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Abstract: Maintaining the integrity of the cement sheath is essential for the sealing of underground
gas storage. The formation creep, temperature changes, and operating pressure changes during the
operation of underground gas storage can cause changes in the stress of the cement sheath, which
probably induces the failure of the cement sheath’s integrity. A creep model taking the effects of
stress and temperature into account is developed to study the cement sheath’s integrity in creep
formation, and the feasibility of creep simulation via finite element method is verified. The finite
element method is used to analyze the effects of formation creep, temperature, operating pressure,
and the cement sheath’s elastic modulus on the cement sheath’s integrity. The result shows that the
coupling effect of formation creep and temperature increases the cement sheath’s failure risk; both the
formation creep and the decrease in cement sheath temperature increase the Von Mises stress on the
cement sheath, increasing the risk of the cement sheath’s shear failure. The decrease in cement sheath
temperature decreases the circumferential compressive stress on the cement sheath and raises the
risk of the cement sheath’s tensile failure. Shear failure of the cement sheath occurs at high operating
pressure upper limits. The operating pressure is less than 70 MPa, or the cement sheath’s elastic
modulus is less than 3 GPa, which can prevent the failure of the cement sheath’s integrity during the
operation of underground gas storage.

Keywords: formation creep; downhole temperature change; finite element method; integrity of
cement sheath; operating pressure; elastic modulus of cement sheath

1. Introduction

Salt rock exhibits extremely low permeability and porosity [1], making it a commonly
employed choice as a sealing caprock for depleted oil and gas reservoirs [2]. Under
deviatoric stress, the salt rock formation will creep and compress the cement sheath,
potentially resulting in the failure of the cement sheath’s integrity (CSI). The operation of
underground gas storage (UGS) includes gas injection and gas production phases. The
gas injected into the wellbore undergoes heat exchange with the assembly comprising the
downhole casing, cement sheath, and formation. Alterations in the assembly’s temperature
can subsequently impact the stress state of the cement sheath [3], potentially leading to
compromised CSI. Variations in the operating pressure of UGS can also cause changes
in the stress state of the cement sheath, potentially leading to compromised integrity.
Weakening of the CSI will diminish its capacity to seal effectively. This could potentially
result in the escape of gas from the UGS, carrying negative consequences for safety, the
environment, and the economy [4]. The failure types of CSI include shear failure (i.e.,
compressive failure), debonding failure, and tensile failure (i.e., radial crack) [5–7]. The
Von Mises criterion [8–13], Tresca criterion [14,15], Mohr–Coulomb criterion [5,16,17], and
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Drucker–Prager criterion [18,19] are often used to judge the cement sheath’s shear failure.
The cement sheath’s shear failure can produce plastic strain. The cement sheath’s tensile
failure is evaluated by the maximum tensile stress criterion [20–22]. When the cement
sheath’s circumferential stress surpasses its ability to withstand tension, tensile failure
occurs. The cement sheath’s debonding failure is evaluated by the interfacial radial stress.
When the interfacial radial tensile stress surpasses its bonding strength, debonding failure
occurs [23,24].

Liu [25] and Orlic [26,27] studied the impact of formation creep on the closure of the
wellbore. Their research results indicated that wellbore closure can be triggered by salt
formation creep, and the greater the wellbore’s Von Mises stress, the faster the wellbore
closure rate. Melo [28], Yu [29], and Velilla [30] have investigated the effect of salt for-
mation’s creep on casing. The result indicated that salt rock creep can cause increased
casing stress and may cause casing yield failure. Jandhyala [9] investigated the effect of
formation creep on the cement sheath. The result indicated that the cement with a higher
elasticity has a stronger bearing capacity. Jesus [5], Raoof [31], and Yin [3] investigated the
effect of downhole temperature changes on CSI. The finding showed that the decrease in
temperature may cause the debonding failure. Zhang [16] analyzed the CSI during the
operation of UGS using elastoplastic theory. The findings indicated that shear failure may
occur when the casing is pressurized; during casing pressure relief, debonding failure may
occur. Yang [2] used the finite element method (FEM) to investigate the effect of the creep
of salt formation on CSI within UGS, considering non-uniform in situ stress conditions. The
finding showed that salt rock creep under non-uniform in situ stress can cause the cement
sheath’s shear failure. The greater the non-uniform in situ stress, the earlier the shear failure
occurs. In summary, scholars’ research mainly focuses on the influences of the salt forma-
tion’s creep on wellbore closure and casing failure. However, few studies have investigated
the failure of CSI in the salt formation of UGS. In investigations concerning the influence of
salt formation creep on CSI, the influence of downhole temperature fluctuations on both
formation creep and CSI has been overlooked. In investigations concerning the failure of
CSI during the operation of UGS, the impact of downhole temperature fluctuations on the
cement sheath’s integrity has been overlooked. Therefore, studying the effects of formation
creep, downhole temperature changes, and the operating pressure on CSI throughout UGS
operations holds immense importance in ensuring UGS safety.

In this study, a creep model for salt rock was developed by conducting creep exper-
iments that involved subjecting the salt rock to varying temperature and pressure loads.
The feasibility of simulating salt rock creep using the FEM is verified by comparing the
FEM-simulated steady-state creep rate of salt rock with the steady-state creep rate obtained
in actual salt rock creep experiments. By establishing an FEM model of casing–cement
sheath–creep formation assembly, the effects of salt rock formation creep, temperature
changes, and the upper limit of operating pressure on the CSI throughout the operation of
UGS were studied. The influences of these factors on the CSI were determined. By examin-
ing how variations in the cement sheath’s elastic modulus impact its integrity, measures
to avert the failure of the CSI during the operation of UGS were obtained. The findings
from this study offer valuable insights into the potential integrity issues concerning cement
sheaths in UGS wells. These results hold significant importance in terms of averting cement
sheath integrity failures and ensuring the secure and effective functioning of the operation
of UGS.

2. Establishment of FEM Model for Casing–Cement Sheath–Creep Formation Combination

In this section, a salt rock creep model is obtained from the salt rock creep experiments
at firs; then, the feasibility of salt rock creep simulations in FEM is verified by comparing the
steady-state creep rates between FEM simulations and salt rock creep experiments. Finally,
an FEM model of the combined casing–cement sheath–creep formation is developed based
on the salt rock creep model obtained from experiments.
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2.1. Salt Rock Creep Model

In order to develop the FEM model for the casing–cement sheath–creep formation
assembly, it is necessary to acquire the creep model of the creep formation. Consequently,
we conducted creep experiments on salt rock under various temperatures and pressures.
The salt rock creep model can be derived by fitting the results of salt rock creep experiments.
The experimental equipment used in the salt rock creep experiment is GCTS RTR-2000.
The length-to-diameter ratio for the experimental salt rock creep samples is 2:1, which is
consistent with the experimental criteria of rock mechanics. The temperature and pressure
loads applied to the samples are shown in Table 1. The deviator stress is determined as
the disparity between the axial pressure and the confining pressure. Sample numbers
1–5 refer to creep experiments conducted on salt rock under various deviatoric stress
conditions, and sample numbers 3, 6, 7, and 8 refer to creep experiments conducted on salt
rock under various temperatures. The figures illustrate the creep behavior of salt rock at
varying deviatoric stresses (Figure 1) and varying temperatures (Figure 2). As depicted in
Figure 1, higher deviator stress corresponds to increased axial strain. Moreover, elevated
deviator stress leads to a more rapid increase in axial strain. As depicted in Figure 2, higher
temperature corresponds to increased axial strain. Furthermore, elevated temperature
leads to a more rapid increase in axial strain. Table 2 displays the steady-state creep rates
for diverse samples. Higher deviator stress corresponds to an increased steady-state creep
rate, indicating that the deviator stress promotes creep. Higher temperature corresponds to
an increased steady-state creep rate, indicating that temperature promotes creep.

Table 1. Temperature and pressure loads in salt rock creep experiments.

Sample
Number

Confine
Pressure/MPa

Axial
Pressure/MPa

Deviatoric
Stress/MPa Temperature/◦C

1 5 30 25 24
2 10 30 20 24
3 15 30 15 24
4 20 30 10 24
5 25 30 5 24
6 15 30 15 50
7 15 30 15 70
8 15 30 15 90
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Figure 1. Creep curves of salt rock at varying deviatoric stresses. 
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Table 2. Steady-state creep rates for diverse samples.

Sample Number Steady-State Creep Rate/s−1

1 1.782 × 10−7

2 1.192 × 10−7

3 4.199 × 10−8

4 3.687 × 10−8

5 2.543 × 10−9

6 6.655 × 10−8

7 3.753 × 10−7

8 8.534 × 10−6

During the long-term creep process, compared to transition and accelerated creep
stages, the duration of steady-state creep is the longest, and the creep strain of long-term
creep is mainly contributed by steady-state creep. Therefore, the salt rock creep model
mainly focuses on steady-state creep. Currently, the commonly used creep model that
represents the influences of temperature and stress on the steady-state creep rate is the
hyperbolic sine law model [30,32–38], as shown in Equation (1):

ε•cr = A(sinhBq)n exp(− ∆H
R(θ− θZ)

), (1)

where ε•cr represents the steady-state creep rate (−1); q represents the Von Mises stress
(MPa); θ represents the temperature (◦C); θZ represents the absolute zero in temperature
(−273.15 ◦C); R represents the universal gas constant (8314.3 mJ/(mol·◦C)); ∆H represents
the activation energy (mJ/mol); and A, B, and n are material parameters.

The Von Mises stress in Equation (1) equals to the deviator stress in the salt rock creep
experiment. We use MATLAB curve fitting tool to fit the data in Table 2, and the fitting
result is shown in Equation (2), where R2 = 0.9442 indicates that the goodness of fit is close
to 1, showing a favorable fitting outcome. Equation (2) effectively portrays the interplay
between temperature, stress, and the steady-state creep rate:

ε•cr = 32.31(sinh0.2186q)1.197 exp(− 6.097 × 107

8314.3(θ+ 273.15)
), R2 = 0.9442 (2)

2.2. Feasibility Verification of Salt Rock Creep Simulation in FEM

Using Equation (2), we establish an FEM model in ABAQUS that replicates the di-
mensions of the salt rock creep experimental specimen, as depicted in Figure 3. The entire
model is loaded with temperature load, the top surface is loaded with axial pressure, the
side surface is loaded with confining pressure, and the bottom of the model is immovable.
The steady-state creep rates of salt rock creep experiments and finite element simulations
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under different temperature and pressure loads are illustrated in Figure 4. The steady-state
creep rates of salt rock creep experiments and the steady-state creep rates of finite element
simulation have a good consistency, indicating that finite element simulation can well
reflect the steady-state creep rate of salt rock at varying temperatures and pressure loads,
verifying the feasibility of salt rock creep simulation in FEM.
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2.3. FEM Model of Casing–Cement Sheath–Creep Formation Combination

The FEM model of the casing–cement sheath–formation combination in a salt rock
formation at a well depth of 2500 m in an UGS is established. The axial strain of the
casing–cement sheath–formation combination is very small and can be ignored. Accord-
ing to the theory of elasticity, the casing–cement sheath–formation combination can be
simplified as a plane strain model [2], as illustrated in Figure 5. The model’s geometric
parameters are detailed in Table 3, and the model’s physical attributes are detailed in
Table 4. The mesh type is CPE4T. The contact methodology adopted for interactions be-
tween the casing and cement sheath, as well as for those between the cement sheath and the
formation, are as follows: normal behavior is hard contact; tangential behavior is friction-
less. The casing’s yield strength is 758 MPa. The cement sheath’s compressive strength is
42.13 MPa, along with a tensile strength of 3.99 MPa. The bonding strength between cement
sheath and casing is 1.23 MPa. The formation creep model is shown in Equation (2). The
formation temperature and uniform in situ stress are exerted onto the upper and right
boundaries of the model. The casing internal pressure (i.e., operating pressure) and gas
injection temperature are exerted onto the casing’s inner wall. Symmetric constraints
are exerted onto the model’s lower and left boundaries. The uniform in situ stress and
temperature of the model come from a real case. The uniform in situ stress is 50 MPa. The
formation temperature is 90 ◦C. The gas injection temperature is 20 ◦C. The model’s initial
temperature is 90 ◦C.
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Table 3. Model geometric parameters [2].

Material Inner Diameter/mm Outer Diameter/mm

Casing 247.94 282.58
Cement sheath 282.58 320

Formation 320 3200 × 3200

Table 4. Physical property parameters of the model [2,39].

Material Elastic
Modulus/GPa

Poisson’s
Ratio

Density/
(kg·m−3)

Coefficient of Expansion
/10−5 ◦C−1

Specific Heat/
(J kg−1·◦C−1)

Thermal Conductivity/
(W·m−1·◦C−1)

Casing 210 0.3 7800 1.22 460 45
Cement sheath 10.61 0.22 1800 1.05 865 0.9

Formation 1.80 0.38 2300 1.03 896 2.2

The operating pressure of UGS for one cycle is shown in Figure 6. The operating cycle
of UGS includes four stages: constant low pressure, pressurization gas injection, constant
high pressure, and depressurization gas production. The upper and lower limit operating
pressure are crucial parameters. The duration of one cycle of UGS operation is one year,
and the duration of each operation phase is three months.
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3. Results and Discussion 
3.1. Variation of Formation Temperature and Stress during Operation of UGS 

Creep refers to the increase in the strain of an object over time under a fixed load. The 
formation in the combination model in this paper is a salt rock formation with creep char-
acteristics. When subjected to a constant load, the salt rock formation will undergo creep, 
exerting pressure on the cement sheath. This continuous pressure escalation on the cement 
sheath could potentially result in an eventual integrity failure. Therefore, it is imperative 
to investigate the variation of temperature and stress over time in the formation near the 
borehole during the operation of UGS to determine when the salt rock formation will 
creep during the UGS’s operation. 

The remaining parameters remain unchanged, regardless of formation creep. The 
UGS has an upper operating pressure limit of 40 MPa and a lower operating pressure limit 
of 20 MPa. To simulate a full UGS operation cycle, we study the temperature and stress 
changes in the formation near the borehole and determine when the salt rock formation 
will occur creep. Figure 7 illustrates the alteration in temperature within the inner wall of 
the formation over a duration of UGS operation, while Figure 8 presents the correspond-
ing changes in Von Mises stress. The observations from Figures 7 and 8 reveal that during 
the constant low pressure stage, the temperature and Von Mises stress acting on the for-
mation’s inner wall always remain unchanged. During the pressurized gas injection stage, 
the temperature of the formation’s inner wall rapidly decreases, resulting in a large ther-
mal stress and leading to a rapid escalation of Von Mises stress on the formation’s inner 
wall. Subsequently, with gradual stabilization of the formation temperature and a concur-
rent increase in casing internal pressure, the Von Mises stress on the formation’s inner 
wall gradually decreases. During the constant high pressure stage, the temperature of the 
formation’s inner wall gradually recovers and eventually reaches a stable state, leading to 
a gradual decline and subsequent stabilization of the Von Mises stress of the formation’s 
inner wall. During the depressurization gas production stage, the temperature of the for-
mation’s inner wall remains unchanged, while the casing internal pressure gradually de-
creases, resulting in a gradual increase in Von Mises stress on the formation’s inner wall. 
Based on the preceding analysis, it is evident that during the constant low pressure stage, 
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Figure 6. Change of casing internal pressure during one cycle of UGS operation.

3. Results and Discussion
3.1. Variation of Formation Temperature and Stress during Operation of UGS

Creep refers to the increase in the strain of an object over time under a fixed load.
The formation in the combination model in this paper is a salt rock formation with creep
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characteristics. When subjected to a constant load, the salt rock formation will undergo
creep, exerting pressure on the cement sheath. This continuous pressure escalation on
the cement sheath could potentially result in an eventual integrity failure. Therefore, it is
imperative to investigate the variation of temperature and stress over time in the formation
near the borehole during the operation of UGS to determine when the salt rock formation
will creep during the UGS’s operation.

The remaining parameters remain unchanged, regardless of formation creep. The
UGS has an upper operating pressure limit of 40 MPa and a lower operating pressure limit
of 20 MPa. To simulate a full UGS operation cycle, we study the temperature and stress
changes in the formation near the borehole and determine when the salt rock formation
will occur creep. Figure 7 illustrates the alteration in temperature within the inner wall of
the formation over a duration of UGS operation, while Figure 8 presents the corresponding
changes in Von Mises stress. The observations from Figures 7 and 8 reveal that during the
constant low pressure stage, the temperature and Von Mises stress acting on the formation’s
inner wall always remain unchanged. During the pressurized gas injection stage, the
temperature of the formation’s inner wall rapidly decreases, resulting in a large thermal
stress and leading to a rapid escalation of Von Mises stress on the formation’s inner wall.
Subsequently, with gradual stabilization of the formation temperature and a concurrent
increase in casing internal pressure, the Von Mises stress on the formation’s inner wall
gradually decreases. During the constant high pressure stage, the temperature of the
formation’s inner wall gradually recovers and eventually reaches a stable state, leading to a
gradual decline and subsequent stabilization of the Von Mises stress of the formation’s inner
wall. During the depressurization gas production stage, the temperature of the formation’s
inner wall remains unchanged, while the casing internal pressure gradually decreases,
resulting in a gradual increase in Von Mises stress on the formation’s inner wall. Based on
the preceding analysis, it is evident that during the constant low pressure stage, the Von
Mises stress of the formation always remain unchanged, so the formation will occur creep
at this stage. During the pressurized gas injection stage, the formation’s Von Mises stress is
not constant, so the formation will not occur creep at this stage. During the later period of
the constant high pressure stage, the formation’s Von Mises stress remains unchanged, and
the formation will occur creep during this time period. During the depressurization gas
production stage, the formation’s Von Mises stress is not constant, so the formation will not
occur creep at this stage.
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formation’s inner wall with and without formation creep is illustrated in Figure 9. As de-
picted in Figure 9, in the case of formation creep, the formation’s Von Mises stress experi-
ences a decline during both the constant low-pressure and constant high-pressure stages, 
gradually converging toward zero. The formation creep compresses the cement sheath, 
which plays a resistance role to the formation creep, causing the radial stress of the for-
mation’s inner wall to increase, the Von Mises stress of the formation’s inner wall to de-
crease, and the ability of formation creep to decrease. 

Figure 7. Temperature variation of formation inner wall of UGS during one cycle of operation without
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Figure 8. Von Mises stress variation of formation inner wall of UGS during one cycle of operation
without formation creep.

The other parameters of the model remain constant, taking into account the formation
creep that occurs during the stages of constant low pressure and constant high pressure. The
UGS is operated for one cycle; the comparison of the Von Mises stress of the formation’s
inner wall with and without formation creep is illustrated in Figure 9. As depicted in
Figure 9, in the case of formation creep, the formation’s Von Mises stress experiences a
decline during both the constant low-pressure and constant high-pressure stages, gradually
converging toward zero. The formation creep compresses the cement sheath, which plays a
resistance role to the formation creep, causing the radial stress of the formation’s inner wall
to increase, the Von Mises stress of the formation’s inner wall to decrease, and the ability of
formation creep to decrease.
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3.2. Effects of Downhole Temperature Changes and Formation Creep on Integrity Failure of
Cement Sheath

To investigate the effect of downhole temperature fluctuations, formation creep, and
the combined influence of these two factors on the CSI during the operation of UGS,
four different combination models were established, as shown in Table 5. Model A: the
impact of downhole temperature changes and formation creep is not considered; Model B:
not considering downhole temperature changes but considering the impact of formation
creep; Model C: not considering formation creep but considering the influence of downhole
temperature changes; Model D: considering the influence of downhole temperature changes
and formation creep. The comparison between Model A and Model B can determine the
impact of formation creep on the CSI. The comparison between Model A and Model C can
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determine the influence of downhole temperature changes on the CSI. The comparison
between Model A and Model D can determine the impact of the combined effects of
downhole temperature changes and formation creep on the CSI. In this study, the cement
sheath’s shear failure is assessed by employing equivalent plastic strain (PEEQ) and Von
Mises stress as evaluation criteria. The evaluation of the cement sheath’s tensile failure is
conducted using circumferential stress. The evaluation of the cement sheath’s debonding
failure is conducted using radial stress at the cement sheath interface. The UGS has an
upper operating pressure limit of 40 MPa and a lower operating pressure limit of 20 MPa.
We simulate the operation of the UGS for one cycle and assess the CSI failure of four
different models.

Table 5. Comparison of different models.

Model Formation Creep Downhole Temperature Change

Model A × ×
Model B 3 ×
Model C × 3

Model D 3 3

During one complete UGS operational cycle, the temperature of the cement sheath’s
inner wall (CSIW) of Model C and Model D varies over time, as depicted in Figure 10.
The temperature curves of the CSIW of Model C and Model D overlap approximately,
showing that the formation creep has almost no influence on the cement sheath’s tem-
perature. During the constant low pressure stage, the cement sheath’s temperature re-
mains constant. During the pressurized gas injection stage, the temperature of the cement
sheath rapidly decreases and then stabilizes. During the constant high pressure stage,
the cement sheath’s temperature gradually recovers and subsequently reaches a stable
state. During the depressurization gas production stage, the cement sheath’s temperature
remains unchanged.
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Figure 10. Variation of temperature on the CSIW with time for diverse models.

The Von Mises stress on the CSIW of different models fluctuates over time during the
operation of the UGS for one cycle, as illustrated in Figure 11. As depicted in Figure 11a,
during the operation of UGS, the Von Mises stress on the CSIW for the four models remains
below the cement sheath’s compressive strength, indicating that the cement sheath of the
four models did not occur shear failure. The order of maximum Von Mises stress on the
CSIW for the four models is Model D > Model C > Model B > Model A, which indicates
that Model D carries the highest risk of the cement sheath’s shear failure. Combining
Figures 9 and 11b, it is evident that formation creep leads to an elevation in Von Mises stress
on the CSIW during the constant low pressure stage. Subsequently, as the Von Mises stress
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on the formation’s inner wall decreases and reaches a stable state, the ability of formation
creep weakens, leading to a gradually stabilization of the Von Mises stress on the CSIW
gradually stabilizes. Combining Figures 10 and 11c, it is evident that during the initial stage
of pressurized gas injection, there is a swift decline in the temperature of the CSIW, leading
to a pronounced surge in Von Mises stress on the CSIW. Subsequently, the temperature of
the CSIW stabilizes, while the casing internal pressure gradually increases, consequently
causing a sustained elevation in the Von Mises stress on the CSIW. During the constant
high pressure stage, the temperature of the CSIW gradually increases and then stabilizes.
Consequently, the Von Mises stress on the CSIW gradually decreases and then stabilizes.
Combining Figure 11d with Figures 9 and 10, it can be seen that the formation creep that
occurs during the constant low pressure stage causes the Von Mises stress on the CSIW
to first increase and then stabilize. Moreover, the cement sheath’s temperature during
the pressurized gas injection stage decreases, causing an increase in Von Mises on the
CSIW. Therefore, among the four models, Model D exhibits the highest Von Mises stress on
the CSIW.
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Figure 11. Variation of Von Mises stress on the CSIW with time for different models. (a) comparison 
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and 
Model C; (d) comparison between Model A and Model D. 

The circumferential stress on the CSIW of different models fluctuates over time dur-
ing a complete cycle of UGS operation, as illustrated in Figure 12. As depicted in Figure 
12a, the circumferential stresses in all four models remain negative (indicating compres-
sive stress) and are below the cement sheath’s tensile strength. This observation implies 
that the cement sheath of the four models does not occur circumferential tensile failure. 
Among the four models, the maximum circumferential stress on the CSIW follows this 
order: Model C > Model D > Model A > Model B. This ranking indicates that Model C 
presents the greatest risk of the cement sheath’s tensile failure. As depicted in Figure 12b, 
during the constant low pressure stage, formation creep induces a 0.7 MPa increase in the 
circumferential compressive stress on the CSIW. Conversely, in Figure 12c, during the 
pressurized gas injection stage, the temperature of the cement sheath decreases, leading 
to a reduction of 7.8 MPa in circumferential compressive stress on the CSIW. Conse-
quently, Figure 12d shows a decrease in the maximum circumferential compressive stress 
on the CSIW. 

Figure 11. Variation of Von Mises stress on the CSIW with time for different models. (a) comparison
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and
Model C; (d) comparison between Model A and Model D.

The circumferential stress on the CSIW of different models fluctuates over time during
a complete cycle of UGS operation, as illustrated in Figure 12. As depicted in Figure 12a,
the circumferential stresses in all four models remain negative (indicating compressive
stress) and are below the cement sheath’s tensile strength. This observation implies that the
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cement sheath of the four models does not occur circumferential tensile failure. Among the
four models, the maximum circumferential stress on the CSIW follows this order: Model C
> Model D > Model A > Model B. This ranking indicates that Model C presents the greatest
risk of the cement sheath’s tensile failure. As depicted in Figure 12b, during the constant
low pressure stage, formation creep induces a 0.7 MPa increase in the circumferential
compressive stress on the CSIW. Conversely, in Figure 12c, during the pressurized gas
injection stage, the temperature of the cement sheath decreases, leading to a reduction of
7.8 MPa in circumferential compressive stress on the CSIW. Consequently, Figure 12d shows
a decrease in the maximum circumferential compressive stress on the CSIW.
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Figure 12. Variation of circumferential stress on the CSIW with time for four models: (a) comparison 
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and 
Model C; (d) comparison between Model A and Model D. 

The radial stress on the CSIW of different models varies over time during a complete 
cycle of UGS operation, as illustrated in Figure 13. As depicted in Figure 13a, the radial 
stresses in all four models are all negative (indicating compressive stress), showing the 
absence of debonding failure in the cement sheaths of these models. The maximum radial 
stress on the CSIW follows this order for the four models: Model C > Model A > Model D 
> Model B. Figure 13b shows that the formation creep increases the radial compressive 
stress on the CSIW. In Figure 13c, during the pressurized gas injection stage, the temper-
ature of the cement sheath decreases, resulting in decreased radial compressive stress on 
the CSIW. Conversely, during the constant high pressure stage, the temperature increase 
in the cement sheath elevates the radial compressive stress on the CSIW. Figure 13d shows 
that the combined influence of formation creep and temperature changes in the cement 
sheath leads to an increase in the radial compressive stress on the CSIW. 

Figure 12. Variation of circumferential stress on the CSIW with time for four models: (a) comparison
of all models; (b) comparison between Model A and Model B; (c) comparison between Model A and
Model C; (d) comparison between Model A and Model D.

The radial stress on the CSIW of different models varies over time during a complete
cycle of UGS operation, as illustrated in Figure 13. As depicted in Figure 13a, the radial
stresses in all four models are all negative (indicating compressive stress), showing the
absence of debonding failure in the cement sheaths of these models. The maximum radial
stress on the CSIW follows this order for the four models: Model C > Model A > Model D
> Model B. Figure 13b shows that the formation creep increases the radial compressive stress
on the CSIW. In Figure 13c, during the pressurized gas injection stage, the temperature
of the cement sheath decreases, resulting in decreased radial compressive stress on the
CSIW. Conversely, during the constant high pressure stage, the temperature increase in the
cement sheath elevates the radial compressive stress on the CSIW. Figure 13d shows that
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the combined influence of formation creep and temperature changes in the cement sheath
leads to an increase in the radial compressive stress on the CSIW.
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Figure 13. Variation of radial stress on the CSIW with time for four models: (a) comparison of all 
models; (b) comparison between Model A and Model B; (c) comparison between Model A and 
Model C; (d) comparison between Model A and Model D. 

To summarize, the Von Mises stress on the CSIW reaches its peak under the com-
bined effect of formation creep and downhole temperature changes, consequently posing 
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stress on the CSIW is the lowest under the influence of underground temperature changes, 
thus elevating the risk of tensile failure for the cement sheath. 
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plete cycle of UGS operation. As depicted in Figure 14, the higher the upper limit of oper-
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bly, the Von Mises stress on the CSIW reached the cement sheath’s compressive strength 
at upper operating pressure limits of 70 MPa and 80 MPa, leading to shear failure for the 
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radial stress over time is illustrated in Figure 16. The circumferential stress on the CSIW 
with different upper operating pressure limits are all circumferential compressive 

Figure 13. Variation of radial stress on the CSIW with time for four models: (a) comparison of all
models; (b) comparison between Model A and Model B; (c) comparison between Model A and Model
C; (d) comparison between Model A and Model D.

To summarize, the Von Mises stress on the CSIW reaches its peak under the combined
effect of formation creep and downhole temperature changes, consequently posing the
highest risk of shear failure for the cement sheath. The circumferential compressive stress
on the CSIW is the lowest under the influence of underground temperature changes, thus
elevating the risk of tensile failure for the cement sheath.

3.3. The Influence of the Upper Limit of Operating Pressure of UGS on the Integrity of
Cement Sheath

Considering the comprehensive effect of formation creep and downhole temperature
changes, while keeping other parameters constant, the impact of the upper limit of oper-
ating pressure on the CSI is investigated. Figure 14 illustrates the Von Mises stress and
PEEQ on the CSIW with the different upper limits of operating pressure during a complete
cycle of UGS operation. As depicted in Figure 14, the higher the upper limit of operating
pressure, the greater the maximum Von Mises stress and PEEQ on the CSIW. Notably, the
Von Mises stress on the CSIW reached the cement sheath’s compressive strength at upper
operating pressure limits of 70 MPa and 80 MPa, leading to shear failure for the cement
sheath. The variation of circumferential stress on the CSIW with the different upper limits
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of operating pressure over time is illustrated in Figure 15, and the variation of radial stress
over time is illustrated in Figure 16. The circumferential stress on the CSIW with different
upper operating pressure limits are all circumferential compressive stresses, and the tensile
failure for the cement sheath is not observed. Likewise, the radial stresses on the CSIW
with different upper operating pressure limits are all radial compressive stresses, and the
debonding failure for the cement sheath is not observed. In summary, under the high
upper limit of operating pressure conditions, the CSI will fail in the form of shear failure.
Therefore, to guarantee the safe and efficient operation of UGS, the upper limit of operating
pressure should be controlled to not exceed 70 MPa.
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3.4. Measure to Prevent the Integrity Failure of Cement Sheath

From the perspective of regulating the cement sheath’s elastic modulus to prevent
the cement sheath’s shear failure during the operation of UGS under the combined effects
of formation creep and downhole temperature changes, considering the formation creep
and downhole temperature changes, the upper limit of the operating pressure is 80 MPa,
keeping all other parameters unchanged. The UGS is operated for one cycle, and the cement
sheath’s elastic modulus varies at 3 GPa, 6 GPa, 9 GPa, 12 GPa, and 15 GPa, respectively.
We investigate how the cement sheath’s elastic modulus influences its susceptibility to
shear failure. After one cycle of operation of the UGS, Figure 17 shows the PEEQ cloud
diagrams of the cement sheath with different elastic moduli. As depicted in Figure 17, a
higher elastic modulus corresponds to a larger PEEQ in the cement sheath and a greater
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extent of failure area. When the elastic modulus is 3 GPa, the PEEQ of the cement sheath
registers at 0, indicating the absence of shear failure.
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The Von Mises stress and PEEQ on the CSIW with different elastic moduli vary over
time during the operation of the UGS for one cycle, as illustrated in Figure 18. In Figure 18,
increasing the cement sheath’s elastic modulus results in higher Von Mises stress and PEEQ
on its inner wall. A higher cement sheath’s elastic modulus leads to an earlier attainment of
Von Mises stress, approaching the cement sheath elastic modulus inner wall, thus resulting
in quicker PEEQ generation and earlier onset of cement sheath shear failure. In summary,
reducing the cement sheath’s elastic modulus can maintain the CSI during the operation of
the UGS.
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4. Conclusions

This study performs creep experiments on salt rock to acquire the steady-state creep
rate of salt rock across different temperatures and deviatoric stress levels. Experimental data
are fitted to obtain the hyperbolic sine law mode for salt rock creep, reflecting the influence
of temperature and deviatoric stress on the steady-state creep rate. Using the salt rock
creep model as a foundation, an FEM model of the casing–cement sheath–creep formation
assembly was developed in ABAQUS to study the effects of formation creep, temperature
changes, and the upper limit of operating pressure on the CSI. The results demonstrate
that both formation creep and a decrease in the cement sheath’s temperature increase the
cement sheath’s Von Mises stress, consequently elevating the risk of shear failure. Reduced
cement sheath temperature, conversely, diminishes circumferential compressive stress in
the cement sheath, thereby elevating the risk of tensile failure. Under a high upper limit
of operating pressure, shear failure manifests within the cement sheath. A higher cement
sheath’s elastic modulus leads to increased maximum Von Mises stress, larger shear failure
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area, and higher PEEQ values. Lowering the cement sheath’s elastic modulus and limiting
operating pressure can maintain the CSI under the combined effect of formation creep and
downhole temperature changes during the operation of the UGS.
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