissions, making it attractive
globally. Understanding gas reservoirs is crucial for sustainable extraction and optimizing potential.
However, the complicated fluid flow and production dynamics within intricate gas reservoirs,
particularly those characterized by abnormally high pressures and tight porous media, remain
partially understood and demand further investigation. In a tight porous medium subjected to high
pressure, the assumption of constant permeability is no longer valid. Consequently, a novel composite
seepage model has been developed in this study, which considers the responsiveness of permeability
to stress. Perturbation theory is employed to address the inherent non-linearity demonstrated by the
permeability modulus. The solution of dimensionless pressure responses under constant production
conditions is accomplished in the Laplace domain by implementing integral transformation methods.
Overall, a comprehensive model is provided to understand the production behaviors of tight gas
reservoirs. Moreover, in order to comprehend the transient flow characteristics of tight gas reservoirs,
log–log plots are generated through the Stehfest numerical inversion approach, with the flow regimes
categorized based on the normalized time phases of the pressure curves. Parametric investigations
reveal that stress sensitivity detrimentally affects permeability, resulting in more pronounced pressure
declines during the intermediate and late flow phases. The transient seepage model elaborated
in this study is able to consider the pertinent formation and well parameters. These interpreted
parameters bear significance in designing hydraulic fracturing operations, assessing the potential
of tight gas reservoirs, and ultimately enhancing gas production. The presented model not only
enhances our understanding of the behavior of horizontal wells in stress-sensitive tight gas reservoirs
but also makes a valuable contribution to the broader discussion on transient flow phenomena in
petroleum engineering.

Keywords: transient pressure dynamics; stress-sensitivity; horizontal well; tight gas reservoirs

1. Introduction

Natural gas, distinguished by its convenience, stability, and high efficiency, consti-
tutes a significant component of primary energy sources [1]. Despite its classification as a
conventional fossil fuel, the carbon emissions stemming from its combustion are notably
lower in comparison to coal and oil. Consequently, positioned as a comparatively cleaner
fossil energy source, natural gas assumes a pivotal role within the landscape of energy tran-
sition processes. In recent years, there has been vigorous momentum in the exploration and
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development of natural gas, encompassing various forms such as conventional natural gas,
coalbed methane, and shale gas [2,3]. The natural gas industry is committed to optimizing
energy production and supply by harnessing various natural gas reservoirs. Of course,
each natural gas reservoir possesses unique geological characteristics and production com-
plexities. However, the complexity of fluid flow dynamics and production mechanisms
in gas reservoirs remains incompletely understood, especially in reservoirs characterized
by elevated pressures and tight porous media. Despite advancements in reservoir engi-
neering, certain behaviors in these reservoirs remain enigmatic and necessitate further
investigation. In other words, the extraction process from gas reservoirs with abnormally
high-pressure conditions and tight porous structures presents multifaceted challenges.
Intensified pressure and limited pore spaces lead to intricate interactions between fluid
phases and the porous matrix. Understanding this interplay is crucial for optimizing
production strategies and minimizing adverse consequences from suboptimal exploitation
techniques. The geological response of reservoir rocks to continuous gas extraction requires
careful consideration. Dynamic changes from gas withdrawal induce elastic deformation
within the reservoir rock. Coupled with rising effective stress in the rock matrix, this
leads to irreversible modifications in the reservoir’s physical attributes. An example is
permeability stress-sensitivity, causing irreversible reduction due to stress–deformation
interplay. In essence, understanding gas reservoir behavior in high-pressure, tight, porous
formations is academically imperative. Advancing this comprehension not only facilitates
sustainable gas extraction but also supports the development of reservoir management
strategies aligned with broader environmental and energy goals.

Numerous efforts have been made to investigate the stress-sensitivity mechanism via
laboratory experiments or physical modeling [4–9]. For example, Wang et al. established
the relationship between overburden pressure and effective stress considering the stress
arching effect in the Sulige gas field and proved that the stress sensitivity of permeabil-
ity greatly depends on stress arching ratio [10]. A stress sensitivity evaluation standard
was proposed by Xiao et al., considering experimental data and rock micro-structural
features. This was achieved through an analysis of the empirical and theoretical models
regarding the relationships between permeability and effective stress [11]. By employing
conventional core plug sample measurements from carbonate formations, a relationship
between permeability, porosity, velocity, and effective horizontal stress for carbonate reser-
voirs was formulated by Hamid et al. [12]. This correlation was established by integrating
data obtained from both field observations and core measurements. In addition, evalu-
ating the productivity losses caused by stress-dependent permeability has been widely
studied in the actual reservoir engineering. Raghavan and Chin used a rigorous mathe-
matical model that couples geo-mechanical and fluid-flow aspects to correlate productivity
reductions with time [13], so that the reduction in the productivity index is expressed as a
function of operating variables such as overburden stress, mechanical properties, wellbore
pressure, drainage area, etc. A new pseudo pressure was defined by Fang and Yang to
assess the collective impacts of stress, fluid flow, and alterations in reservoir properties
on well performance [14]. Unlike the conventional deliverability model, this model fea-
tures coefficients that are pressure-dependent and vary over the course of production
time. Moreover, Lian et al. established a fracture closure model to analyze the well test
data for abnormal pressure reservoirs, of which the productivity curve has a turning
point on it [15]. A new procedure for quantifying permeability stress-sensitivity was in-
troduced by Dou et al. [16]. This entailed the application of the traditional straight-line
analysis method. The determination of the permeability modulus and formation parame-
ters was achieved through the utilization of corrected pseudo-parameters, guided by the
principle of cut-and-trial. Nonetheless, the aforementioned studies predominantly concen-
trated on steady productivity or absolute open flow, omitting consideration of transient
production rates.

In the context of transient pressure or rate analysis, a multitude of studies have been
devoted to the investigation of stress-dependent permeability [17–22]. Addressing the
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nonlinearity inherent in the seepage differential equation often involves the utilization
of Pedrosa’s linearization method and perturbation technique [23–25]. An approximate
equation was proposed by Zeng and Zhao for the analysis of transient pressure behav-
ior of a well situated within a reservoir featuring multiple permeability anomalies [26].
Furthermore, Xiao et al. developed a numerical well test model capable of precisely de-
termining gas reservoir parameters, acidizing effectiveness, and the extent of reduction
in gas deliverability, where the dependency of the latter is contingent upon the “perme-
ability modulus” [27]. A method was presented by Qanbari et al. to analyze transient
linear flow within reservoirs featuring stress-sensitive permeability. This method employs
production data; however, it does not encompass a comprehensive characterization of
pressure responses during all flowing periods, such as the pseudo-radial flow period [28].
Additionally, Cai et al. analyzed the capillary-driven flow in gas-saturated porous me-
dia based on fractal theory and modified the classical Lucas–Washburn equation [29,30].
Wang et al. proposed an approximate analytical model to investigate the pressure tran-
sient in the naturally fractured reservoirs by a zero-order perturbation technique [31].
Finally, two inner boundary conditions and three outer boundary conditions were applied,
i.e., in total, six solutions in the Laplace space were presented. Moreover, Zhao et al. and
Ding et al. proposed new well productivity models of tight gas reservoirs, respectively, us-
ing numerical simulation and experimental methods [5,32]. Wu et al. conducted a transient
model for volume fracturing vertical well, simultaneously considering the low-velocity
non-Darcy flow and stress sensitivity [33]. Xu et al. conducted an investigation into the
pressure behavior of multi-stage fractured horizontal wells, considering stress sensitivity
and dual permeability within fractured gas reservoirs [22]. Similarly, Chu et al. proposed a
novel semi-analytical monitoring model for a multi-horizontal well system in large-scale
underground natural gas storage [34]. In order to expand their investigative scope, the
analysis of production dynamics exhibited by various types of gas wells was undertaken
by Xu et al. [35].

Based on the analysis of the literature and the previous discussion, it is anticipated that
a comprehensive delineation of all transient pressure response flow periods can be achieved.
This study promotes the field by developing a semi-analytical model for horizontal wells
within tight gas reservoirs, accounting for permeability stress-sensitivity. Furthermore, the
effects of the relevant factors are investigated.

2. Mathematical Model
2.1. Description of Physical Model

If we consider alterations in reservoir permeability resulting from stress-sensitivity fol-
lowing the principles of the elastic rheological Hooke law, Pedrosa introduced the concept
of the permeability modulus. This concept, akin to the compressibility coefficient, serves to
characterize the correlation between changes in reservoir pressure and permeability. In the
case of a single medium, its representation is given by

γ =
1
K

dK
dp

(1)

Typically, when the permeability modulus remains constant during the pressure
reduction process, the subsequent integral of Equation (1) can be derived as follows:∫ Ki

K

1
K

dK =
∫ pi

p
γdp (2)

By solving Equation (2), we acquire

K = Kie−γ(pi−p) (3)
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Likewise, following the concept of pseudo pressure, the definition of pseudo-permeability
modulus is established as

γm =
1
K

dK
dm

(4)

Upon integrating Equation (4), we derive

K = Kie−γm(mi−m) (5)

where γm is the permeability modulus defined by pseudo pressure, mPa s/MPa2; m is
pseudo pressure, MPa2/(mPa s).

Illustrated in Figure 1 is a physical depiction of a horizontal well in a tight gas reservoir,
where a single-phase flow of natural gas is confined by two parallel impermeable planes at
the upper and lower extents. Several assumptions are delineated as follows: The reservoir
is regarded as a homogeneously porous medium characterized by an initial pressure of pi,
with its lateral boundary extending infinitely. The horizontal section, spanning a length
of 2L, lies parallel to the enclosing upper and lower boundaries. Notably, the reservoir
exhibits anisotropic properties, with horizontal and vertical permeabilities denoted as Khi
and Kvi, respectively, under the initial pressure. Stress sensitivity influences permeability.
This influence is encapsulated by the permeability modulus, γm, which finds its definition
in terms of pseudo pressure. The well operates by extracting gas at a consistent surface flow
rate qsc. The gas, exhibiting slight compressibility, maintains constant values for viscosity
and the compressibility coefficient. Additionally, the ramifications of gravity and capillary
forces are disregarded.
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2.2. Governing Flow Equation of a Horizontal Well

By employing the mass balance equation and incorporating the state equation along
with the motion equation, the governing flow equation for stress-sensitive behavior in a
homogeneous tight medium can be formulated as

1
r

∂

∂r

[
re−γm(mi−m) ∂m

∂r

]
+

Kvi

Khi

∂

∂z

[
e−γm(mi−m) ∂m

∂z

]
=

∅µCt

3.6Khi

∂m
∂t

(6)

The initial expression on the left side of Equation (6) can be expressed as follows

1
r

∂

∂r

[
re−γm(mi−m) ∂m

∂r

]
= e−γm(mi−m)

[
∂2m
∂r2 +

1
r

∂m
∂r

+ γm

(
∂m
∂r

)2
]

(7)
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Continuing with a similar methodology, the second term on the left side of
Equation (6) transforms into

Kvi

Khi

∂

∂z

[
e−γm(mi−m) ∂m

∂z

]
=

Kvi

Khi
e−γm(mi−m)

[
∂2m
∂z2 + γm

(
∂m
∂z

)2
]

(8)

By substituting (7) and (8) into Equation (6), we can obtain[
∂2m
∂r2 +

1
r

∂m
∂r

+ γm

(
∂m
∂r

)2
]
+

Kvi

Khi

[
∂2m
∂z2 + γm

(
∂m
∂z

)2
]
= eγm(mi−m) ∅µCt

3.6Khi

∂m
∂t

(9)

Equation (9) represents the governing equation in pseudo pressure form for a horizon-
tal well in tight gas reservoirs, accounting for the stress-dependent permeability.

2.3. Dimensionless Form of Seepage Model

Utilizing pertinent dimensionless definitions outlined in Table 1, the dimensionless
flow differential equation, derived from Equation (9), can be derived as follows (i.e., (A12)
in Appendix A):

[
∂2mD

∂r2
D

+
1

rD

∂mD

∂rD
− γmD

(
∂mD

∂rD

)2
]
+ L2

D

[
∂2mD

∂z2
D
− γmD

(
∂mD

∂zD

)2
]
= (hDLD)

2eγmDmD
∂mD

∂tD
(10)

Table 1. Definitions of the dimensionless variables.

Dimensionless pseudo pressure mD = 78.489Khih
Tqsc

(mi −m)

Dimensionless pseudo permeability modulus γmD =
Tqsc

78.489Khih
γm

Dimensionless time tD = 3.6Khit
∅µCtr2

w

Dimensionless wellbore storage coefficient CD = 0.159C
∅CthL2

Dimensionless horizontal section length LD = L
h

√
Kvi
Khi

Dimensionless gas reservoir thickness hD = h
rw

√
Khi
Kvi

Dimensionless radial distance rD = r
L

Dimensionless wellbore radius rwD = rw
L

Dimensionless vertical distance zD = z
h

Dimensionless horizontal section position zwD = zw
h

Initial condition:
mD|tD=0 = 0 (11)

Inner boundary condition:

lim
εD→0

[
lim

rD→0

∫ zwD+
εD
2

zwD−
εD
2

(
rDe−γmDmD

∂mD

∂rD

)
dzwD

]
= −1

2
, |zD − zwD| ≤

εD

2
(12)

Infinite lateral boundary condition:

mD|rD→∞ = 0 (13)

Enclosed top and bottom boundaries:

∂mD

∂zD

∣∣∣∣
zD=0

= 0,
∂mD

∂zD

∣∣∣∣
zD=1

= 0 (14)
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Equations (10)–(14) constitute the mathematical framework governing a horizontal
well in tight gas reservoirs.

2.4. Solution to Mathematical Model

When accounting for the influence of stress-sensitivity, it becomes evident that the
seepage differential Equation (10) showcases a substantial level of nonlinearity, making
direct solutions unfeasible. To address this, we employed the Pedrosa variable substitution
and the regular perturbation method to mitigate the inherent nonlinearity. Subsequently,
through the implementation of Laplace transformation (for the time variable) and or-
thogonal transformation (for the spatial variable) on the linearized model, the complex
seepage differential equation can be transformed into a simpler Bessel equation. These
transformations ultimately facilitate the achievement of accurate solutions.

2.4.1. Pedrosa Variable Substitution and Regularized Perturbation Method

As introduced by Pedrosa Jr. (1986) [23], the Pedrosa variable substitution takes the
form of the following formula:

mD(rD, zD, tD) = −
1

γmD
ln[1− γmDξD(rD, zD, tD)] (15)

where ξD(rD, zD, tD) is an intermediate variable, which is also called the perturbation
deformation function.

By adhering to the rule of compound function derivation, we derived the subsequent
formulas from Equation (15):

e−mDγmD = 1− γmDξD
∂mD
∂rD

= 1
1−γmDξD

∂ξD
∂rD

∂2mD
∂rD

2 = 1
1−γmDξD

∂2ξD
∂rD

2 + γmD
(1−γmDξD)

2

(
∂ξD
∂rD

)2

∂mD
∂zD

= 1
1−γmDξD

∂ξD
∂zD

∂2mD
∂zD

2 = 1
1−γmDξD

∂2ξD
∂zD

2 + γmD
(1−γmDξD)

2

(
∂ξD
∂zD

)2

∂mD
∂tD

= 1
1−γmDξD

∂ξD
∂tD

(16)

By substituting (15) and (16) into the model described by Equations (10)–(14), the
resultant expression is

1
rD

∂
∂rD

(
rD

∂ξD
∂rD

)
+ L2

D
∂2ξD
∂zD

2 = (hDLD)
2 1

1−γmDξD

∂ξD
∂tD

ξD|tD=0 = 0

lim
εD→0

[
lim

rD→0

∫ zwD+
εD
2

zwD−
εD
2

(
rD

∂ξD
∂rD

)
dzwD

]
= − 1

2 , |zD − zwD| ≤ εD
2

ξD|rD→∞ = 0
∂ξD
∂zD

∣∣∣
zD=0

= 0 , ∂ξD
∂zD

∣∣∣
zD=1

= 0

(17)

Following the principles of regular perturbation theory, the terms ξD, 1
1−γmDξD

and

− 1
γmD

ln(1− γmDξD) in (17) can be expressed as power series expansions in terms of the
dimensionless permeability modulus, which take the form of

ξD = ξD0 + γmDξD1 + γ2
mDξD2 · · · (18)

1
1− γmDξD

= 1 + γmDξD + γmD
2ξD

2 · · · (19)



Energies 2023, 16, 7175 7 of 18

− 1
γmD

ln(1− γmDξD) = ξD +
1
2

γmDξD
2 + · · · (20)

Considering the typically small value of the dimensionless permeability modulus
(γmD << 1), the zero-order approximation solution suffices to meet engineering accuracy
standards. Consequently, the model (17) simplifies to

1
rD

∂
∂rD

(
rD

∂ξD0
∂rD

)
+ L2

D
∂2ξD0
∂zD

2 = (hDLD)
2 ∂ξD0

∂tD

ξD0|tD=0 = 0

lim
εD→0

[
lim

rD→0

∫ zwD+
εD
2

zwD−
εD
2

(
rD

∂ξD0
∂rD

)
dzwD

]
= − 1

2 , |zD − zwD| ≤ εD
2

ξD0|rD→∞ = 0
∂ξD0
∂zD0

∣∣∣
zD=0

= 0 , ∂ξD0
∂zD0

∣∣∣
zD=1

= 0

(21)

2.4.2. Laplace Transformation on Time Variable

The Laplace transform stands as a classical technique employed for solving partial
differential equations, particularly those characterized by constant coefficients. This method
entails a transformation of the time variable within the original function. By employing
initial conditions to eliminate terms involving time derivatives, the result is an ordinary
differential equation within the Laplace domain that corresponds to the spatial variables.
Notably, the Laplace transform holds significant importance across the spectrum of oil and
gas reservoir flow theory.

When subjected to the Laplace transformation, the mathematical Formulation (21) can
be represented in the Laplace domain as follows:

1
rD

∂
∂rD

(
rD

∂ξD0
∂rD

)
+ L2

D
∂2ξD0
∂zD

2 = (hDLD)
2sξD0

lim
εD→0

[
lim

rD→0

∫ zwD+
εD
2

zwD−
εD
2

(
rD

∂ξD0
∂rD

)
dzwD

]
= − 1

2s , |zD − zwD| ≤ εD
2

ξD0|rD→∞ = 0
∂ξD0
∂zD0

∣∣∣
zD=0

= 0 , ∂ξD0
∂zD0

∣∣∣
zD=1

= 0

(22)

where s is the Laplace transformation variable.

2.4.3. Orthogonal Transformation on Spatial Variables

Before initiating the process of orthogonal transformation concerning the spatial vari-
able zD within the model (22), it becomes imperative to address a Sturm–Liouville eigen-
value problem pertaining to Z(zD). This particular problem encapsulates a Sturm–Liouville
equation and relevant boundary conditions. The objective of solving this eigenvalue prob-
lem is to determine the orthogonal transformation kernel, which essentially constitutes
a set of complete orthogonal functions. In line with the principles of Sturm–Liouville
eigenvalue theory, the resulting eigenfunctions manifest as Zn(zD) = cosnπzD (where
n = 0, 1, 2...). These eigenfunctions, when combined with the weighted function g(zD),
collectively establish an exhaustive orthogonal system spanning the domain [0, 1].

With this foundation, the subsequent step involves performing an orthogonal transfor-
mation on the spatial variable Z(zD). This process is articulated as follows:

=
ξ D0 =

∫ 1

0
ξD0(rD, zD)cosnπzDdzD (23)
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The model (22) can undergo an orthogonal transformation, leading to the expression

1
rD

∂
∂rD

(
rD

∂
=
ξ D0

∂rD

)
−
[
(hDLD)

2s + n2π2L2
D

]=
ξ D0 = 0

lim
rD→0

rD
∂
=
ξ D0

∂rD
= −cosnπzwD

2s

=
ξ D0

∣∣∣∣
rD→∞

= 0

(24)

By introducing the notation un = (hDLD)
2s + n2π2L2

D, the differential equation corre-
sponding to model (24) can be restated as follows:

∂2
=
ξ D0

∂r2
D

+
1

rD

∂
=
ξ D0

∂rD
− un

=
ξ D0 = 0 (25)

Multiply both sides of Equation (25) by r2
D to obtain

r2
D

∂2
=
ξ D0

∂r2
D

+ rD
∂
=
ξ D0

∂rD
− unr2

D

=
ξ D0 = 0 (26)

Let us introduce a new variable, x = rD
√

un. Consequently, rD can be expressed as
rD = x√

un
. Employing the rule of compound function derivation, Equation (26) can be

converted to

r2
Dun

∂2
=
ξ D0

∂x2 + rD
√

un
∂
=
ξ D0
∂x
− r2

Dun
=
ξ D0 = 0 (27)

This leads to the equation x2 ∂2
=
ξ D0

∂x2 + x ∂
=
ξ D0
∂x −

(
x2 + υ2)=ξ D0 = 0, with the parameter

υ = 0, and υ signifies the order of the imaginary quantity Bessel equation. Consequently,
Equation (27) corresponds to a zero-order imaginary parity Bessel equation, and its general
solution takes the form

=
ξ D0 = AI0(rD

√
un) + BK0(rD

√
un) (28)

where I0 represents the first kind of zero-order imaginary quantity Bessel function; K0 is
the second kind of zero-order imaginary quantity Bessel function; A and B are constants,
respectively.

Upon substituting (28) into the internal boundary condition of Model (24), we
arrive at

lim
rD→0

rD
∂
=
ξ D0

∂rD
= lim

rD→0
rD
√

un[AI1(rD
√

un)− BK1(rD
√

un)] =
−cosnπzwD

2s
(29)

Utilizing the properties of the Bessel function, specifically lim
x→0

xI1(x)→ 0 ,

lim
x→0

xK1(x)→ 1 , Equation (29) simplifies to

B =
cosnπzwD

2s
(30)

Similarly, considering the outer boundary condition of Model (24) and invoking the
properties of Bessel’s function, namely lim

x→∞
I0(x)→ ∞ , lim

x→∞
K0(x)→ 0 , the coefficient A

in Equation (28) must adhere to the subsequent equation:

A = 0 (31)
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By incorporating Equations (30) and (31), the ultimate expression for (28) is derived
as follows:

=
ξ D0 =

cosnπzwD

2s
K0(rD

√
un) (32)

Utilizing the comprehensive orthogonal property inherent in the eigenfunctions sys-
tem (cosnπzD, n = 0, 1, ... + ∞), we proceed to employ the inverse orthogonal transforma-
tion. This procedure enables the expression of the zero-order perturbation solution within
the Laplace domain, which can be stated as follows:

ξD0 =
1
2s

K0(rD
√

u0) +
1
s ∑∞

n=1 K0(rD
√

un)cosnπzwDcosnπzD (33)

As mentioned earlier, the zero-order perturbation solution proves sufficient for ap-
proximating the accurate solution of the formulation in (17), specifically ξD ≈ ξD0.

ξD ≈ ξD0 =
1
2s

K0(rD
√

u0) +
1
s ∑∞

n=1 K0(rD
√

un)cosnπzwDcosnπzD (34)

where r2
D = (xD − xwD)

2 + (yD − ywD)
2.

Evaluating the integral across the horizontal section of the wellbore, which can be
expressed as

ξwDN =
1
2s

∫ 1

−1
K0(rD

√
u0)dxwD +

1
s ∑∞

n=1

∫ 1

−1
K0(rD

√
un)cosnπzwDcosnπzDdxwD (35)

Equation (35) represents the derived solution expression for bottom-hole pseudo
pressure concerning a horizontal well in tight gas reservoirs, incorporating stress-sensitivity
effects. By applying Duhamel’s theorem and leveraging the superposition principle to
consider the influence of the wellbore storage coefficient and skin factor, the complete
pseudo pressure solution can be formulated as outlined by Van Everdingen [36] and Kucuk
and Ayestaran [37]:

ξwD =
sξwDN + S

s + CDs2
(
sξwDN + S

) (36)

In Equation (36), ξwD refers to the bottom-hole pressure response attained in the
Laplace domain. Through the application of the Stehfest numerical inversion algorithm, we
are able to compute the pressure responses ξwD(tD) in the real-time domain. Subsequently,
coupling Equation (37) with the aforementioned results, the comprehensive bottom-hole
pressure response for horizontal wells within tight gas reservoirs, while accounting for
stress-sensitivity, can be deduced:

mD = − 1
γmD

ln(1− γmDξwD) (37)

Utilizing the Stehfest numerical inversion algorithm as presented by Stehfest [38], the
formulation for expressing the pressure response in the real-time domain is as follows:

mD = − 1
γmD

ln

1− γmDln2
tD

∑N
i=1 Vi

1
2

∫ 1
−1 K0(rD

√
u0)dxwD + ∑∞

n=1
∫ 1
−1 K0(rD

√
un)dxwD + S

si + CDs2
i

[
1
2

∫ 1
−1 K0(rD

√
u0)dxwD + ∑∞

n=1
∫ 1
−1 K0(rD

√
un)dxwD + S

]
 (38)

where N is an even number and si =
ln 2
tD

i. The weight coefficient Vi is given by

Vi = (−1)
N
2 +i∑min(i, N

2 )

k= i+1
2

k
N
2 (2k+1)!

(k + 1)!k!
(

N
2 − k+1

)
!(i− k+1)!(2k− i+1)!

(39)
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Equation (38) constitutes the semi-analytical solution depicting the transient pressure
response of a horizontal well in these specific tight gas reservoirs.

3. Results and Discussion

Via Equation (38), the dimensionless solutions for the pseudo bottom hole pressure
in actual space can be obtained using computational calculations facilitated by Mat-
lab 2016a programming. This section explores the flow process and various regimes
present in the type curves, while also examining the impact of relevant parameters on the
pressure response.

3.1. Flow Periods Recognition of Type Curves

Figure 2 displays the transient pressure dynamics of a horizontal well in an infinitely
large abnormally high-pressure gas reservoir, considering the effects of stress-sensitivity. In
the context of Figure 2, the red curves illustrate the scenario where stress-sensitivity is not
considered, offering a lucid depiction of unique features throughout each time phase. The
subsequent explanation delineates the fundamental characteristics of the five predominant
flow regimes.
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Phase 1: Pure wellbore storage effect flow phase. The pressure curves and their
derivatives coincide, forming a rising line with a gradient of “1”. Phase 2: Transition phase
influenced by the skin effect. The pressure derivative curve takes on a “hump” shape.
Phase 3: Early radial flow phase in the vertical plane. The derivative curve remains a
horizontal straight line, with a magnitude linked to LD. This stage portrays the radial flow
pattern perpendicular to the horizontal axis prior to the propagation of pressure waves to
the upper and lower outer boundaries. Phase 4: Mid-term linear flow phase. The derivative
curve forms a rising straight line with a slope of “1/2”. Phase 5: Late pseudo-radial flow
phase. The derivative curve becomes a horizontal line positioned at 0.5 on the y-axis.

3.2. Sensitivity Analysis of Transient Pressure Dynamics
3.2.1. Effect of Permeability Modulus

Figure 2 also illustrates the influence of the permeability modulus on the characteristic
curves of transient pressure behavior. This influence is particularly pronounced in the final
flow regime, where, when γmD = 0, the derivative curves remain horizontal at a value of
0.5 on the y-axis. As the value of γmD escalates, a series of distinct modifications emerge
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within the derivative curves. A gradual and progressive upward tilt becomes evident, sig-
nifying a profound alteration in the behavior of the fluid within the reservoir. This upward
shift in the derivative curves mirrors the growing influence of stress-sensitivity, a phe-
nomenon in which permeability undergoes heightened disruption due to external forces or
pressure effects.

The correlation between γmD values and stress-sensitivity reveals a compelling trend.
Higher values of γmD, signaling increased stress-sensitivity, lead to a heightened degree
of permeability impairment. Consequently, the fluid flow encounters greater resistance
within the reservoir, necessitating the application of more substantial drawdown pressures
to facilitate effective production.

Through this exploration, Figure 2 emerges as a valuable analytical tool, unveiling
the multifaceted interactions between the permeability modulus, stress-sensitivity, and
pressure dynamics. It encapsulates the story of how even subtle changes in these factors
can result in significant alterations in transient pressure behavior, unveiling insights critical
to reservoir characterization and production strategy.

3.2.2. Effect of Wellbore Storage Coefficient

Figure 3 provides insight into how the wellbore storage coefficient influences the
characteristics of transient pressure response type curves. Initially, an elevated wellbore
storage coefficient translates into an extended lifespan for the wellbore storage phase. This
extension arises from the increased capacity of the wellbore to store fluids, thus impacting
the early stages of the pressure response.
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Equally noteworthy is the consequential reduction in the prominence of the skin effect
hump within the derivative curve. This phenomenon signifies a modulation in the skin
effect, which is a measure of near-wellbore damage or alterations in the fluid flow. A more
substantial wellbore storage phase mitigates the influence of the skin effect, leading to a
less conspicuous “hump” in the derivative curve during the transition phase. However, it
is essential to recognize that a delicate balance is at play. As the wellbore storage coefficient
magnifies, so too does the potential for an intriguing outcome: the possible concealment of
the vertical radial flow regime, once a certain critical value of CD is surpassed.

This interplay of factors emphasizes the nuanced nature of reservoir dynamics and
the role of the wellbore storage coefficient as a key orchestrator. Figure 3 thus stands
as an invaluable visual aid, shedding light on the interwoven relationship between the
wellbore storage coefficient and the progression of transient pressure behavior. Through
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these insights, it offers a pathway to refined analyses, better reservoir management, and
enhanced production strategies.

3.2.3. Effect of Skin Factor

Figure 4 depicts the effect of the skin factor on transient pressure behavior type curves.
This influence primarily manifests itself in the morphology of the type curves during the
transition phase (Period 2) that follows the wellbore storage period. As the skin factor
value escalates, a notable alteration occurs in the positioning of the “hump” within the
derivative curves, leading to its elevation. This upward shift signifies a more substantial
additional pressure drop taking place in the formation.
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This phenomenon highlights the intricate relationship between the skin factor and the
dynamic flow characteristics within the reservoir. The shift of the “hump” underscores how
the skin factor can impact the flow resistance near the wellbore, consequently influencing
the overall pressure behavior as the well transitions from the wellbore storage phase to the
subsequent flow regimes.

Understanding and analyzing the interplay between the skin factor and the pressure
behavior type curves is pivotal for optimizing production strategies. A higher skin factor
can signify challenges in the reservoir connectivity and fluid flow, necessitating careful
consideration during well design and reservoir management decisions. Consequently,
Figure 4 serves as a valuable visual aid in comprehending the nuanced effects of the skin
factor on transient pressure dynamics.

3.2.4. Effect of Reservoir Thickness

Figure 5 offers a comprehensive perspective on how reservoir thickness influences the
transient pressure behavior type curves. As the reservoir thickness augments, a compelling
consequence emerges: the time required for the pressure wave to traverse to both the
upper and lower boundaries of the reservoir extends significantly. This phenomenon
is a direct result of the increased distance that the pressure wave needs to travel before
encountering these outer limits. The consequence of this prolonged propagation time is
manifold, reshaping the temporal progression of various flow regimes.
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The early vertical radial flow regime experiences an elongated duration. Then, the
mid-term linear flow phase, which normally follows the vertical radial flow regime, is
naturally delayed. The increased propagation time introduces a lag in the initiation of this
flow regime, impacting the timing and duration of the linear flow behavior. Lastly, the late
pseudo-radial flow stage, which marks the final phase of transient pressure behavior, also
encounters a delay.

Figure 5 offers valuable insights into the intricate interplay between reservoir thickness
and transient pressure behavior. The alterations in propagation time due to changes in
reservoir thickness create a cascading effect that reverberates through various flow regimes,
ultimately contributing to a more holistic understanding of reservoir dynamics and aiding
in strategic decision-making for reservoir management and well operation.

4. Conclusions

In this study, a comprehensive mathematical framework is meticulously developed to
accommodate the intricate interplay of stress-sensitivity for a horizontal well nestled in
tight gas reservoirs. In addition, this model provides a robust foundation for scrutinizing
the transient flow behaviors inherent in such scenarios. The ensuing outcomes can be
succinctly encapsulated as follows:

1. The developed model, adept at delineating the intricate fluid flow influenced by
stress-sensitivity, is introduced as a tool for dissecting the transient pressure dynamics
in horizontal wells situated within abnormally high-pressure tight gas reservoirs.
Compared with the conventional well testing interpretation tool, the established
model can better explain the permeability parameters in such a formation and be
more in line with the actual situation.

2. An approximate analytical solution for pressure responses in the Laplace domain
is generated by systematically integrating Pedrosa’s linearization techniques, per-
turbation methodology, Laplace transformations, Sturm–Liouville eigenvalue the-
ory, and orthogonal transformations. This will provide valuable inspiration for fur-
ther expansions to complex well types, complex geological conditions, or complex
flow phases.

3. Stress-sensitivity, an indicator of the formation permeability damage, engenders am-
plified pressure drops during the intermediate and late flow stages. These pronounced
pressure drops find expression through discernible upward trends observed in both
pressure and production derivative curves.
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4. The influence of other parameters, such as the wellbore storage coefficient, skin factor,
and reservoir thickness, on the transient flow dynamics closely parallels the behavior
observed in conventional gas reservoirs.

By synergistically incorporating these methodologies, the model not only deepens our
understanding of the behavior of horizontal wells within tight gas reservoirs influenced by
stress-sensitivity but also enriches the broader discourse on transient flow phenomena in
petroleum engineering. Next, this paper can be extended to model research on fractured
horizontal wells, gas-water two-phase flow, multiple media, and even coupled formation
with threshold pressure gradients, etc., thus continuously strengthening the in-depth
understanding of the seepage law of tight gas reservoirs.
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Nomenclature

Latin symbols
C wellbore storage coefficient, m3/MPa
CD dimensionless wellbore storage coefficient
Ct total compressibility coefficient, MPa−1

Cρ fluid compressibility coefficient, MPa−1

Cϕ rock compressibility coefficient, MPa−1

h reservoir thickness, m
hD dimensionless reservoir thickness
K permeability, µm2

Kh horizontal permeability, µm2

Kv vertical permeability, µm2

L horizontal section length, m
LD dimensionless horizontal section length
m pseudo pressure, MPa2/(mPa·s)
mD dimensionless pseudo pressure
mi initial pseudo pressure, MPa2/(mPa·s)
p pressure, MPa
p0 reference pressure, MPa
pi initial formation pressure, MPa
q gas production rate, 104m3/d
qD dimensionless gas production rate
qsc surface gas production rate, 104 m3/d
r radial distance, m
rD dimensionless radial distance
rw wellbore radius, m
rwD dimensionless wellbore radius
s Laplace transform variable
S skin factor, dimensionless
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t time, hours
tD dimensionless time
v velocity of gas flow, m/h
Z gas deviation factor
z vertical distance, m
zD dimensionless vertical distance
zw horizontal section position, m
zwD dimensionless horizontal section position
Greek symbols
γ permeability modulus, MPa−1

γm pseudo permeability modulus, mPa·s/MPa2

γmD dimensionless pseudo permeability modulus
µ gas viscosity, mPa·s
ρ gas density, kg/m3

υ order number of modified Bessel equation
ϕ porosity of reservoir, fraction
ξD perturbation deformation function
ξD0 zero-order perturbation deformation function
Superscripts

Laplace transform domain
= Orthogonal transform domain
Subscripts
D dimensionless
h horizontal
i initial
m pseudo
r radius direction
sc standard condition
t total
v vertical
w wellbore
z z-direction

Appendix A. Dimensionless Process of Seepage Differential Equation

Equation (A1) is the pseudo-pressure form of the governing equation for a hori-
zontal well in tight gas reservoirs incorporating the stress-dependent permeability, i.e.,
Equation (9) in the main text.[

∂2m
∂r2 +

1
r

∂m
∂r

+ γm

(
∂m
∂r

)2
]
+

Kvi

Khi

[
∂2m
∂z2 + γm

(
∂m
∂z

)2
]
= eγm(mi−m) ∅µCt

3.6Khi

∂m
∂t

(A1)

Multiply both sides of Equation (A1) by L2 and rewrite the expression, yielding[
∂2m

∂(r/L)2 +
1

(r/L)
∂m

∂(r/L) + γm

[
∂m

∂(r/L)

]2
]
+ L2

h2
Kvi
Khi

[
∂2m

∂(z/h)2 + γm

[
∂m

∂(z/h)

]2
]

= eγm(mi−m) ϕµCtr2
w

3.6Khi

(
L
h

√
Kvi
Khi

)2(
h

rw

√
Khi
Kvi

)2
∂m
∂t

(A2)

Due to the following dimensionless definitions (also shown in Table 1):

rD =
r
L

(A3)

zD =
z
h

(A4)
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LD =
L
h

√
Kvi

Khi
(A5)

hD =
h

rw

√
Khi
Kvi

(A6)

tD =
3.6Khit
∅µCtr2

w
(A7)

Substituting Equations (A3)–(A7) into Equation (A2), that is

[
∂2m
∂r2

D
+

1
rD

∂m
∂rD

+ γm

(
∂m
∂rD

)2
]
+ L2

D

[
∂2m
∂z2

D
− γm

(
∂m
∂zD

)2
]
= (hDLD)

2eγm(mi−m) ∂m
∂tD

(A8)

Multiply both sides of Equation (A8) by − 78.489Khih
Tqsc

, and yield

 ∂2
(
− 78.489Khih

Tqsc m
)

∂r2
D

+ 1
rD

∂
(
− 78.489Khih

Tqsc m
)

∂rD
− γm(

78.489Khih
Tqsc

)
(

∂
(
− 78.489Khih

Tqsc m
)

∂rD

)2
+ L2

D

[
∂2
(
− 78.489Khih

Tqsc m
)

∂z2
D

−

γm(
78.489Khih

Tqsc

)
(

∂
(
− 78.489Khih

Tqsc m
)

∂zD

)2
 = (hDLD)

2e

γm

(
78.489Khih

Tqsc
)
[

78.489Khih
Tqsc (mi−m)]

∂
(
− 78.489Khih

Tqsc m
)

∂tD

(A9)

According to the following expressions (also showed in Table 1):

mD =
78.489Khih

Tqsc
(mi −m) (A10)

γmD =
Tqsc

78.489Khih
γm (A11)

Inserting Equations (A10) and (A11) into Equation (A9), we obtain

[
∂2mD

∂r2
D

+
1

rD

∂mD

∂rD
− γmD

(
∂mD

∂rD

)2
]
+ L2

D

[
∂2mD

∂z2
D
− γmD

(
∂mD

∂zD

)2
]
= (hDLD)

2eγmDmD
∂mD

∂tD
(A12)

Equation (A12) is the same as Equation (10) in the main text.
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