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Abstract: Mixed and multi-model assembly line sequencing problems are more practical than single-
product models. The methods and selection criteria used must keep up with the constantly increasing
level of variability, synchronize flows between various—often very energy-intensive production
departments—and cope with high dynamics resulting from interrupted supply chains. The require-
ments for conscious use of Earth’s limited natural resources and the need to limit energy consumption
and interference in the environment force the inclusion of additional evaluation criteria focusing on
the environmental aspect in optimization models. Effective sustainable solutions take into account
productivity, timeliness, flow synchronization, and the reduction of energy consumption. In the
paper, the problem of determining the sequence of vehicles for a selected class of multi-version
assembly lines, in which the order restrictions were determined taking into account the above criteria,
is presented. Original value of the paper is the development of the Grey Wolf Optimizer (GWO) for
the mixed-model assembly lines sequencing problem. In the paper, a comparative analysis of the
greedy heuristics, Simulated Annealing and GWO for a real case study of a mixed vehicle assembly
line is presented. The GWO outperforms other algorithms. Overall research performance of the GWO
on the sequencing problem is effective.

Keywords: energy-efficient sequencing; grey wolf optimizer; mixed-model assembly line; car
sequencing problem

1. Introduction

Industry uses huge amounts of energy to transform resources into products or services,
which increases competition for energy resources and has a huge impact on the environ-
ment [1,2]. The industrial sector, after transport and households, is one of the largest energy
consumers in the EU, accounting for 25.6% of final energy consumption in 2021 [3]. By
comparison, in the United States, one of the most industrialized countries, the industrial
sector accounted for 33% of total U.S. energy consumption in the same year. Moreover,
energy consumption forecasts until 2050 for the USA indicate that the largest percentage
increases should occur in the industrial sector, where energy consumption is projected to
increase by as much as 32% [4,5]. At the same time, the observed increase in energy prices is
becoming a growing problem. This is becoming a challenge for manufacturers, especially in
the automotive industry, which in recent years has also had to deal with global supply chain
problems, such as global shortages of semiconductors. In this context, car manufacturers
focus on developing long-term development strategies aimed at significantly improving
the energy efficiency of production, further driven by global trends towards minimizing
negative impact on the environment and so-called green and sustainable production. This
is a particular challenge considering that modern cars are equipped with increasingly
complex systems, making them greener, safer, and smarter, but it also contributes to a
significant increase in the complexity of the vehicle itself and its production process. Of
course, this increase in complexity directly affects the energy needs of production processes.
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Depending on the research, it is estimated that the production of today’s vehicle requires
an estimated energy input of 62 GJ, of which approximately 42 GJ is energy consumed
during extraction and material production, while the processes of producing parts and
assembling the vehicle consume 12 and 8 GJ, respectively [6]. However, data presented
by the European Automobile Manufacturers’ Association (ACEA) show that the specific
energy consumption during car production is approximately 10 GJ [7].

The above-mentioned increase in the complexity of vehicles and the resulting increase
in energy demand in production processes also increase the variability of the range and
diversity of manufactured products. In the case of the automotive sector, this diversity is
becoming an immanent feature not so much in relation to unit and small-series production
but also increasingly to large-scale and mass production (mass customization). With regard
to assembly lines, this variability and the associated level of flexibility are classified in
the literature according to the number of models and versions, as single-model, multi-
model, and mixed [8,9]. The production of different models on the same assembly line
allows for significant energy and cost savings also thanks to the arbitrary combination
of series, batches, and different volumes of individual models. Of course, the greatest
flexibility is provided by solutions based on the mixed-model concept, but their wide
application requires the simultaneous development of methods and techniques in the
area of flow management and organization. The required increase in productivity and
flexibility while maintaining or even reducing energy consumption can also be achieved by
using the numerous opportunities offered by the fourth industrial revolution (Industry 4.0).
They affect the so-called agility of the system, and thanks to ongoing production tracking
and ensuring traceability and comprehensive information flow, they allow for dynamic
sequencing of vehicles on the assembly line in response to current conditions [10,11].

Sequencing allows manufacturers to determine the order in which they deploy prod-
uct variants or models depending on current requirements and the state of subsystems
associated with the main product flow. In practice, this makes it possible to shorten the
so-called planning time horizon, i.e., the period during which the established sequence can
no longer be changed, which in turn reduces the number of costly and energy-intensive
product withdrawals during the implemented sequence (e.g., due to the lack of required
components or production capacity). Changes and imbalances in the sequence often lead
to exceeding the availability of time at a given assembly station, which in turn results in
frequent line downtime and ultimately non-compliance with production standards. This,
in turn, forces overtime to make up for lost time and thus reduces energy efficiency per
vehicle unit. In a multi-model assembly line, different models are assembled, and each
model may require different assembly operation times.

Depending on the model option, the vehicle may require additional time for individual
assembly stations on the assembly line. Therefore, the vehicle is assumed to exceed the
average time of assembly operations at the stations and is called a work-intensive model
or version. In the case of successive operation of models with a longer operation time,
the model completion time is moved to downstream of the station (the area between the
yellow and red lines in Figure 1). This is especially important when an assembly line
consists of a number of stations linked by a conveyor or an AGV moving at a constant
rate. In cases of several work-intensive models being assembled consecutively at the same
workstation, work overload may occur and should be compensated for (Figure 1). If
the allowed area is exceeded, operators must stop the conveyor or AGV to complete the
unfinished operation (beyond the red line in Figure 1) [12,13]. This situation (overrun and
waste of time and energy) is often associated with exceeding the sequencing rule regarding
the maximum number of vehicle occurrences with a specific option among a specified
number of consecutive sequence positions [8,12].
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analyzed problem: a method based on a dedicated greedy algorithm, a simulated anneal-
ing algorithm with various parameters, and a grey wolf optimizer. 

Exact methods are effective in finding optimal solutions to small and medium-sized 
problems [19]. When it comes to solutions for large CSPs, metaheuristic algorithms play a 
leading role. Among metaheuristic algorithms, tabu search [19] and simulated annealing 
[20,21] methods are popular. Ant colony optimization [22] and genetic algorithms [23,24] 
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Therefore, manufacturers are looking for new, effective, and easy-to-implement (and
later adopt to new requirements) computer-aided sequencing methods and tools for multi-
model assembly lines in conditions of high variability and time pressure. In the literature,
the sequencing problem considered in this paper is traditionally referred to as the car
sequencing problem (CSP) [14,15]. However, this nomenclature (resulting from the origins
of this class of problems) does not, of course, limit the scope of applicability of the group
of methods solving this problem to assembly systems in the automotive industry—they
can be (and are) also used in other industries. In recent years, for the above-mentioned
reasons, the problem of sequencing assembly lines, also in the context of improving the
energy efficiency of existing production systems, has become the subject of an increasing
number of scientific publications [16–18].

The objective of this paper is to develop a sequencing method—in order to reduce
overruns and waste of time and thus save energy—in which the traditional approach of
specifying a representation of the problem proportion constraint (in terms of the number
of vehicles that may contain an option in a sequence of a given length) is tightened to one
vehicle in each subsequence. Moreover, for operational reasons, we move away from the
traditional objective function based on minimizing the number of constraint violations
within a sequence in favor of minimizing the sum of the degree of constraint violations.
The motivation for this approach is presented in the next section. We propose the use of
previously successfully applied algorithms in solving the traditional problem and a new,
previously unused algorithm. For this reason, three approaches are examined to solve the
analyzed problem: a method based on a dedicated greedy algorithm, a simulated annealing
algorithm with various parameters, and a grey wolf optimizer.

Exact methods are effective in finding optimal solutions to small and medium-sized
problems [19]. When it comes to solutions for large CSPs, metaheuristic algorithms
play a leading role. Among metaheuristic algorithms, tabu search [19] and simulated
annealing [20,21] methods are popular. Ant colony optimization [22] and genetic algo-
rithms [23,24] are also known from the literature. In recent years, new metaheuristics have
been proposed for solving scheduling problems: smart swarm optimization [25], flame
moth optimization algorithm [26], salp swarm algorithm [27], and grey wolf optimizer [28].
In scheduling problems, GWO can obtain the most well-known solutions in most schedul-
ing problems [28]. The algorithm based on GWO proposed in [28] outperformed the
above-mentioned new metaheuristics and self-learning genetic algorithm [29], and it was
proven that each grey wolf individual of GWO has simple intelligence. In many cases,
scheduling problems are based on the permutation of production tasks just as CSP is based
on the permutation of car versions, so the authors of the paper need to investigate the
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applicability of GWA for CSP. To the authors’ knowledge, the GWO has not been applied
in CSP so far.

The original contributions of the paper are the proposed evaluation function for the
tightened car sequencing problem, minimizing the degree of constraint violations and
the developed grey wolf optimizer (GWO) with encoding, decoding, differentiating, and
selection methods for solving the car sequencing problem with constraints in generating
vehicle versions.

In the following section, the nature of the problem with methods, assumptions, and
limitations is presented. In Section 3, the results obtained with discussion and conclusions
are described. Future development of the methods and CSPs are presented in Section 4.

2. Problem Definition and Solution Methods

The problem of vehicle sequencing on the final assembly line, referred to in the litera-
ture as the car sequencing problem (CSP), is considered [14,15,22,30]. The proposed formal
mathematical models of CSP have evolved since the 1980s along with the evolution of
assembly line organization related to the need to produce many models and their variations
(versions) in different volumes on the same line (mixed-model and multi-model). The
CSP problem was first described in [31]. In the traditional approach, the set of considered
constraints concerns the possible options for a given product version, and the definition of
the so-called p/q ratio. In the ratio, in any subsequence of q vehicles sequentially planned
for assembly on the line there may be at most p versions of vehicles in which a given option
is present. CSP is defined as a tuple [15]:

(V,O,p,q,r) (1)

where:

• V = {v1,. . .,vn}—set of vehicles to be made,
• O = {o1,. . .,om}—a set of different options that may be available in a given version of

the product,
• p:O⇒
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—capacity constraint associated with each option oi ∈ O—for
any sub-sequence of products qi, there can be at most pi vehicles requiring option oi,

• r:V × O⇒ {0,1}—option requirements,—for each vehicle vj ∈ V and for each option
oi ∈ O, rij = 1 if oi is required for vehicle vj and rij = 0 if oi is not present.

Solving the CSP problem comes down to finding the order of the elements of the set
V that meets the given constraints, thus determining the order in which the vehicles (or
more precisely, their versions associated with the option set) are assembled on a given
line. In particular, the question of whether it is possible to find a sequence that satisfies
all the p/q constraints must be answered. The p/q constraints were originally related
to the adopted assembly method, in which stations dedicated to the assembly of a given
option were designed for a specific maximum percentage of vehicles moving along the
line [15,31]. In such a case, in order to be able to install a specific percentage of vehicles
(with an even workload of employees) at selected assembly stations, it is necessary to plan
a multi-person team of operators and design the length of the stations as a multiple of the
distance travelled by the vehicle during the line takt time [31].

In currently designed assembly lines, especially in the automotive industry, the de-
scribed mode of operation is very rare. There is practically no movement of operators to
subsequent assembly stations during work. Requirements related to additional labour
consumption of the vehicle in which a given option is to be installed are taken into account
in the determined average length of stations for the lines on which the vehicle moves at a
constant speed (and thus in the average line cycle). This approach assumes the possibility of
crossing the station zone for the so-called heavy versions (versions with an option required
during assembly, causing an increase in labour consumption above the average for a given
station), which is levelled during assembly operations for (usually several) consecutive
so-called light vehicles (see Figure 1). Therefore, an extremely undesirable situation is two
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consecutive heavy versions for a given station in a row of vehicles. The authors observed
this approach to the design and organization of flow on assembly lines, especially in heavy
vehicle assembly plants.

In practice, for a given set of options (and the corresponding vehicle versions, already
at the line design stage), manufacturers determine the minimum number of versions not
containing a given option, which should follow the version containing it. This guarantees
that the planned line capacity will be achieved. Therefore, in order to meet the requirements
of today’s manufacturers, we propose modification of the constraints in the traditional
model (1) in such a way that the p constraint always takes the value 1. This corresponds to
a tightening of the pi/qi constraint set to 1/qi and describes the above situation, in which
the planner defines the number of vehicles without options in the sequence (q − 1) that
should occur between every two vehicles having a given option. Thus, the modified SCP
problem is a tuple:

(V,O,1,q,r) (2)

The sequence of product versions is defined as an ordered m × n matrix S, whose
columns correspond to the vectors of individual product versions r:

S = [sij], sj ∈ rj (3)

where i—option number that may appear in a given vehicle version, i = 1. . .m, m—number
of options, j—jth position in the version implementation sequence in the production cycle,
j = 1. . .n, n—number of vehicles to be completed.

Thus, the restriction shown in Constraint (4) imposes that only one vehicle may contain
the option i in a sequence of qi length:

gap(ij) ≥ qi, ∀vj ∈ V, (4)

where gap(ij)—a gap in the sequence S between product vj and the next product with
option oi.

We also propose another modification with respect to the traditional approach to
the definition of CSP problem. It is assumed there [15,22,30] that different cars of V may
require the same option configuration, and all cars requiring the same option configuration
are clustered in the same car class. More precisely, there are k different classes of cars, so
V is divided into k subsets such that all vehicles in the same subset Vi require the same
option configuration [15]. In our model, we do not define the division of the set of vehicles
into classes. This is motivated by today’s industrial practice, in which not only different
versions of the same model are assembled on the same line but also different models with
corresponding options. This causes much greater variability and freedom in formulating
sets of input vehicles for the sequencing process, in which for a single work shift there may
practically be no two identical sets of options in different vehicles.

The evaluation of the established sequence must reflect the degree to which the
specified performance constraints are met (4). In industrial practice, they are the result
of the assumptions made when designing the line as well as the current parameters (and
disturbances) of the line operation, including production volume, component availability,
staff, etc. The approaches proposed for solving the traditional CSP can be mainly split
between treating it as a feasibility problem and treating it as an optimization one [8,22].
The first group cannot be used in many practical cases due to the fact that they are unable
to handle unfeasible instances, which are typical cases in industrial practice. Approaches
that treat CSP as an optimization problem mainly try to minimize the number of constraint
violations in the sequence [22]. Minimizing the number of constraint violations in the
sequence may be a good indicator of the assessment in the case of constraints related to the
maximum number of option occurrences in a subsequence of a given length (traditional
approach). However, it is a completely impractical indicator of the quality of the solution
in the applications we are discussing, for which an extremely unfavourable situation is
the occurrence of two “heavy” options in a row in a sequence. In our research, SCP has
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been formulated and studied as a single-objective optimization problem. Therefore, it was
necessary to introduce the objective function for our proposed modified CSP problem,
which minimizes the sum of the reduction in the required distance between vehicles
containing a given option in the sequence, i.e., the sum of the degree of constraint violations.

The adopted sequence quality assessment function should take into account the
impact of the degree of fulfilment of individual constraints on the regularity of vehicle flow
through subsequent stages of the process and thus on the efficiency of the entire line. This
influence is the greatest when the constraint of the hard version is not met, i.e., options
for which qi is the greatest. Taking the above into account, we introduce the objective
function based on individual indicators for the µi option, which grows exponentially as
the exceedance (the sum of the reduction in the required distances between vehicles with a
given option) increases:

min µS =
∑i

(
µS

i qi
)

∑i (q i)
, (5)

where:
µS

i = −(De)FγS
i −F + 1, (6)

D, F—adopted constants responsible for the slope of the function, D = 3 and F = 2,
γS

i —average normalized distance of the occurrence of the oi option in a sequence <0;1>:

γS
i =

∑j:(sij=1) gap(ij)

∑j:(sij=1) qi
, (7)

where gap(ij)—a gap in the sequence S between product vj and the next product with
option oi.

The best fit CSP solution (5) approaches 0.
In the sequencing problem, the input data are a set of vehicles to be executed r during

a work shift, a set of options for a given version, and constraints 1/q. The set of vehicles to
be completed during a work shift includes information about the required options for each
vehicle and is determined by the order coordination department (Figure 2).
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The space of possible solutions in CSP includes all possible permutations of vehicles
V, requiring different configurations of options O [15]. CSP is an NP-hard problem, as
shown in [14,32]. The proposed methods for solving CSP are based on exact or approximate
methods [8,33]. The first group involves systematic exploration of the search space until a
solution is found or it is proven that there is no solution. In practical applications, they can
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be effective in solving cases with low n and are not competitive with heuristic methods [15].
Moreover, in practical problems, in many cases, there is no solution that meets all the
constraints, and the decision-making problem comes down to searching for a solution that
exceeds them as little as possible. In the group of heuristic methods, the most common are
greedy algorithms, local search, genetic algorithms and ant algorithms [15]. In this paper,
approaches based on a dedicated greedy algorithm, simulated annealing algorithm, and
grey wolf optimizer are proposed to solve the analysed problem.

2.1. The Greedy Algorithm

The greedy algorithm creates a sequence by selecting the best local solution for the cur-
rent sequence and the first unallocated vehicle with the “heaviest” version. The proposed
greedy algorithm GR (Figure 3) was developed for the needs of the planning department
of one of the automotive industry companies and served as a basis for comparison in the
presented research results. The auxiliary function find_gaps() determines the distance to
the nearest product with the oi option for each position in the current sequence S. The
algorithm favours constraints for versions which the increase in labour consumption is the
highest, i.e., for which the value qj of constraints among vehicles not yet assigned is the
highest. In the event that it is not possible to find an item that meets the imposed conditions,
the product is allocated in the position furthest from the already-allocated product with the
same option.

Energies 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

The space of possible solutions in CSP includes all possible permutations of vehicles 
V, requiring different configurations of options O [15]. CSP is an NP-hard problem, as 
shown in [14,32]. The proposed methods for solving CSP are based on exact or approxi-
mate methods [8,33]. The first group involves systematic exploration of the search space 
until a solution is found or it is proven that there is no solution. In practical applications, 
they can be effective in solving cases with low n and are not competitive with heuristic 
methods [15]. Moreover, in practical problems, in many cases, there is no solution that 
meets all the constraints, and the decision-making problem comes down to searching for 
a solution that exceeds them as little as possible. In the group of heuristic methods, the 
most common are greedy algorithms, local search, genetic algorithms and ant algorithms 
[15]. In this paper, approaches based on a dedicated greedy algorithm, simulated anneal-
ing algorithm, and grey wolf optimizer are proposed to solve the analysed problem. 

2.1. The Greedy Algorithm 
The greedy algorithm creates a sequence by selecting the best local solution for the 

current sequence and the first unallocated vehicle with the “heaviest” version. The pro-
posed greedy algorithm GR (Figure 3) was developed for the needs of the planning de-
partment of one of the automotive industry companies and served as a basis for compar-
ison in the presented research results. The auxiliary function find_gaps() determines the 
distance to the nearest product with the oi option for each position in the current sequence 
S. The algorithm favours constraints for versions which the increase in labour consump-
tion is the highest, i.e., for which the value qj of constraints among vehicles not yet assigned 
is the highest. In the event that it is not possible to find an item that meets the imposed 
conditions, the product is allocated in the position furthest from the already-allocated 
product with the same option. 

 
Figure 3. Steps of the greedy algorithm for the sequencing problem. 

The CSP solution is an S matrix whose columns correspond to the vectors of individ-
ual vehicle versions. The input data are: a set V of products to be executed, a set O of 
options that may appear in a given version of the product and the requirements for the 
option r: V × O ⇒ {0,1}. 

Figure 3. Steps of the greedy algorithm for the sequencing problem.

The CSP solution is an S matrix whose columns correspond to the vectors of individual
vehicle versions. The input data are: a set V of products to be executed, a set O of options
that may appear in a given version of the product and the requirements for the option
r: V × O⇒ {0,1}.

2.2. The Simulated Annealing Algorithm

The simulation annealing (SA) heuristics algorithm was proposed by Kirkpatrick et al. [34]
and Cerny [35]. The AS algorithm is a stochastic approach and is based on the analogy
to the annealing of ideal crystals in thermodynamics and the problem of solving large
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combinatorial optimization problems [36]. For each temperature change step corresponding
to the slow cooling of metals, the SA algorithm probabilistically generates a new potential
solution and probabilistically decides between moving the system to the new state or
staying in the current state. The algorithm used in this study is a modified version of the
standard SA algorithm [37]. The modifications concern protection against staying within
the local minimum too long. The number of iterations (70) is determined in which the newly
generated solution is adopted, after which the temperature is reset. After each iteration k
of the algorithm, the temperature is reduced according to the exponential function t(k) = ti
0.95k. In turn, the probability P(A) of accepting a candidate sequence f (Scnd) worse than the
current point f (Scur) is defined in two variants as:

P(A) =
1

1 + exp
(

100
(

f (Scnd)
f (Scur)

− 1
)

/t
) (8)

and
P(A) =

1
1 + exp(100( f (Scnd)− f (Scur))/t)

. (9)

Generating a candidate solution (candidate sequence) is generated by repeatedly
replacing two randomly selected columns of matrix S. This multiplicity is variable and
corresponds to the product n and the ratio of the current temperature t to the initial
temperature ti (Figure 4):
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The sequences determined as a result of the algorithm execution (for both probability
functions) are compared to the random sequence and the base sequence—the sequence
obtained as a result of the greedy algorithm.

2.3. The Gray Wolf Optimizer

The grey wolf optimizer GWO is a metaheuristic algorithm proposed by Mirgalili
et al. in 2014. GWO imitates the habits of grey wolf packs: the hierarchical stratification
and prey behaviour during an attack [38]. A pack contains on average 5 to 12 wolves
from four classes with different statuses: alpha(α), beta(β), delta(δ), and omega(ω) wolves.
Individual αmakes decisions about group actions. The β group assists the αwolves and
becomes α when the α wolf dies or gets old. The δ wolf trains the α wolf and reinforces
the α wolf’s commands to the lowest level wolves. The ω wolf follows the orders of
higher-level wolves to support the tasks they need to complete.
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The discrete interpretation of the GWO mathematical model presented in [28] has
been modified to apply to the sequencing problem. The GWO architecture is divided into
four parts: surrounding, hunting, attacking, and searching for prey. Initially, the three wolf
leaders stand as prey positions. The steps of the GWO are presented in Figure 5 for the
sequencing problem.
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The initial wolf population is initialized at random. The algorithm is limited to only
two populations: alpha and beta wolves. The three best individuals according to (5)
in a population are labelled as alpha wolves; the remaining individuals are labelled as
beta wolves.

For each beta wolf, Parameter A is generated to decide between exploitation and
exploration. When A < 1, the attack procedure is performed, in other words, the solution
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space is exploited. When A ≥ 1, beta wolves search for a prey, the exploration procedure
is applied. Parameter A controls the intensity of global and local search mechanisms of
the solution space. When |A| < 1, the beta wolf moves towards the alpha wolf in the
population, which means that the algorithm puts emphasizes local search. Otherwise, the
beta wolf moves away from the alpha wolf, which means that the algorithm focuses on a
global search. Parameter A is generated with a linearly decreasing trend:

a = 2− 2·ε· t
T
·e
−0.7·t

T . (10)

where t is the number of current iterations, T is the total number of iterations, and ε is used
to correct the non-linear downward trend of a.

In order to control the exploration and exploitation processes, a non-linear strategy
of generating control parameters based on exponential functions from [28] is adopted. In
the early iteration of GWO, parameter a is generated with a descent rate that is accelerated
to improve the convergence rate of the algorithm. In later iterations, the slowdown is
intended to increase the usefulness of GWO. In [28] the convergence trend of parameter a
for different values of ε is presented.

Similarly, for each beta wolf, parameter C is selected to decide between exploitation
and exploration. The offspring are selected and preserved according to the acceptance
probability paccept. When C < paccept, a close but better solution is probably selected for
exploitation. When C ≥ paccept, it is more probable that a distant solution is selected for
exploration. The offspring is generated using crossover or mutation procedure. In the
crossover procedure (Figure 6a), a subchromosome is randomly selected from the [1, V]
range. Selected genes are removed from the other parent’s chromosome. The remaining
genes of the second parent are copied in the order of the first parent. In the mutation
procedure (Figure 6b), two genes are randomly selected from the range [2, V−1], and the
copy direction before or after the mutation point is randomly selected from {0,1}. Offspring
are generated using the shift mutation procedure for each selected gene and direction.
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Surrounding and hunting is also used with alpha wolves in a greedy procedure. The
greedy procedure can also be interpreted as changing the leader of the pack to a new,
younger one.
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3. Results and Detailed Discussions

The algorithms proposed in the previous chapter were implemented in the MATLAB
computing environment. First, computer simulations were carried out for GWO with con-
straints on generating vehicle versions (9 options), q—constraint vector q = [8 5 6 3 4 4 7 4 8]
and the following input data: number of wolves in the pack W = 10; number of hunting
trails Ht = 30, ε = 1.5 (parameter of formula 8); total iteration number in each hunting trail,
T = 5; Euler number = exp(1); accept = 0.5.

Computer simulations were performed for the GWO using the crossover procedure
described in Figure 6a. Figure 7c on the Y-axis shows the fitness function values (5) of the
beta wolves achieved in each population (X-axis) in each trail. Similarly, Figure 7a on the
Y-axis shows the values of the alpha wolf fitness function. Figure 7e on the Y-axis shows
the fitness function values of the best alpha wolf achieved in the last iteration in each trail.
The best sequence was achieved for the weighted summary violation rate, µS = 0.3032 in
trails from 23 to 30 (Figure 8a).
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Figure 7. Population alpha (a,b) and beta (c,d) obtained by computer simulation for input data
{W = 10, Ht = 20, ε = 1.5, T = 5; Euler number = exp(1); accept = 0.5;}. The best alpha wolf (e,f) achieved
by the GWO in each hunting trail and each iteration. Populations achieved using crossover (a,c,e)
and mutation (b,d,f) procedures.
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Figure 8. The best alpha wolf obtained using (a) crossover procedure, (b) mutation procedure for
input data {W = 10, Ht = 20, ε = 1.5, T = 5; Euler number = exp(1); accept = 0.6}.

The GWO balances the processes of exploration and exploitation because it is able to
escape from the local optimum, which can be observed by analysing the best alpha solutions
obtained in subsequent hunting trials. Computer simulations were also performed for
the GWO using the mutation procedure described in Figure 6b. Results are presented in
Figure 7b,d,f. The best sequence was obtained in trails from 16 to 30 for the weighted
summary violation rate µS= 0.2838 (Figure 8b).

The observation and analysis of sensitivity of the GWO performance to changes in
“input” parameters of the algorithm can provide information useful for optimizing the
sequencing problem. The observation and sensitivity analysis of the GWO are presented in
the next section.

3.1. The Influence of Input Parameters on the Weighted Summary Violation Rate

First, we investigated the effect of Ht on the weighted summary violation rate µS. The
weighted summary violation rate decreases with an increase in the number of hunting
trails to the minimum value achieved for Ht = 18 and then increases with an increase in the
number of trails (Figure 9a). The decreasing and then increasing value of µS means that is
not necessary to achieve the best-quality solution for small and large numbers of hunting
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trails. The similar conclusion can be drawn for the total iteration number in each hunting
trail (Figure 9d).
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Figure 9. The influence of changes in input parameters on the weighted summary violation
rate: (a) hunting trail Ht, (b) paccept, (c) number of wolves in the pack W, and (d) total iteration
number in each hunting trail T.

Offspring are selected and preserved according to their acceptance probability paccept.
When C < paccept, a close but better solution is probably to be selected for exploitation.
When C ≥ paccept, it is more likely a distant solution will be selected for exploration. The
GWO balances exploration and exploitation very well, therefore the effect of paccept is
difficult to notice (Figure 9b).

Next, we examine the effect of the number of wolves in the pack W on µS. The
weighted summary violation rate decreases as the number of W increases (Figure 9c).
The decreasing value of µS means that as the number of wolves increases, the chances of
achieving a better solution increase.

The best sequence with minimum weighted summary violation rate was achieved for
q = [8 5 6 3 4 4 7 4 8] and input data: {W = 10; Ht = 18, ε = 1.5; T = 5; accept = 0.5}. The best
sequence has been improved, µS = 0.258, compared to the solution presented in Figure 8.
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3.2. The Comparative Analysis

Then, the results obtained using the GWO were compared with those obtained using
the greedy heuristic and simulated annealing algorithm for both probability
functions (6) and (7). The input data includes a set of vehicles to be executed during a
work shift, a set of options for a given version and constraints 1/q. The set of vehicles to be
completed during a work shift includes information about the required options for each
vehicle and is determined by the order coordination department. In order to compare the
algorithms, 10 such cases proposed by the Procurement Coordination Unit for sequencing
problems of different sizes (m × n) were taken into account (Table 1).

Let us analyse a real car sequencing problem for a set of 52 heavy vehicles and a set of
9 different options that can be present in a given product version (Table 1). Better sequences
were obtained using the GWA for the 10 required options proposed by the procurement
coordination. The GWO obtained lower weighted summary violation rates than GR, SA
P(A) > 3 and SA P(A) > 4. By analysing the minimum, maximum, first quantile, and third
quantile of the weighted summary violation rate of obtained solutions (Figure 10a), the
following conclusion can be drawn: the GWO outperforms the other algorithms.

Let us analyse the CSP for a set of nine vehicles and a set of nine different options that
can be present in a given product version, n = 9 and m = 9, respectively. Solutions obtained
using individual algorithms are presented in Table 1. The same sequences were obtained
using the GWA and SA except of the required option {6 6 9 5 8 3 9 3 4}. By analysing
the minimum, maximum, first quantile, and third quantile of the weighted summary
violation rate of solutions achieved using RAN, GR, SA P(A) > 3, SA P(A) > 4 and the GWO
(Figure 10b) for n = 9 and m = 9, the following conclusion can be drawn: the GWO obtained
similar solutions to the SA.

Let us analyse the CSP for a set of 18 vehicles and a set of 9 different options that can
be present in a given product version (Table 1 and Figure 10c). SA outperforms the GWA.

By analysing the CSP for a set of 28 vehicles and a set of 9 different options that can be
present in a given product version (Table 1 and Figure 10d), the opposite conclusion can be
drawn: the GWO obtained better solutions than the SA.

Let us analyse the CSP for a set of 10 vehicles and a set of 10 different options that
can be present in a given product version (Table 1 and Figure 10e). The best sequence
generated by the GWO was achieved for five options {3 3 5 6 8 8 9 9 6}, {6 7 7 5 7 8 7 6 3},
{9 7 3 9 3 9 9 4 9}, {5 7 4 4 4 8 9 3 9}, and {7 5 8 6 6 4 3 8 8}. Additionally, the best sequence
generated by SA P(A) > 3 was achieved for five sets of options. The best sequence generated
by SA P(A) > 4 was achieved for two sets of options. Thus, the quality of solutions obtained
by the GWO and the SA P(A) > 3 is equal.

Overall research performance of the GWO on the sequencing problem is more effective
for large-sized sequencing problems.

3.3. Discussion

Thanks to the GWO parameters, A and C, each beta wolf decides between exploitation
and exploration. The parameters controlled the intensity of global and local search mecha-
nisms of the solution space. When the beta wolf approaches the alpha wolf in a population,
local solutions are sought. When the beta wolf, away from the alpha wolf, survives, a
global solution is sought. Making the decision between exploitation and exploration is
similar to the decision process in an ant colony optimization (ACO) algorithm [39]. The
difference concerns the formulas for the probability of choosing a search strategy. In the
ACO, the formulae are based on pheromone parameters, i.e., common intelligence acquired
by individuals in previous generations and the quality of the potential solution to the
analysed problem. In the GWO, the adaptive convergence factor (8) is used to decide
between the global and local search capabilities of the algorithm. At the beginning of the
GWA, the local search strategy is promoted. As the number of iterations increases the
global search becomes crucial.
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Table 1. Ten case studies and the solutions generated at random (RAN) using GR and SA with
probability function (6) (SA P(A) > 3) and (7) (SA P(A) > 4) and GWO for sequencing problems of
different sizes (m × n).

No. Input Data RAN GR SA
P(A) -> (3)

SA
P(A) -> (4) GWO

m n q Weighted Summary Violation Rates µ

9 52

[8 5 6 3 4 4 7 4 8] 0.8525 0.3663 0.3947 0.3973 0.3506
[3 3 5 6 8 8 9 9 6] 0.802 0.3569 0.3807 0.3249 0.2502
[6 6 9 5 8 3 9 3 4] 0.8173 0.3235 0.2564 0.3678 0.2522
[6 7 7 5 7 8 7 6 3] 0.7693 0.4517 0.3700 0.4537 0.3647
[9 7 3 9 3 9 9 4 9] 0.8373 0.2063 0.3020 0.2339 0.1960
[5 7 4 4 4 8 9 3 9] 0.7899 0.3960 0.3208 0.3303 0.2926
[9 6 8 3 8 4 8 7 8] 0.8336 0.4139 0.3926 0.3551 0.2594
[7 5 8 6 6 4 3 8 8] 0.8171 0.4039 0.4375 0.4275 0.2974
[3 6 4 4 3 8 4 6 6] 0.7922 0.4200 0.3571 0.4164 0.3251
[3 4 7 7 7 4 6 5 8] 0.8560 0.4342 0.3576 0.4050 0.3569

1

9

9

[8 5 6 3 4 4 7 4 8] 0.7937 0.8607 0.4254 0.4165 0.4164
2 [3 3 5 6 8 8 9 9 6] 0.4619 0.6149 0.1676 0.1676 0.1675
3 [6 6 9 5 8 3 9 3 4] 0.5024 0.5577 0.1275 0.1275 0.1742
4 [6 7 7 5 7 8 7 6 3] 0.6999 0.7140 0.2154 0.2154 0.2153
5 [9 7 3 9 3 9 9 4 9] 0.1344 0.1731 0 0 0
6 [5 7 4 4 4 8 9 3 9] 0.5421 0.6200 0.1696 0.1696 0.1695
7 [9 6 8 3 8 4 8 7 8] 0.6183 0.7593 0.2166 0.2166 0.2165
8 [7 5 8 6 6 4 3 8 8] 0.8344 0.8345 0.2979 0.2979 0.2978
9 [3 6 4 4 3 8 4 6 6] 0.7727 0.6260 0.2109 0.2109 0.2108

10 [3 4 7 7 7 4 6 5 8] 0.8243 0.8691 0.3611 0.3611 0.3611
1

18

[8 5 6 3 4 4 7 4 8] 0.7517 0.6897 0.2103 0.2828 0.2581
2 [3 3 5 6 8 8 9 9 6] 0.8259 0.4205 0.1202 0.1638 0.1779
3 [6 6 9 5 8 3 9 3 4] 0.8846 0.3348 0.1173 0.1126 0.1988
4 [6 7 7 5 7 8 7 6 3] 0.7917 0.4254 0.1397 0.1197 0.2268
5 [9 7 3 9 3 9 9 4 9] 0.8171 0.2771 0.0512 0.0441 0.0599
6 [5 7 4 4 4 8 9 3 9] 0.6964 0.4195 0.1805 0.1777 0.2903
7 [9 6 8 3 8 4 8 7 8] 0.8130 0.5748 0.1482 0.1769 0.2629
8 [7 5 8 6 6 4 3 8 8] 0.8956 0.6385 0.2323 0.1547 0.2659
9 [3 6 4 4 3 8 4 6 6] 0.6683 0.5543 0.2334 0.2586 0.1899

10 [3 4 7 7 7 4 6 5 8] 0.8204 0.5390 0.2547 0.2830 0.2192
1

9 28

[8 5 6 3 4 4 7 4 8] 0.8330 0.3636 0.2020 0.3634 0.2033
2 [3 3 5 6 8 8 9 9 6] 0.8211 0.6118 0.4189 0.3587 0.3368
3 [6 6 9 5 8 3 9 3 4] 0.8074 0.5779 0.4486 0.3908 0.3535
4 [6 7 7 5 7 8 7 6 3] 0.2321 0.3119 0.2321 0.2321 0.1862
5 [9 7 3 9 3 9 9 4 9] 0.7991 0.5723 0.4054 0.4830 0.3840
6 [5 7 4 4 4 8 9 3 9] 0.7980 0.5901 0.4600 0.4108 0.2971
7 [9 6 8 3 8 4 8 7 8] 0.7899 0.4960 0.3726 0.3734 0.2992
8 [7 5 8 6 6 4 3 8 8] 0.7593 0.3340 0.2702 0.2575 0.1697
9 [3 6 4 4 3 8 4 6 6] 0.8234 0.4450 0.3473 0.2919 0.2926

10 [3 4 7 7 7 4 6 5 8] 0.6635 0.3302 0.2197 0.3030 0.1531
1

10 10

[8 5 6 3 4 4 7 4 8 3] 0.6044 0.8028 0.2438 0.3765 0.2960
2 [3 3 5 6 8 8 9 9 6 5] 0.7653 0.8655 0.4383 0.3964 0.3073
3 [6 6 9 5 8 3 9 3 4 5] 0.7410 0.7426 0.2403 0.2403 0.3003
4 [6 7 7 5 7 8 7 6 3 4] 0.5752 0.5340 0.1843 0.1843 0.1392
5 [9 7 3 9 3 9 9 4 9 5] 0.7682 0.8462 0.3313 0.3313 0.3245
6 [5 7 4 4 4 8 9 3 9 6] 0.7511 0.8632 0.3307 0.3767 0.3307
7 [9 6 8 3 8 4 8 7 8 3] 0.7539 0.8993 0.3245 0.3226 0.3307
8 [7 5 8 6 6 4 3 8 8 5] 0.7263 0.7105 0.2663 0.2663 0.2651
9 [3 6 4 4 3 8 4 6 6 4] 0.7118 0.7082 0.2612 0.3031 0.3031

10 [3 4 7 7 7 4 6 5 8 2] 0.6012 0.7490 0.2198 0.2198 0.2998
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Figure 10. The solutions generated at random (RAN), using GR, SA with probability function (6) (SA
P(A) > 3) and (7) (SA P(A) > 3) and the GWO for problems: (a) m = 9, n = 52, (b) m = 9, n = 9, (c) m = 9,
n = 18, (d) m = 9, n = 28 and (e) m = 10, n = 10.

The third parameter, the number of hunting trails Ht, makes it possible to exit the local
minimum in a situation where a certain number of hunting attempts of the herd have been
unsuccessful. In practice, this means giving up hunting for the prey when too much effort
is required or when the prey is simply faster.

Offspring are generated via crossover or mutation procedures. Using the crossover
procedure, more genetic material is lost than using the mutation procedure. In other words,
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more distant (different) solutions are generated in the crossover procedure (Figure 6a). In
the mutation procedure (Figure 6b), only two genes are randomly selected and shifted.
Ultimately, a mutation procedure is applied to generate the offspring in order to preserve
the heritage, knowledge, or skills of wolves in the pack.

Observing the results of the sensitivity analysis of the GWO performance to changes in
the “input” parameters, the following conclusions can be drawn regarding the optimization
of the sequencing problem:

• Decreasing and then increasing the value of µS while increasing Ht means that the
number of hunting trails could not be too small or too large to obtain the best quality
solution (Figure 9a). A similar conclusion can be drawn for the total number of
iterations (hunting attempts on the trail) T, which is closely related to Ht (Figure 9d).
When too much energy is spent hunting prey, the grey pack simply gives up.

• The GWO balances exploration and exploitation very well. Thus, the effect of paccept
is difficult to notice (Figure 9b).

• The decreasing value of µS as the value of W increases (Figure 9c) indicates that as the
number of wolves increases, the chances of achieving a better solution also increase.

After tuning the GWO parameters, the algorithm was compared to the GR and the SA
for probability functions (6) and (7). The GWO outperforms the other algorithms in two
CSPs, namely (9 × 28) and (9 × 52). The performance of the GWA is better than GR, SA
for large size car sequencing problems. Overall research performance of the GWO on the
sequencing problem is effective.

4. Conclusions

In the face of the negative effects of climate change, much attention is paid to the issue
of greenhouse gas emissions. Following the dynamically accelerating climate and energy
trends, transition challenges and strategic decisions are presented in [40]. Companies
operating in energy-intensive industries constitute as many as four fifths of companies
listed in the steel industry [41]. Reducing energy consumption in car factories will also
have a positive impact on reducing greenhouse gas emissions.

Production departments deal with problems of unsynchronized flows resulting from
broken supply chains and high energy consumption in transport between different produc-
tion departments. This article addresses the problem of car sequencing on the assembly
line of mixed models. The criteria for assessing the proposed solutions take into account
the mixed model production and, indirectly, energy consumption.

The proposed CSP solving algorithms have demonstrated their effectiveness in solving
the considered CSP class. The obtained results are better in a significant number of cases
than those obtained with greedy algorithms used in industrial practice. They can therefore
be successfully implemented in systems supporting assembly sequencing planning, in
particular in relation to multi-version and multi-model lines with a large variation in
assembly times, e.g., heavy vehicle manufacturers.

The original value of the paper was the development of the grey wolf optimizer for
the mixed-model assembly line sequencing problem. The algorithm was selected due to
its efficiency in solving scheduling problems [25] compared to other biologically inspired
algorithms: smart swarm optimization [26], flame moth optimization algorithm [27], and
salp swarm algorithm [28]. Further research will include comparing GWO with other
metaheuristic methods in the sequencing tasks of the assembly line with an emphasis on
sustainable production.
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35. Černý, V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory

Appl. 1985, 45, 41–51. [CrossRef]
36. van Laarhoven, P.J.M.; Aarts, E.H.L. Simulated annealing. In Simulated Annealing: Theory and Applications. Mathematics and Its

Applications; Springer: Dordrecht, The Netherlands, 1987; Volume 37.
37. Eglese, R.W. Simulated annealing: A tool for operational research. Eur. J. Oper. Res. 1990, 46, 271–281. [CrossRef]
38. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
39. Paprocka, I.; Krenczyk, D.; Burduk, A. The method of production scheduling with uncertainties using the ants colony optimization.

Appl. Sci. 2021, 11, 171. [CrossRef]
40. Energy Policy of Poland until 2040 (EPP2040). Available online: https://www.gov.pl/web/climate/energy-policy-of-poland-

until-2040-epp2040 (accessed on 25 August 2023).
41. Chen, J.; Sun, C.; Wang, Y.; Liu, J.; Zhou, P. Carbon emission reduction policy with privatization in an oligopoly model. Environ.

Sci. Pollut. Res. Int. 2023, 30, 45209–45230. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.3390/machines10111100
https://doi.org/10.1016/j.cie.2020.106778
https://doi.org/10.1057/palgrave.jors.2601955
https://doi.org/10.1007/BF00246021
https://doi.org/10.1007/s10845-016-1201-6
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/BF00940812
https://doi.org/10.1016/0377-2217(90)90001-R
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.3390/app11010171
https://www.gov.pl/web/climate/energy-policy-of-poland-until-2040-epp2040
https://www.gov.pl/web/climate/energy-policy-of-poland-until-2040-epp2040
https://doi.org/10.1007/s11356-022-24256-2
https://www.ncbi.nlm.nih.gov/pubmed/36705827

	Introduction 
	Problem Definition and Solution Methods 
	The Greedy Algorithm 
	The Simulated Annealing Algorithm 
	The Gray Wolf Optimizer 

	Results and Detailed Discussions 
	The Influence of Input Parameters on the Weighted Summary Violation Rate 
	The Comparative Analysis 
	Discussion 

	Conclusions 
	References

