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Abstract: This paper introduces a novel differentiator-based maximum power point tracking (MPPT)
controller for a wind energy conversion system (WECS) equipped with a doubly fed induction
generator (DFIG). Building upon our previous algorithms, the proposed controller reduces the need
for detailed system information and displays enhanced robustness against parameter variations
and disturbances. The innovation lies in the elimination of the need for explicit functional forms or
specific parameter values in the system’s dynamics, relying solely on relative degrees and control
directions. Utilizing a higher-order switching differentiator (HOSD), this paper outlines a method
for overestimating the time derivatives of system outputs, thereby simplifying both the controller
design and stability analysis. Compared to existing solutions, the proposed method requires minimal
information, offers simpler control law structures, and follows a systematic design approach with
fewer design constants. Simulation results demonstrate the efficacy of the proposed controller in both
tracking maximum power and regulating reactive power to zero, suggesting a more efficient and
simplified approach to MPPT control in WECS.

Keywords: wind energy conversion system; differentiator-based controller; doubly fed induction
generator

1. Introduction

Due to concerns surrounding pollution, high costs, potential depletion, and other
adverse impacts associated with traditional energy sources, renewable energy generation
has garnered substantial interest. Among the various renewable energy technologies, the
wind energy conversion system (WECS) stands out as one of the most developed and widely
used, primarily because it is clean, inexhaustible, and broadly accessible. Furthermore, the
doubly fed induction generator (DFIG) is deemed as a stable and efficient fixed-speed wind
turbine system [1,2]. With its lower converter cost and reduced power losses, the DFIG has
attracted considerable attention from numerous researchers.

While the conventional Proportional–Integral (PI) controller exhibits satisfactory per-
formance across numerous WECS applications, efforts have been made to enhance WECS
performance through the introduction of optimized PI controllers [3,4]. However, these
controllers exhibit limitations, notably their inability to adapt to variations in machine
parameters and uncertainties. Therefore, any deviation in operational conditions from
those under which the PI controller parameters were optimized cannot assure optimal
operation. This necessitates real-time PI controller parameter tuning in response to wind
speed variations and potential parametric alterations, often due to technical complications
such as mechanical wear or machine overheating. In a practical sense, implementing these
techniques remains challenging and costly. The difficulties largely stem from determining
the optimal gains of the controller needed to achieve control objectives across all operating
regions and to adapt well to changes in system parameters. These shortcomings inherent
in PI or optimized PI controllers have prompted the development and implementation
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of robust and adaptive control techniques for WECS. Proposals have been put forth for
more robust control strategies to supplant PI controllers in order to enhance precision and
accuracy performance [5].

Inherently, WECS exhibit strongly nonlinear dynamic equations. Furthermore, their
system parameters are prone to variations due to factors such as ambient temperature
changes and mechanical wear. Conventionally, the design of stabilizing controllers for non-
linear systems characterized by unstructured uncertainties including parameter variations
and external disturbances have largely leveraged sliding mode control (SMC) methods [6,7]
and adaptive control algorithms with universal approximators such as neural networks
(NN) or fuzzy logic systems (FLS) [8–16]. Although these NNs and FLS approximators
have found wide application in addressing system uncertainties, they require a complex
structure to ensure approximation capabilities. Furthermore, they necessitate the online
updating of a multitude of adaptive parameters, thereby leading to a heightened compu-
tational load and dynamic order of the controller. Recently, control strategies aiming to
simplify complex control formulas without compromising their performance have been
proposed. This includes prescribed performance control (PPC) techniques that guarantee a
predefined tracking performance irrespective of system uncertainties, and without the need
for approximation [17–20]. The PPC framework significantly simplifies the controller struc-
ture by eliminating the need for universal approximators. Yet, the steps of the backstepping
design continue to be an integral part of PPC methodologies, making them vulnerable
to faults or large disturbances after the transient period. More recently, the proposal of
differentiator-based controllers emerged, which address system uncertainties by overesti-
mating the time derivatives of the output tracking error, eliminating the need for universal
approximations [21,22]. Despite the surge in research in this field, a large proportion of
the studies target single-input single-output (SISO) nonlinear systems, leaving multi-input
multi-output (MIMO) systems relatively under-explored.

Recently, SMC methods have been applied to maximum power point tracking (MPPT)
control of WECS [23,24]. However, these control strategies are constructed under the
assumption that both the formulas and parameters of system dynamics are fully known, in
order to cancel out the system’s nonlinearities, making this approach somewhat restrictive.
To alleviate these restrictions, adaptive fuzzy or neuro-controllers are introduced in [25–30].
While these control techniques, which are based on universal approximators, offer the
benefit of not necessitating prior knowledge about the nonlinear functions in the system’s
dynamic equation, they come with the complexity of intricate control laws and formulas
for updating adjustable parameters. This complexity poses significant challenges for the
actual implementation of the control algorithm. In [31,32], the PPC schemes are utilized
for MPPT control of WECS. Nonetheless, the PPC algorithm is susceptible to faults or
abrupt disturbances that manifest in a steady state. In this paper, building upon the control
algorithm presented in [21,22], we propose a novel differentiator-based MPPT controller for
WECS equipped with DFIG. The advantage of the proposed controller is twofold: it obviates
the need for information about the nonlinear functions present in the system’s dynamic
equation, and it can adeptly handle both parameter variations and disturbances. When
designing the controller, we assume that the time derivatives of outputs are aggregated
unknown functions of the inputs and time. Consequently, apart from information regarding
relative degrees and control direction, specific functional expressions and parameter values
of the system dynamics are not considered in the controller’s formulation. Employing
HOSD [33], we over-estimate the time derivatives of the system outputs, facilitating both
a more streamlined controller structure and a more straightforward stability analysis.
The advantages of the controller presented in this paper, relative to existing research, are
as follows:

1. The proposed controller demands significantly less information about the system’s
dynamic equation. The control formulation relies solely on the relative degrees
between inputs and outputs, the directions of control inputs, and the measured
output values.
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2. Owing to the absence of universal approximators, the structures of the control laws
are comparatively straightforward, while still ensuring the asymptotic stability of
the outputs.

3. The proposed output feedback control algorithm offers a cohesive and systematic
approach for crafting control laws.

4. The quantity of design constants is minimal in comparison to that of other methods.

Simulation results are provided to showcase the efficacy of the proposed controller
and the consistency inherent in its design.

The organization of this paper is as follows. Section 2 provides the dynamic equations
for DFIG-WECS and derives the state equations. Section 3 introduces a differentiator-
based output feedback MPPT controller. Section 4 presents simulation results, including
a comparison of the performance between the proposed controller and a conventional
PI controller. Finally, Section 5 offers conclusions. The symbols used in describing the
DFIG-WECS and their meanings in this paper are summarized in Table 1.

Table 1. Symbols of DFIG-WECS.

Notation Description

vw(t) wind speed
Jt inertia of the turbine
Jg inertia of the generator
ng gear ratio
J total inertia (=Jt + n2

g Jg)
D damping constant of the wind turbine
ρ air density
R radius of the blade
A the area swept by the blades
ω(t) rotational velocity of the wind turbine’s rotor
λ(t) tip-speed ratio (=ωR/vw)
λ∗ optimal value of tip-speed ratio λ
β blade pitch angle
Cp(λ, β) power coefficient function defined as (3)
c1, · · · , c6 system constants in the Cp(λ, β) function
ωs stator electrical angular speed
Rs stator resistance
Rr rotor resistance
Ls stator inductance
Lr rotor inductance
Lm mutual inductance
pr number of pole pairs
ird(t), irq(t) d- and q-axis currents of the generator’s rotor
vrd(t), vrq(t) d- and q-axis voltages of the generator’s rotor
φs(t) d-axis flux of the generator’s stator
Ps(t), Qs(t) active and reactive powers

2. Dynamic Model of the WECS with DFIG
2.1. Model of WECS

The mechanical power generated by the wind turbine is described by equation

Pt =
1
2

ρACp(λ, β)v3
w, (1)

where ρ is the air density, A is the area swept by the blades, Cp(λ, β) is the power coefficient,
λ is the tip speed ratio, β is the blade pitch angle, and vw is the wind speed. The tip speed
ratio is defined as

λ =
vt

vw
=

ωR
vw

, (2)
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where vt is the tip speed of the blade, ω is the rotational velocity of the wind turbine’s rotor,
and R is the radius of the blade. The conceptual diagram illustrating these parameters is
depicted in Figure 1.

Figure 1. Concept diagram of the paramters.

The power coefficient serves as a metric for quantifying the efficiency of the wind
turbine in converting the kinetic energy of the wind into mechanical energy. It is defined as
the ratio of the power harnessed by the wind turbine to the total power available in the
wind. In this study, we employ the following equation for the power coefficient, as adapted
from the literature [34]:

Cp(λ, β) = c1

(
c2

λβ
− c3β− c4

)
e
− c5

λβ + c6λ (3)

and
1

λβ
=

1
λ + 0.008β

− 0.035
β3 + 1

. (4)

Here, coefficients ci (i = 1, . . . , 6) are obtained from [34] and are detailed in the simulation
section. The aerodynamic torque of turbine Ta is given by equation

Ta =
Pt

ω
=

1
2ω

ρπR2Cp(λ)v3
w. (5)

The first-order dynamic model of the wind turbine can be expressed as

Jω̇ = Ta − Dω− ngTem, (6)

where J represents the total inertia, which is the sum of the inertia from the turbine and
the generator:

J = Jt + n2
g Jg. (7)

Jt is the inertia of the turbine, Jg is the inertia of the generator, ng is the transmission ratio of
the gearbox, D is the damping constant of the wind turbine, and Tem is the electromagnetic
torque, which is defined subsequently. Overall schematic of the proposed control system
is illustrated in Figure 2 and typical power coefficient curves are depicted in Figure 3 for
various blade pitch angles.
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Figure 2. Overall schematic of the DFIG-based generator side control system.

Figure 3. Typical Cp curves with respect to pitch angle.

At low wind speeds, λ should be maintained at its optimal value λ∗ to maximize
conversion efficiency. Therefore, the desired rotor speed ωd can be calculated using the
current wind speed as follows:

ωd =
λ∗

R
vw. (8)

The primary control objective for the WECS under consideration is to ensure that
the angular speed of the blade ω tracks the desired value given by Equation (8). This is
commonly referred to as MPPT in the subsequent discussion.

2.2. Mathematical Model of DFIG

In the equations that follow, vsd, vsq, vrd, vrq, isd, isq, ird, irq, φsd, φsq, φrd, and φrq
represent the d and q components of the stator and rotor voltages, currents, and fluxes,
respectively. The commonly used electrical equations for the DFIG in the Park reference
frame are given as follows:

vsd = Rsisd +
dφsd

dt −ωsφsq, (9)

vsq = Rsisq +
dφsq

dt + ωsφsd, (10)

vrd = Rrird +
dφrd

dt −ωrφrq, (11)

vrq = Rrirq +
dφrq
dt + ωrφrd. (12)

Here, Rs and Rr denote the resistances of the stator and rotor, respectively. Symbols ωs
and ωr represent the stator and rotor electrical angular speeds in the synchronous reference
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frame. Since the rotor is directly connected to the blade through a gearbox, equation
ωr = ngω holds true. The dynamics of the stator and rotor fluxes are described by the
following equations:

φsd = Lsisd + Lmird, (13)

φsq = Lsisq + Lmirq, (14)

φrd = Lrird + Lmisd, (15)

φrq = Lrirq + Lmisq, (16)

where Ls and Lr denote the inductances of the stator and rotor, respectively, and Lm
represents the mutual inductance. The electromagnetic torque is described by

Tem = pr(φsdisq − φsqisd), (17)

where pr is the number of pole pairs. Furthermore, the stator’s active and reactive powers
are given by

Ps = vsdisd + vsqisq, (18)

Qs = vsdisq − vsqisd. (19)

The state equations are derived based on the assumption that both stator and rotor
variables are referred to the stator reference Park frame [23,34]. Given this orientation, the
following relationships hold:

φsd = φs, (20)

φsq = 0, (21)

and

vsd = 0, (22)

vsq = vs, (23)

where φs represents the total flux and vs signifies the total voltage of the stator. From these,
isd and isq can be derived using Equations (13) and (14):

isd =
1
Ls

(φs − Lmird), (24)

isq = − Lm

Ls
irq. (25)

Utilizing the following equations, which arise from Equations (16) and (25),

dφrq

dt
= Lr

dirq

dt
+ Lm

disq

dt
, (26)

disq

dt
= − Lm

Ls

dirq

dt
, (27)

the dynamic equation for irq can be derived from Equation (12) as follows:
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vrq = Rrirq +
dφrq

dt
+ ωrφrd

= Rrirq +

(
Lr

dirq

dt
+ Lm

disq

dt

)
+ ωr(Lrird + Lmisd)

= Rrirq +

(
Lr −

L2
m

Ls

)
dirq

dt
+ ωr

{(
Lr −

L2
m

Ls

)
ird +

Lm

Ls
φs

}
= Rrirq + σLr

dirq

dt
+ ωr

(
σLrird +

Lm

Ls
φs

)
, (28)

where σ = 1− L2
m

Lr Ls
, leading to

dirq

dt
= − Rr

σLr
irq −ωr

(
ird +

Lm

σLrLs
φs

)
+

1
σLr

vrq. (29)

Dynamic equation for φs is induced from (9) using (24) as

dφs

dt
= −Rsisd

= −Rs

Ls
φs +

RsLm

Ls
ird. (30)

Utilizing the following equations, derived from (15) and (24),

dφrd
dt

= Lr
dird
dt

+ Lm
disd
dt

, (31)

disd
dt

=
1
Ls

dφs

dt
− Lm

Ls

dird
dt

, (32)

the dynamic equation for ird can be derived from (11) as follows:

vrd = Rrird +
dφrd
dt
−ωrφrq

= Rrird +

(
Lr

dird
dt

+ Lm
disd
dt

)
−ωr

(
Lrirq + Lmisq

)
= Rrird +

{
Lr

dird
dt

+ Lm

(
1
Ls

dφs

dt
− Lm

Ls

dird
dt

)}
−ωr

(
Lrirq −

L2
m

Ls
irq

)
= Rrird +

(
Lr −

L2
m

Ls

)
dird
dt

+
Lm

Ls

dφs

dt
+ ωr

(
Lr −

L2
m

Ls

)
irq

= Rrird + σLr
dird
dt

+
Lm

Ls

(
−Rs

Ls
φs +

RsLm

Ls
ird

)
+ ωrσLrirq

=

(
Rr +

RsL2
m

L2
s

)
ird + σLr

dird
dt
− LmRs

L2
s

φs + ωrσLrirq. (33)

This leads to

dird
dt

= − 1
σLr

(
Rr +

RsL2
m

L2
s

)
ird + ωrirq +

LmRs

σLrL2
s

φs +
1

σLr
vrd. (34)

The resulting four dynamic equations that constitute the state-space representation of
the WECS with DFIG are collected as follows:
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dω

dt
=

1
J
(Ta − Dω− ngTem), (35)

dirq

dt
= − Rr

σLr
irq −ωr

(
ird +

Lm

σLrLs
φs

)
+

1
σLr

vrq, (36)

dird
dt

= − 1
σLr

(
Rr +

RsL2
m

L2
s

)
ird + ωrirq +

LmRs

σLrL2
s

φs +
1

σLr
vrd, (37)

dφs

dt
= −Rs

Ls
φs +

RsLm

Ls
ird. (38)

Here, Tem = −prφs
Lm
Ls

irq, as indicated by (17). The active and reactive powers, repre-
sented by (18) and (19), are reformulated as

Ps = −vs
Lm

Ls
irq, (39)

Qs =
vs

Ls
(φs − Lmird). (40)

In this case, vs = ωsφs − Rs Lm
Ls

irq. Note that if Rs is assumed to be approximately zero,

then dφs
dt ≈ 0, and the dynamics become identical to those presented in [23]. In this paper,

however, Rs is non-zero, and φs is a time-varying signal governed by (38).

3. Design of Output Feedback Controllers

The state-space equations include two control inputs, vrq and vrd. The primary control
objective is to drive ω to ωd for optimal power extraction from the wind turbine. The
secondary objective is to regulate reactive power Qs to zero. From Equations (35)–(38),
it is evident that the second-order derivative of ω is a function of vrq, and the first-order
time derivative of Qs involves vrd. Based on these observations, the following dynamic
equations are formulated:

ω̈ = f1(vrq, t), (41)

Q̇s = f2(vrd, t), (42)

where functions f1(·) and f2(·) are considered to be unknown. These functions are explicit
functions of time t, and may involve state variables (ω(t), ird(t), irq(t), φs(t)) as well as
time-varying parameters, external disturbances, and measurement errors that are difficult
to model precisely. It is also inferred that the inputs vrq and vrd can be employed to control
ω(t) and Qs(t) independently. That is, these inputs and outputs are decoupled, enabling
the independent design of two controllers. Subsequent subsections present the design of
control laws to achieve these objectives.

In what follows, the two-norm of vector x is denoted by |x|, and the absolute value of the
scalar v is also indicated by |v|. Notation a(t) → 0 is employed to signify limt→∞ a(t) = 0,
indicating that a(t) converges to zero as t approaches infinity. Similarly, a(t)→ b(t) denotes
that a(t) asymptotically approaches b(t) as t approaches infinity, or limt→∞ a(t) = b(t).

3.1. MPPT Control

In this paper, the differentiator-based output feedback control scheme, as discussed
in the introduction and detailed in [21,22,35], is employed for MPPT control of the WECS
as represented by Equations (35)–(38). It is evident that the relative degree between the
outputs ω and vrd is two, as vrd first appears in the second-order time derivative of ω. To
construct the feeding signal a1(t) for the higher-order switching differentiator (HOSD), a
second-order linear filter is required, as given by

ẇ11 = −w11 + w12,
ẇ12 = −w12 + vrq. (43)
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Here, w11 and w12 are the state variables of the Linear Time-Invariant (LTI) filter (43).
Wedefine the tracking error e1 as

e1 = (ω−ωd)g1, (44)

where g1 > 0 is a gain constant to be determined. Subsequently, signal a1(t) is given by

a1(t) = e1 − w11. (45)

To formulate the control law, the following HOSD is introduced, as per [21,35]:

Lemma 1. Let a1(t) be a signal whose time derivatives are piecewise-bounded, such that |ȧ1| ≤ L∗11
and |ä1| ≤ L∗12, for some positive constants L∗11, L∗12. Consider dynamics

α̇11 = 10L1ε11 + σ11
σ̇11 = L1 sgn(ε11)

}
, (46)

α̇12 = 7L1ε12 + σ12
σ̇12 = L1 sgn(ε12)

}
, (47)

where ε11 = a1(t) − α11 and ε12 = σ11 − α12. If L1 is chosen sufficiently large such that
L1 > max{L∗11, L∗12}, then σ11 → ȧ1 and σ12 → ä1.

The comprehensive proof is presented in [33]. From Lemma 1, the following equa-
tions hold:

σ11 = ȧ1 + δ11(t)
= ė1 − ẇ11 + δ11(t)
= ė1 + w11 − w12 + δ11(t), (48)

σ12 = ä1 + δ12(t)
= ë + ẇ11 − ẇ12 + δ12(t)
= ë− w11 + 2w12 − vrq + δ12(t), (49)

where δ11(t) and δ12(t) are asymptotically vanishing estimation errors; that is, δ11(t)→ 0
and δ12(t)→ 0. If the error vector is defined as e1 = [e1, ė1]

T , its estimate can be determined
from Equation (48) as follows:

ê1 =

[
e

σ11 − w11 + w12

]
. (50)

Subsequently, the output feedback control input vrq is proposed as

vrq = −σ12 − (w11 − 2w12)− kT
1 ê1, (51)

where k1 = [k11, k12]
T is determined so that the polynomial s2 + k12s + k11 is Hurwitz.

Theorem 1. The control input vrq given by (51), in conjunction with the HOSD as described in
Lemma 1, and the LTI filter (43) ensures that ω asymptotically tracks ωd.

Proof. From Equations (51) and (49), the following equality can be straightforwardly
derived:

vrq = −σ12 − (w11 − 2w12)− kT
1 ê1

= −(ë1 − w11 + 2w12 − vrq + δ12(t))
−(w11 − 2w12)− kT

1 e1 − k12δ11(t)
= −ë1 + vrq − kT

1 e1 − δ12(t)− k12δ11(t). (52)
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Defining d1(t) = −δ12(t)− k12δ11(t), we can induce

ë1 = −kT
1 e + d1(t). (53)

This can be rewritten in vector form as

ė1 = Ae1 + bd1(t), (54)

where

A =

[
0 1
−k11 −k12

]
, b =

[
0
1

]
. (55)

Positive definite matrices P and Q exist such that ATP + PA + Q = 0. The time
derivative of the Lyapunov function V1 = eT

1 Pe1 is given by

V̇1 = −eT
1 Qe1 + 2eT

1 Pbd1(t)
≤ −λmin(Q)|e1|2 + 2|e1|λmax(P)|d1(t)|, (56)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of a matrix,
respectively. From this inequality, it follows that if |e1| > µ|d1(t)|, where µ = 2λmax(P)

λmin(Q)
, then

V̇1 < 0. Given that d1(t) converges to zero asymptotically, it can be concluded that |e1| is
also asymptotically stable.

3.2. Regulating Qs to Zero

The second control objective outlined in [23] involves regulating the reactive power
Qs to zero using vrd. The relative degree between the output Qs and the input vrd is one,
simplifying the control law compared to the MPPT control law discussed in the preceding
subsection. To generate the feeding signal a2(t) for the second HOSD, we adopt the
following first-order linear filter:

ẇ21 = −w21 + vrd, (57)

where w21 is a state variable of this filter. We let the tracking error be defined as

e2 = (Qs − 0)g2. (58)

Here, g2 > 0 is a tunable amplification parameter. Signal a2(t) is then given by

a2(t) = e2 − w21. (59)

We introduce the following HOSD that is capable of observing Q̇s.

Lemma 2 ([36]). Let a2(t) be a signal whose time derivatives are bounded in the piecewise sense
such that |ȧ2| ≤ L∗2 for some positive constants L∗2 . Consider the following dynamics:

α̇21 = 10L2ε21 + σ21
σ̇21 = L2 sgn(ε21),

}
(60)

where ε21 = a2(t)− α21. If L2 is chosen sufficiently large such that L1 > L∗2 , then σ21 → ȧ2.

The detailed proof is presented in [33]. From Lemma 2, the following equation holds:

σ21 = ȧ2 + δ21(t)
= ė2 − ẇ21 + δ21(t)
= ė2 + w21 − vrd + δ21(t), (61)
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where δ21(t) is asymptotically vanishing estimaion error, i.e., δ21(t)→ 0. Then, the control
input vrd is proposed as

vrd = −σ21 + w21 − k2e2, (62)

where k2 > 0 is a design constant.

Theorem 2. The control input vrd as described in (62), in conjunction with HOSD (2) and the LTI
filter (57), ensures that the reactive power Qs(t) asymptotically converges to zero.

Proof. The following equality can be straightforwardly derived from Equations (62) and (61):

vrd = −σ21 + w21 − k2e2
= −(ė2 + w21 − vrd + δ21(t)) + w21 − k2e2
= −ė2 + vrd − k2e2 − δ21(t). (63)

From the last equality, the following relationship is deduced:

ė2 = −k2e2 − δ21(t). (64)

We let V2 =
e2

2
2k2

serve as the second Lyapunov function. Its time derivative is

V̇2 = e2
ė2

k2

= −e2
2 − e2

δ21(t)
k2

≤ −|e2|2 + |e2|
|δ21(t)|

k2
. (65)

This implies that if |e2| > |δ21(t)|
k2

, then V̇2 < 0. Given that δ21(t) converges to zero
asymptotically, |e2| also asymptotically converges to zero.

Remark 1. It is worth noting that the proposed control scheme does not require information about
system parameters or nonlinear functions in the WECS dynamics. Only measured values (vw, ω,
and Qs) and the information about λ∗ to calculate ωd are needed. Other details such as the exact
structure of the Cp(·) function, precise system parameters, and the configuration of the dynamic
equations are not necessary for the formulation of control laws. Moreover, the control strategy
is robust to unknown or varying system parameters and unmodeled dynamic structures within
the WECS.

Remark 2. The proposed controller, based on differentiator-based control techniques, shares similar
advantages with data-driven control [37] in that it does not require a precise dynamic model of
the system under control. However, while data-driven control involves an identification process
based on observed system behavior data, differentiator-based control eliminates the need for such an
identification phase. It enables the immediate design of output feedback controllers using minimal
information, such as relative degree and control direction.

4. Simulations

In this section, the effectiveness of the proposed control strategy is validated through
simulations using a 1.5 MW DFIG-WECS model as described in [23]. All simulations
were conducted using Python libraries, specifically NumPy, SciPy, and Matplotlib [38].
The parameters relevant to this WECS model are provided in Table 2, while the design
parameters of the proposed controllers are detailed in Table 3. In addition to the proposed
controller, simulation experiments were also conducted using a PI controller to compare
performance. The control equations for the PI controller are as follows:
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vrq = 1000e1 + 200
∫ t

0
e1 dt, (66)

vrd = 1000e2 + 200
∫ t

0
e2 dt. (67)

Here, the error signals e1 and e2 are defined as in Equations (44) and (58), respectively,
with the values of g1 and g2 as given in Table 3. The gains for the PI controller were selected
empirically through multiple simulation runs, prioritizing output tracking performance
over transient response.

Table 2. Parameters of WECS.

Notation Value Description

c1 0.5176 constant in (3)
c2 116 constant in (3)
c3 0.4 constant in (3)
c4 5 constant in (3)
c5 21 constant in (3)
c6 0.0068 constant in (3)
ωs 100π stator electrical angular speed
Rs 0.005 stator resistance
Rr 0.228 rotor resistance
Ls 0.407 stator inductance
Lr 0.299 rotor inductance
Lm 0.0016 mutual inductance
pr 4 number of pole pairs
J 4.4532× 105 total inertia
D 400 damping constant
ρ 1.08 air density
R 35 radius of the blade
ng 43.165 gear ratio
λ∗ 8.1072 optimal value of λ

Table 3. Design parameters of the controllers.

Notation Value Description

L1 1000 constant in (46) and (47)
g1 20000 constant in (44)
k1 [106, 2000]T vector in (51)
L2 1000 constant in (60)
g2 300 constant in (58)
k2 1000 constant in (62)

As demonstrated in Figure 4, the wind speed model incorporates both variability and
rapid fluctuations, providing a realistic test scenario for evaluating the proposed control
scheme. As the machinery operates over an extended period, factors such as wear and tear
can lead to changes in inertia coefficients or damping constants. Additionally, variations in
ambient temperature can alter the resistance and inductance of the generator. To showcase
the controller’s performance, a simulation was executed where the constants J, D, Rs, Rr,
Ls, Lr, and Lm were changed by an extreme 40% at the 100 s mark, and the results were
presented to illustrate its robustness under such conditions.

Figure 5 depicts the ω(t)(= y1) along with its desired value ωd(t), illustrating rapid
and accurate tracking performance of the proposed controller. Moreover, the transient
response of the proposed controller is significantly better compared to that of the PI
controller. The output tracking performance of the proposed controller closely aligns with
ωd(t), whereas the PI controller struggles to accurately track ωd(t) at inflection points.
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Figure 4. Waveform of the quickly varying wind speed vw(t) used in the simulation.

Figure 5. Trajectories of ω(t) and ωd(t).
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Figure 6 presents the regulating performance for reactive power Qs(= y2), confirming
the controller’s ability to regulate Qs to zero effectively. In these results, the proposed con-
troller stands out for its oscillation-free transient response and more pronounced regulation
performance. Additionally, as can be seen in Figure 5, both controllers exhibit insensitivity
to parameter variations in ω at t = 100 s, while Qs experiences a spike before immediate
return to proper regulation. Figure 7 shows the actual power coefficient Cp(λ, 0), which
almost perfectly tracks the optimal command Cp(λ∗, 0) ≈ 0.48 by the proposed controller.
In contrast, the PI controller exhibits significant oscillations in its transient response and
shows inferior steady-state performance. In Figure 8, the trajectories of the active power Ps
are depicted, and Figure 9 illustrates the control voltage inputs vrd and vrq. In Figure 9a,
it can be observed that the control inputs vrd for both the PI and the proposed controllers
are sensitive to the parameter value change occurring at 100 s, leading to spikes in Qs at
that moment.

Figure 6. Trajectories of Qs(t).
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Figure 7. Trajectory of Cp(λ, 0).

Figure 8. Trajectories of Ps(t).
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Figure 9. Trajectories of (a) vrd and (b) vrq(t).

5. Conclusions

This paper presents a novel differentiator-based MPPT controller for WECS equipped
with DFIG. The work builds upon existing control algorithms [21,22] and offers several
advantages, such as reduced reliance on detailed system information and enhanced robust-
ness to parameter variations and disturbances. Specifically, our approach eliminates the
necessity for explicit functional expressions or parameter values in the dynamic equations
of the system, focusing instead solely on relative degrees and control directions. Employing
HOSD to overestimate the time derivatives of system outputs, our methodology facilitates
both a simplified controller architecture and a more straightforward stability analysis. In
comparison with existing research, the proposed controller is distinguished by its minimal
information requirements, simplified control law structures, systematic design approach,
and a reduced number of design constants. Simulation results substantiate the effectiveness
of the proposed control algorithm in both tracking maximum power and asymptotically
regulating the reactive power to zero. Overall, this contribution offers a more efficient and
less complicated approach to MPPT control in WECS.

The differentiator-based controller proposed in this paper is considered to be directly
applicable to the MPPT control of permanent magnet synchronous generator WECS, and
this is reserved as a topic for future research. One limitation of the proposed controller
is that it requires measurements of both the system output and wind speed. Therefore,
subsequent research should focus on developing controller strategies that eliminate the
need for wind speed sensors.
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