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Abstract: Considering the integration of distributed energy resources (DER) such as distributed
generation, demand response, and electric vehicles, day-ahead scheduling plays a significant role
in the operation of active distribution systems. Therefore, this article proposes a comprehensive
methodology for the short-term operational planning of a distribution company (DisCo), aiming to
minimize the total daily operational cost. The proposed methodology integrates on-load tap changers,
capacitor banks, and flexible loads participating in demand response (DR) to reduce losses and
manage congestion and voltage violations, while considering the costs associated with the operation
and use of controllable resources. Furthermore, to forecast PV output and load demand behind the
meter at the MV/LV distribution transformer level, a short-term net load forecasting model using
deep learning techniques has been incorporated. The proposed scheme is solved through an efficient
two-stage strategy based on genetic algorithms and dynamic programming. Numerical results based
on the modified IEEE 13-node distribution system and a typical 37-node Latin American system
validate the effectiveness of the proposed methodology. The obtained results verify that, through the
proposed methodology, the DisCo can effectively schedule its installations and DR to minimize the
total operational cost while reducing losses and robustly managing voltage and congestion issues.

Keywords: active distribution systems; demand response; Volt/Var control; genetic algorithm;
dynamic programming; forecasting; behind-the-meter; deep learning

1. Introduction
1.1. Background and Motivation

In recent years, the electric system has been undergoing significant transformations
due to political–environmental concerns, such as the decarbonization of the electrical sector,
combined with the liberalization of the electricity market, technological advancements,
and the permanent increase in electricity demand. These changes present new challenges
for energy supply, striving for an optimal trade-off among technical, economic, and envi-
ronmental aspects [1]. Such shifts have led to the rapid exploitation of distributed energy
resources (DER), which primarily impact the distribution system and end-users. This inno-
vation implies a completely different environment from conventional distribution systems,
encouraging the transition towards active distribution systems (ADS). ADS development is
founded on comprehensive operational planning and active system management, taking
into consideration all network elements to achieve the best balance between technical and
economic factors. In this sense, Volt/Var control and demand response are two critical
functions for managing electric systems. However, coordinating and integrating multiple
resources causes important challenges that must be considered in distribution operational
planning (DOP) tools. Therefore, the use of computationally robust and efficient algo-
rithms that also provide modularity and scalability to the DOP problem is required. In
addition, given that load forecasting is the basic data for the DOP, having an accurate
forecasting model is completely necessary [2]. Nevertheless, the large-scale integration of
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renewable energy sources behind the meter (mainly photovoltaic solar energy), together
with electricity demand behavior, present inherent variability that can affect the load
forecasting performance.

Therefore, this work aims to propose a comprehensive short-term DOP framework,
specifically for the day-ahead, that jointly considers Volt/Var control and demand response.
The overall objective is to minimize the total operational cost through hourly scheduling of
distribution company (DisCo) installations and demand response flexibility. Additionally,
an efficient optimization strategy is incorporated for the multi-period DOP problem, along
with a data-driven deep load forecasting solution.

1.2. Literature Review
1.2.1. Traditional Distribution Operational Planning

The DOP has been studied and modeled from various perspectives, focusing on differ-
ent network functionalities, such as Volt/Var control (VVC) [3] and network reconfiguration.
VVC aims to optimize voltage (to reduce power consumption via conservation voltage
reduction (CVR)) and/or reactive power flow (to minimize power losses and voltage de-
viations) [4]. As a set of control variables, DisCo’s installations are generally considered,
including on-load tap changers (OLTC), capacitor banks (CBs), and voltage regulators,
collectively referred to as “VVC devices”. In this context, in [5] a VVC is formulated as a
mixed-integer quadratic constrained programming problem for a distribution system (DS)
in Vancouver, Canada. This problem considers the optimal scheduling of voltage regulators,
CBs, and OLTC for daily operational planning. This framework minimizes DS losses and
achieves total demand reduction with CVR, considering a limited number of switching
operations of VVC devices. However, during the peak load period, CVR performance is
affected, as any further reduction in voltage magnitudes could lead to violations of the
established lower limits. Conversely, hourly scheduling of VVC with a day-ahead for a
medium voltage DS is conducted in [6]. The optimal control considers CBs located on
the feeders and the OLTC of the substation, aiming to minimize active power losses and
improve voltage deviations in the network. This multi-period approach is solved using a
simplified dynamic programming (DP) based on rules defined by the authors. While this
rule-based approach addresses the curse of dimensionality of exhaustive exploration, it is
important to bear in mind that it cannot guarantee effectiveness in the face of any change
in system operating conditions.

These traditional techniques, with the development of ADS and the operational
consequences it entails (branch overloads, voltage fluctuations, bidirectional power flows,
to name a few), will impact their performance and will not be enough for ADS [3,7]. This
has led to the emergence of other network functionalities and new actors, such as energy
storage systems [8] and demand response (DR) programs, as sources of flexibility for
managing electric systems. Even with the integration of fast-response resources, such as
energy storage, control strategies with higher temporal resolution (i.e., a few minutes)
could be implemented, as discussed in [8,9].

Hence, DisCos can utilize their assets, i.e., “VVC devices”, and DER flexibility to
reduce losses, optimize their system’s voltage, minimize local congestions, and generally
optimize network operation via DOP.

1.2.2. Demand Response as a Resource for DOP

Considering that DR is regarded as a cost-effective solution for modifying the load
curve when the system is under stress, recent research works propose approaches consid-
ering this resource. Various DR studies aimed at different types of customers (industrial,
commercial, and residential) have been developed to attain the benefits of peak load re-
duction and energy efficiency [10]. Depending on the response mechanism, DR can be
categorized into two schemes. The first scheme is incentive-based and is typically offered as
a contract through direct load control [11], whereas the second, a price-based scheme, aims
to motivate users to modify their energy consumption patterns in response to time-varying
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electricity prices [1]. Both categories have their own benefits and leverage different aspects
of flexible demand potential. A detailed review of DR schemes and programs in ADS can
be found in [12]. This work focuses on a price-based DR scheme as a flexibility resource for
ADS operation.

In this regard, [13] proposes dynamic pricing to prevent distribution network con-
gestions and manage the charge/discharge of electric vehicles connected to the grid. A
daily scheduling for an ADS perceived as an AC optimal power flow problem is conducted
in [14]. The authors consider DR and distributed solar generation located at MV as control
variables to minimize predicted voltage violations. Similarly, dynamic prices to incorpo-
rate DER into the ADS operation and manage overloads while reducing network losses
are developed in [15]. Despite this, these formulations consider DR as an independent
strategy and ignore “VVC devices” as control variables. Hence, recent works integrate
VVC schemes together with DR programs, managing to minimize operational costs, handle
congestion, resolve voltage issues, and improve the efficiency of the day-ahead distribution
network [16–20].

1.2.3. Metaheuristic Optimization and Two-Stage Approaches in DOP

Due to the non-linear and non-convex nature of the DOP problem, involving both
continuous and discrete variables, various approaches consider linear approximations to
address the original large-scale complex problem and improve computation times [5,17,18].
These approximation techniques can lead to losses in calculation accuracy and result in
suboptimal control strategies. Furthermore, these methods, based on classic optimization
algorithms, often heavily rely on a specific mathematical formulation, limiting their ability
to easily adapt to new operating conditions in ADS.

Hence, heuristic and metaheuristic techniques have been applied to address the DOP
problem. The primary advantage of these approaches is their capacity to tackle non-convex
optimization problems, without needing an objective function or constraint differentiabil-
ity, thereby surpassing the drawbacks of traditional optimization algorithms [21]. These
metaheuristic algorithms are generally inspired by natural or social phenomena. Various
optimization techniques, such as genetic algorithms (GA) [22], artificial hummingbird
algorithm [23], sine cosine [24], particle swarm optimization (PSO) [20], mean variance
mapping optimization [25], and artificial bee colony [26], among others, have been imple-
mented to solve the DOP problem. In [20], the authors integrate flexible load, CBs, and
OLTC to minimize system losses and reduce load peaks, considering a maximum number
of daily operations for CBs and OLTC in the problem constraints. Then, a day-ahead DOP is
proposed in [27], which is formulated as a cost minimization problem that integrates OLTC
operations and DR to solve voltage violations and minimize costs due to energy losses
and DR usage. A comprehensive proposal for cost minimization in an ADS is presented
in [28], taking into account technical, operational, and reliability aspects. However, the
focus of this study is confined to a maximum interval of 1 h, leaving the daily coordination
of control variables beyond the study’s scope. Despite this, it is crucial to note that the
authors consider VVC device degradation by including a cost associated with each switch-
ing operation, rather than setting a maximum limit of daily operations. This strategy has
proven to be more effective, considering that daily operation limits are often based on the
planner’s experience.

Conversely, in [29], a Python-DIgSILENT interface is introduced with the aim of
minimizing total energy losses in a power system through the management of CBs, OLTC,
and conventional generators. The main contribution of this model-based approach is the
combination of DIgSILENT’s system modeling capabilities and power flow calculation, as
well as the implementation of the GA-based optimization algorithm, through the Python
programming environment. Similarly, several approaches [20,30,31] have extended this
concept towards ADS, using the EPRI distribution system simulator, OpenDSS [32], along
with intelligent search algorithms to effectively solve the optimization problem.
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However, most of the prior studies in the literature do not efficiently address the
dimensionality of the multi-period DOP problem, considering the complexity and compu-
tational cost inherent in such problems [33,34]. In this sense, recent works have proposed
two-stage approaches to address this combinatorial challenge [35,36]. In [35], a multi-
period problem that minimizes losses and enhances reliability is solved through network
reconfiguration. In the first stage, the harmony search algorithm is employed to determine
an effective set of configurations that minimize both loss cost and interruption cost for
each period. In the second stage, from those configurations found and the switching cost
between periods, the optimal reconfiguration scheme for the entire horizon is determined
using the DP algorithm. However, this approach does not consider DR and VVC devices as
control variables.

1.3. Contribution of This Paper

In summary, it is evident that distribution operational planning (DOP) has evolved
over the years. However, in most preceding literature, DR and VVC are treated as in-
dependent problems. Formulations that consider the collective impact of load flexibility
and VVC devices are based on classical optimization algorithms and solve them through
transformations and linearization. Additionally, numerous studies formulate the multi-
period optimization problem as a single-stage problem, which incurs significantly greater
challenges compared to the static version. On the other hand, a short-term forecasting
model based on AI (deep learning) capable of accurately estimating the load or net load (i.e.,
the sum of consumption and photovoltaic generation behind-the-meter) used as input data
for DOP is not systematically integrated. The literature lacks a comprehensive framework
that considers price-based DR and VVC devices together to minimize the total day-ahead
operational cost. Also, data-driven forecasting solutions and efficient optimization strate-
gies for the multi-period DOP problem are missing. Therefore, the main contributions of
this work are:

• A comprehensive methodology that addresses the day-ahead DOP problem and min-
imizes the total operational cost of the distribution company (DisCo) through the
coordination of DR and VVC devices, such as CBs and OLTC. It considers costs associ-
ated with energy losses, congestion, voltage violations, and costs due to the switching
operations of VVC devices and use of DR. Furthermore, this methodology is based on
an open-source Python-OpenDSS interface and aims to exploit the functionalities of
both types of software. To the best of the authors’ knowledge, this approach has not
been proposed in existing DOP formulations for ADS.

• A robust and computationally efficient two-stage solution strategy, combining GA
and DP to solve the multi-period DOP problem. In the first stage, the GA identifies
the n best solutions for each hour that minimize loss costs, congestion costs, voltage
violation costs, and costs for using DR. In the second stage, from these sets of n best
solutions per hour and the costs associated with the operation of CBs and OLTC
between periods, the optimal scheduling for the next 24 h is identified using the DP
algorithm.

• To reduce the effects of photovoltaic generation and demand variability, a novel end-
to-end net load forecasting model based on an effective combination of deep learning
techniques has been incorporated. In this work, nodal injection powers, which can
be only load or a blend of load and small-scale generation behind-the-meter, are
considered as input data for DOP.

To validate the proposed methodology, numerical simulations are performed on the
modified IEEE 13-node distribution system and a typical 37-node Latin American system.
The results demonstrate the efficiency and robustness of the methodology. The rest of the
paper is organized as follows: the problem formulation and the description of the proposed
methodology are included in Sections 2 and 3, respectively. The results obtained with the
test systems are presented in Section 4, and finally the conclusions derived from this work
are given in Section 5.
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2. Problem Formulation

This work introduces a short-term (24-h ahead) DOP methodology for a DisCo. For
this, the states of CBs, the tap positions of OLTCs, and the electricity prices (by DR) are
considered as control variables in each hour. The detailed formulation of each component
is described in the following subsections.

2.1. Optimization of the Operational Cost Function

The optimization problem is formulated by minimizing the operational cost function
over the entire scheduling horizon as follows:

min f DOP = COSTLOSS + COSTVV + COSTCV + COSTDR + COSTCB + COSTOLTC (1)

where COSTLOSS reflects the cost of active power losses in the entire system. COSTVV is
the cost associated with voltage violations at the nodes. COSTCV is the cost associated with
congestion on system branches. COSTDR indicates the cost incurred due to the demand
response program. Meanwhile, COSTCB and COSTOLTC are the costs of CBs and OLTC
switching operations, respectively. Furthermore, the formulation is subject to active and
reactive power balance constraints at each system node and for each optimization period t.

The cost of losses, voltage violation cost, and congestion cost are obtained after the
power flow analysis. In Equation (2), the cost of losses is calculated using all branch losses
for each hour obtained directly after running the power flow.

COSTLOSS =
24

∑
t=1

Cenergy,t ∗ Ploss,t (2)

where Cenergy,t represents the energy cost ($/kWh) and Ploss,t are total system losses in each
period t.

Likewise, the mathematical expression of the cost associated with voltage violations is
given by Equations (3) and (4). In this case, CPQEN,t is the cost of supplied energy with poor
quality ($/kWh) [37]. Nl is the number of load nodes. Lj,t represents the load at node j in
period t. ρVV

j,t is a penalty constant for voltage violations. Vminj and Vmaxj are the minimum
and maximum voltage limits at node j, respectively. Vj,t is the voltage at node j in period t.

COSTVV =
24

∑
t=1

Nl

∑
j=1

CPQEN,t∗Lj,t ∗ ρVV
j,t (3)

ρVV
j,t =

{
0, i f Vminj ≤ V j,t ≤ Vmaxj

1, Otherwise

}
(4)

On the other hand, the calculation of the cost associated with the system branch
congestion is given by Equations (5) and (6). In this case, COEN,t is the cost of branch
capacity violation ($/kWh) [37]. Nb is the number of branches. ∆Lk,t represents the power
flow exceeding the branch k capacity limit in period t. ρCV

k,t is a penalty factor for branch k
capacity violation in period t. Loadmaxk is the maximum capacity limit of branch k.

COSTCV =
24

∑
t=1

Nb

∑
k=1

COEN,t∗∆Lk.t ∗ ρCV
k,t (5)

ρCV
k,t =

{
0, i f Loadk,t ≤ Loadmaxk

1, Otherwise

}
(6)

The operational cost due to the demand response program is given by Equation (7).
Here, CDR,t is the cost of modifying the demand through DR in period t ($/kWh). Nd is the
number of load nodes participating in DR (flexible nodes). ∆PDR

m,t is the load variation due
to the new electricity price of node m in period t.
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COSTRD =
24

∑
t=1

Nd

∑
m=1

CDR,t∗∆PDR
m,t (7)

Finally, cost functions associated with the daily operations of the OLTCs of the substa-
tion transformers and capacitor banks are defined in Equations (8) and (10), respectively.
These expressions are formulated with the goal of preserving the lifespan of the equipment
and averting maintenance over costs. On one hand, COT,i denotes the cost per maneuver of
the transformer’s tap changer i ($/per maneuver), and Nt is the number of transformers.
Tapi,t means the OLTC tap position of transformer i at time period t. Additionally, the
minimum and maximum limits that the tap position of transformer i can assume for each
period is established in Equation (9). On the other hand, COCB,l stands for the switching cost
of the capacitor bank l ($/per maneuver), Nc represents the number of installed capacitor
banks, and Cl,t is the state of the capacitor bank l at time period t.

COSTOLTC = ∑24
t=1 ∑Nt

i=1 COT,i∗
∣∣∣Tapi,t − Tapi,t−1

∣∣∣0 (8)

Tapmin,i ≤ Tapi,t ≤ Tapmax,i (9)

COSTCB =
24

∑
t=1

Nc

∑
l=1

COCB,l∗
∣∣Cl,t − Cl,t−1

∣∣ (10)

2.2. Demand Response Management

Recognizing the potential of DR programs, DisCos are increasingly taking initiatives
to implement these programs. In this regard, time-variant or dynamic pricing schemes en-
courage customers to reduce their consumption during peak periods, when the pool prices,
as well as the network operational costs, are higher. An appealing and modest method to
evaluate the potential of flexible demand in response to these variable or dynamic prices
is through price elasticity. Other approaches, including detailed consumption behavior,
utility function, and data-driven methods, have been applied to model this resource. For
instance, in [38], actual DR data was used to map the relationship between dynamic prices
and flexible demand by using machine learning techniques such as XGBoost.

In economics, elasticity rate is a measure used to evaluate a good or service demand
response to a change in its price. Specifically, for ADS, the price elasticity of demand
measures the customer’s demand sensitivity with respect to changes in prices. Typically,
elasticity is negative, indicating an inverse relationship between electricity demand and
electricity prices [39]. Several studies have investigated the price elasticity of demand for
ADS [40–42]. In [43], the authors determined that price elasticities of demand can vary
between −0.2 and −0.8, based on data and surveys conducted in the U.S. Furthermore,
in [40,42], it was concluded that electricity demand is more elastic during peak hours
compared to off-peak hours, making DR an efficient resource for enhancing system safety
and quality during times of high stress.

Consequently, the resultant demand during time period t under dynamic price-based
DR is defined as:

PDR
m,t = P f lat

m,t

(
1 + ξm,t

λm,t − λ f lat

λ f lat

)
(11)

ξm,t < 0 (12)

η1 ∗ λ f lat ≤ λm,t ≤ η2 ∗ λ f lat (13)

where PDR
m,t is the new demand of node m in time period t under the electricity selling price

λm,t. P f lat
m,t is the base nodal injection power predicted by DisCo of node m in time period

t, according to the selling price under a flat rate λ f lat. ξm,t is the elasticity coefficient for
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node m in time period t. Moreover, given that DisCos have a natural monopoly regarding
electricity supply, service prices are regulated and subject to certain constraints to ensure
fairness to customers. These restrictions are known as regulatory constraints [44]. In this
scenario, in Equation (13), η1 and η2 are predetermined coefficients of electricity selling
price limits. As the purpose of this study is to explore the potential of time-variant prices to
provide flexibility to system operation, the determination of elasticity values is beyond the
scope of this work. Thus, the elasticity values are directly obtained from existing literature.
Note that in Equation (7), ∆PDR

m,t is employed, which is the difference between PDR
m,t and

P f lat
m,t in each hour.

2.3. Nodal Injection Power Forecasts

The unpredictability of renewable energy sources, as well as the random behavior
of electrical demand, have a significant impact on the safety, quality, and therefore the
operational costs of the system. Thus, obtaining accurate load forecasts is crucial to the
decision-making process related to operational planning and ADS management. In this
sense, since small-scale renewable energy sources, primarily solar type (PV-DG), are rapidly
growing and becoming an essential component of ADS, a shift from load forecasting to
net load forecasting is necessary. Hence, the forecast outcome is the blend of rooftop
PV-DG behind-the-meter and load demand. However, including PV-DG behind-the-meter
makes net load forecasting more complex, particularly at higher levels of spatial granularity
(e.g., distribution transformers), as seen in previous studies [45,46]. To overcome the
aforementioned complexity, in this work, we use a short-term net load forecasting model
developed in [47] to estimate the input data for the DOP, i.e., the hourly nodal injection
powers observed behind-the-meter of the MV/LV distribution transformers. It is essential
to note that each node in the system can have only load or net load; however, the data-
driven model can provide accurate results for either case. More detailed information on
model aspects, including the utilized data, implementation specifics, and hyperparameter
fitting process, is available in [47,48]. We refer readers to [47] for a comprehensive review
of this innovative model.

In general, the aim is to model the conditional distribution of the future time series, in
this case, the nodal injection power, based on the historical power data as well as influential
variables (also known as exogenous variables). For this purpose, we used an Encoder–
Decoder architecture that was initially implemented for natural language processing. In the
encoder part, a deep neural network that combines dilated causal convolutions, residual
blocks, and skip connections is constructed to model the stochastic process of historical
observations and build a fixed-dimensional latent or state representation. After this, in the
decoder part, the N-timestamps ahead are predicted based on this latent representation.
Note that the decoder incorporates a double-input residual network to consider both past
observations and future exogenous variables, with the aim of achieving greater accuracy in
the prediction. The joint distribution of estimations is defined as follows:

p(X|H) =
N

∏
n=1

p
(

xt+n|x1, . . . , xt, hi
1, . . . , hi

t+n

)
(14)

where x1, hi
1, . . . , xt, hi

t represent the past observations, xt+n stands for each future observa-
tion, N is the prediction horizon, and i is the number of considered exogenous variables.
Upon constructing the model, a training process and parameter tuning are performed
in accordance with the general machine learning process [49]. After this training phase,
the model becomes capable of executing short-term deterministic forecasts (for the subse-
quent 24 h) with a high level of accuracy. These results are evaluated using standard error
metrics employed in load forecasting tasks, such as root mean square error (RMSE) and
mean arctangent absolute percentage error (MAAPE), to ensure the reliability of input data
for DOP.
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3. Proposed Methodology

In this work, due to the non-convexity and non-linearity of the multi-period DOP
problem, we propose a two-stage solution strategy based on metaheuristic optimization
and DP. With this combined approach, the methodology can efficiently manage high
computational efforts in a reasonable time as the size of the problem increases. As discussed
earlier, CBs, OLTCs, and DR-based dynamic prices are considered as control variables to
minimize the daily operational cost given by Equation (1). Due to the discrete operation
of the VVC devices, the DR price, which is originally a continuous control variable, is
transformed into a discrete variable with a predetermined resolution.

As a result, the DOP problem is formulated as a combinatorial problem. If a full search
algorithm is employed, considering t periods, nCV control variables, and each variable
having nDO discrete options, there will be nnCV×t

DO possible daily DOP scheduling schemes.
One of these schemes will achieve the lowest daily operational cost. This illustrates that
finding an optimal daily DOP schedule is a complex task, especially in large distribution
networks. Moreover, even if the combinatorial problem is solved solely through DP, the
resulting computational complexity can be expressed as DPCC = n2nCV

DO × t [50]. Therefore,
to address this problem, we propose a novel two-stage strategy that combines DP with
a GA.

The general framework of the proposed methodology for DOP is depicted in Figure 1.
Using the deep forecasting model described in Section 2.3, the nodal injection powers
for each period (hour) are generated. From this data, the DP+GA strategy is applied to
determine the day-ahead scheduling of CBs states, OLTC tap positions, and electricity
prices that minimize the operational cost function. The details of the aforementioned parts
of the proposed methodology are investigated in the following sections. It is important to
note that the distribution systems under analysis have been modeled in the OpenDSS tool.
Through this tool, power flow calculation is performed to evaluate the objective function,
based on updating the considered control variables. Moreover, Python is used to access
all OpenDSS functionalities [51] and to code the remaining components of the proposed
methodology, such as load forecasting, optimization strategy, and data analysis.

3.1. Finding Effective Configurations Using the Genetic Algorithm

In this initial stage, the day is divided into 24 h time periods, and the n best candidate
states for each hour are obtained through the GA, necessary to execute the DP algorithm. It
is worth noting that each state represents a specific configuration of control variables. In
this way, the search space of all possible CB, OLTC, and price configurations at each hour
is significantly reduced to a set of n best solutions that minimize loss costs COSTt

LOSS,
congestion costs COSTt

CV , voltage violation costs COSTt
VV , and DR utilization costs

COSTt
DR. The GA is an intelligent algorithm inspired by genetic evolution and natural

selection to find the best possible solution to a given problem. To accomplish this, an initial
set of individuals (candidate solutions) undergo stages of selection, crossover, and mutation
with the aim of improving a given fitness function. This cycle is repeated for a predefined
number of generations, allowing the solutions to evolve and increasingly approximate the
optimal solution. Detailed descriptions of GA can be found in [52–54]. For this initial stage,
in accordance with Equation (1), the optimization problem is specified as follows:

min f DOP
t = COSTt

LOSS + COSTt
VV + COSTt

CV + COSTt
DR (15)

where f DOP
t denotes the objective function for each hour, which does not consider the

interaction between periods, i.e., the switching costs of CBs and OLTCs. Once the GA
search process is completed, the n best solutions (n states with the smallest f DOP

t ) are stored
for later consideration by the DP to find the daily schedule.
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3.2. Dynamic Programming Algorithm

After obtaining the n effective configurations for each hour, DP is employed to find
the daily schedule considering the operation costs of CBs and OLTCs. These operation
costs are considered as the transition cost Cij to go from state i in period t− 1 to state j in
period t. In this sense, the recursive DP algorithm is displayed as follows [35,55]:

f DOP*
(j, t) !

= min
i=1,n(t−1)

{
f DOP*

(i, t− 1) + Cij

}
(16)

where f DOP*
(j, t) is the optimal (minimal) total cost value up to state j at stage t. It is clear

that, to find f DOP*
(j, t), one needs the values of f DOP*

for each state of the preceding stage
t− 1. Similarly, to determine the values at t− 1, one needs to know the values at t− 2,
and so forth. To start the process, the calculation of the values in the initial period t = 1 is
carried out and calculations for subsequent stages continue until the period t = 24, where
the minimum value of the daily operational cost will be obtained. Following this, the path
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is reconstructed backwards to determine the sequence of states at each period that leads to
the optimal solution. The flowchart of the proposed DP + GA strategy (based on effective
configurations for each hour) is illustrated in Figure 2.
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4. Numeric Results and Discussions

In this work, two distribution systems are used: Test System I—a modified IEEE 13-
node system and Test System II—a typical Latin American 37-node system. Both systems
are balanced, three-phase 13.2 kV networks featuring three main sectors: industrial (Ind),
commercial (Com), and predominantly residential (Res). Note that the distribution systems
are assumed to be balanced. This hypothesis is because, in Latin America, DisCos generally
locate their LV loads in a way that achieves a balanced network at the MV level.

Additionally, PV-DG for self-consumption is considered, with the capability to deliver
surplus power to the grid. Since its installation is based on a “Net Metering” scheme,
it is not included as a control variable for the DOP, as users seek to fully harness this
energy resource. Nonetheless, these PV-DG injections are taken into account in the nodal
power forecasts. The planning of the systems (i.e., network design, components and their
specifications, capacity, and location, among others) is not the focus of this work. Instead,
the objective is the optimal management of operation, i.e., the scheduling of VVC devices
and DR to minimize the day-ahead operational cost function. To verify the accuracy of the
results obtained via the DP + GA approach, all analyzed cases are initially run using the
DP algorithm (exhaustive search). This allows theoretically optimal results to be obtained,
thus adjusting the GA parameters, and determining the appropriate number of n effective
configurations. The main data from both systems are available online at [56]. Lastly, the
adopted technical and economic specifications for the DOP [25,37,41] are displayed:

• Energy cost to evaluate energy losses: $0.1/kWh.
• Energy cost supplied in poor quality for voltage violations ±5%: $0.35/kWh.
• Energy cost for not supplied energy due to capacity violations >80%: $1.00/kWh.
• Energy price, under flat rate: $0.1/kWh.
• Cost per CBs’ switching operation: $4/per maneuver.
• CBs are fixed, i.e., connected state (1) or disconnected state (0).
• Cost per OLTC switching operation: $6/per maneuver.
• OLTC tap positions range between [0.9, 1.1] p.u. of nominal voltages with a step size

of 0.0125.
• It is assumed that three load nodes in Test System I and four load nodes in Test System

II participate in DR. Elasticity ξt details are given in Table 1.
• Coefficients η1 and η2, which limit the selling prices of electricity, are set at 0.5 and

1.5, respectively. These values are considered acceptable as they take into account
the interests of both the DisCo and users. Thus, prices can vary between (0.05, 0.15)
$/kWh and they have been discretized with a resolution of 0.025.
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Table 1. Elasticity values.

Hours of the Day Elasticity

01:00–12:00 −0.3
13:00–16:00, 22:00–24:00 −0.5

17:00–21:00 −0.7

4.1. Test System I—IEEE 13-Node System

The one-line diagram of Test System I is illustrated in Figure 3, which includes the
following control variables: the OLTC of the substation transformer, two CBs connected
at nodes 675 and 611, and three nodes with flexible loads participating in DR (645, 675,
and 652). The peak load demand is 6 MW during the 16:00 h. For this test system, real
measurements from the relational database of the “Caucete Smart Grid” project, located
in the Province of San Juan, Argentina [37,47,56], are used. This dataset has smart meter
records of load consumption and PV-DG aggregated at the 13.2 kV/380 V distribution
transformers. The resulting forecasts are examined in the following subsection.
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4.1.1. Day-Ahead Input Data

In line with the general methodology of machine learning, the training of the forecast
models for each system node is conducted, as described in Section 2.3. To accomplish this,
around 80% of the dataset is used as training data, about 10% is chosen for validation, and
the remaining 10% is considered for testing. The data recording period used for this purpose
spans from 1 January 2019 to 31 December 2020. Likewise, exogenous variables, such as
temperature and calendar information (hour of the day, day of the week, and season of the
year), are included to improve forecasting accuracy. The results of the nodal power forecast
for the next 24 h are shown in Figure 4, along with their actual values (measurements)
for a typical summer weekday for nodes 652 and 646. Here, two forecast cases were
considered. For the first case (node 646—industrial user), the recorded measurements are
only load consumption, i.e., load forecast. In the second one, the measurements include
PV-DG behind the meter, converting it into a net load forecast (node 652—predominantly
residential with 28% PV-DG). Additionally, the load profiles for the entire system are
illustrated in Figure 5.
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Figure 4. Day-ahead nodal injection powers: (a) Predicted load—node 646; (b) Predicted net
load—node 652.

From these results, it can be seen in Figure 4 that all the predicted values are close to
the actual values. Thus, for node 646 (load forecast), the model produces an MAAPE of
0.03 and an RMSE of 28.5, while for node 652 (net load forecast), the resulting MAAPE and
RMSE are 0.09 and 35.3, respectively. From the results, it can be said that the proposed
model performs well in both short-term load and net load forecasting. It is evident that
adding PV-DG increases forecasting variability, but in this case its effect on the analyzed
metrics is small. Therefore, this information is suitable for performing the proposed DOP.
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4.1.2. Results

This section presents the results justifying the need of the proposed formulation,
followed by the analysis regarding the reduction of losses and minimization of existing
voltage and capacity violations. For an in-depth analysis of the impact of renewable
energies on the DOP, several cases are proposed considering different levels of PV-DG
penetration in the system. The considerations for each case are shown in Table 2. Moreover,
to simulate non-optimized cases, the OLTC settings are in their nominal ratio, the CBs are
connected, and the electricity price is $0.1/kWh. In Case I, all system nodes solely have
energy consumption, except node 652 which has 28% PV-DG in relation to peak demand
(original dataset). After applying the proposed methodology, the day-ahead scheduling and
its corresponding daily operational cost are obtained. The obtained results are displayed in
Figure 6.
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Table 2. Comparison of results with various cases analyzed for Test system I.

Case Remarks
Cost ($)

Loss VV CV DR CBs OLTC DisCo

I Base case. Non-optimized, control variable
settings are fixed at nominal values 395.1 4473.8 12,281.1 - - - 17,150.0

I-DOP Case I optimized 316.1 0.0 424.4 200.1 4.0 0.0 944.6
II-DOP Case I (without operational cost) optimized 248.5 0.0 197.2 -- -- -- 445.7
III Case I + PV-DG 50% in node 611 377.6 1724.1 9598.2 - - - 11,699.9
III-DOP Case III optimized 304.9 0.0 404.9 190.9 4.0 0.0 904.6
IV Case I + PV-DG 50% in node 611 & 646 330.1 437.4 803.9 - - - 1571.4
IV-DOP Case IV optimized 291.0 0.0 0.0 0.0 4.0 0.0 295.0
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It is demonstrated in Figure 6 that the OLTC tap position remains constant over the
course of 24 h. Moreover, the connection states of CBs C1 and C2 are similar, with the
difference that C2 is proposed to be connected at 08:00 h and C1 at 00:00 h. The sale prices in
some hours exhibit similar behaviors, with the noteworthy point that node 645 (industrial)
has a higher participation of DR for DOP. In summary, the daily operational cost of the
DisCo is $944.6.

The reductions in losses and the management of voltage and capacity violations for
each hour are displayed in Figure 7. On one hand, the proposed methodology reduces the
cost due to energy losses by over 19.8% (from $395.1 to $316.1), as indicated in Table 2. On
the other hand, the minimum and maximum values of system-wide voltages are illustrated
in Figure 7c. From this, violations of the minimum magnitude limit are particularly
identified during peak load periods (12:00 h–19:00 h). With the proposed methodology,
voltages converge within permitted limits, and costs due to voltage violations are reduced
to $0. Regarding capacity violations, branches 650–632 and 632–645 exceed the established
maximum operation limit of 0.8 p.u., which are shown in Figure 7d. After performing
the DOP, congestion in 650–632 (main feeder) is completely solved due to the coordinated
participation of DR and VVC. However, in branch 632–645, congestion is eliminated in
most periods, except at 12:00 where it is only minimized. This results in an increase of
$424.4 in operational cost due to congestion. It is important to note that congestion persists
due to a lack of DR resource availability in that area. This is evident in Figure 7b, where
the price at node 645 reaches its upper limit, thus resulting in the maximum reduction
of available load during these high congestion periods. In this regard, the DisCo could
promote a greater participation of DR or encourage the incorporation of distributed energy
resources in that area, providing more flexibility in the system operation.
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To analyze the impact of operational costs associated with VVC devices and DR
on the DOP, Case II is conducted. In this case, the results are obtained considering an
exclusively technical analysis aimed at reducing losses and minimizing existing voltage
and capacity violations. Thus, the daily operational cost decreases to $445.7, which is
approximately 52.7% less than the cost obtained in Case I. The scheduling of control
variables for the following 24 h is displayed in Figure 8, revealing an increase in the
operations of OLTC, CBs, and DR. It is important to consider that in this case the costs
associated with the operation of resources are not taken into account, which leads to higher
variability in the configurations. This could potentially negatively impact the lifespan of
the devices and affect user satisfaction levels. Clearly, a detailed cost analysis associated
with resource management is vital for achieving an effective DOP from both a technical
and economic standpoint.
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On the other hand, to analyze the impact of renewable energy on the DOP, PV-DG
is incorporated at nodes 611 and 646 at 50%, relative to their daily peak demand (Case
III and IV, respectively). The obtained results are summarized in Table 2. In Case IV, the
inclusion of PV-DG at both nodes directly affects the reduction of energy loss costs and the
minimization of voltage and capacity violations compared to Case I. With the proposed
methodology, an additional reduction of 9.8% in loss costs is achieved, and voltage and
capacity violations are completely resolved for all hours of the next day. It is essential to
highlight that minimal management of VVC devices is required in this case to achieve
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efficient system operation. Additionally, thanks to the reduction of reactive power flow
throughout the system due to VVC, minor existing congestion issues are solved, and load
reduction by DR is avoided. As a result, the operational cost faced by the DisCo is reduced
to $295.0.

4.2. Test System II—LA 37-Node System

To validate and test the effectiveness of the proposed methodology, the DOP is imple-
mented on a typical Latin American medium-scale distribution system with 37 nodes. The
one-line diagram of Test System II is presented in Figure 9, along with the load profiles of
nodal injection powers. The peak load demand is 18 MW during the 21:00 h.
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Figure 9. Test system II: (a) One-line diagram; (b) Load profiles. 

This system includes I1, I2, I3, and I4 type industrial users, C1 commercial users, and 
R1, R2, and R3 residential users. As control variables, there is an OLTC, five CBs, and four 
nodes with flexible loads managed to achieve the minimum daily operational cost. The 
OLTC is located at the substation transformer, the CBs are connected at nodes D, E, G, K, 
and O, and the loads participating in DR are located at nodes 5, 9, 11, and 22. In the base 
case (Case I), all load nodes have only energy consumption, similar to that implemented 
in [37]. For Case II, PV-DG is incorporated at nodes 4, 20, and 21 at 50% of their daily peak 
demand. Finally, in Case III, solar generation is added at node 2. Likewise, the initial set-
tings of OLTC, CBs, and electricity prices are kept at their original values throughout the 
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This system includes I1, I2, I3, and I4 type industrial users, C1 commercial users, and
R1, R2, and R3 residential users. As control variables, there is an OLTC, five CBs, and four
nodes with flexible loads managed to achieve the minimum daily operational cost. The
OLTC is located at the substation transformer, the CBs are connected at nodes D, E, G, K,
and O, and the loads participating in DR are located at nodes 5, 9, 11, and 22. In the base
case (Case I), all load nodes have only energy consumption, similar to that implemented
in [37]. For Case II, PV-DG is incorporated at nodes 4, 20, and 21 at 50% of their daily
peak demand. Finally, in Case III, solar generation is added at node 2. Likewise, the initial
settings of OLTC, CBs, and electricity prices are kept at their original values throughout the
horizon to simulate cases without optimization.

The analyzed cases are summarized in Table 3 and the effectiveness of the proposed
methodology is demonstrated in reducing losses and minimizing voltage and capacity
violations. The scheduling of the control variables for the base case after applying the pro-
posed methodology is illustrated in Figure 10. In this case (Case I), a significant reduction
in the daily operational cost is achieved, moving from $25,476.4 to $10,660.9. This is due to
a 14.6% decrease in loss costs, a 100% elimination of voltage violation costs, and a 55.1%
reduction in capacity violation costs. The reduction of total losses for each hour, as well
as the maximum and minimum values of system-wide voltages and the load reduction at
node 5 due to DR, are depicted in Figure 11.
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Table 3. Comparison of results with various cases analyzed for Test system II.

Case Remarks
Cost ($)

Loss VV CV DR CBs OLTC DisCo

I Base case. Non-optimized, control variable
settings are fixed at nominal values 661.7 2803.7 22,010.9 - - - 25,476.4

I-DOP Case I optimized 564.8 0.0 9891.6 204.5 0.0 0.0 10,660.9
II Case I + PV-DG 50% in nodes 4, 20 & 21 612.2 2803.7 17,662.0 - - - 21,077.9
II-DOP Case II optimized 527.4 0.0 8132.1 151.2 0.0 0.0 8810.7
III Case I + PV-DG 50% in nodes 2, 4, 20 & 21 603.3 2803.7 16,459.9 - - - 19,866.8
III-DOP Case III optimized 521.2 0.0 8002.6 138.3 0.0 0.0 8662.0

Figure 10. Case I—DOP (Test system II): Day-ahead scheduling.
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In addition, it is revealed in Figure 11d that congestion persists in the branches after
the DOP during the 12:00 h–15:00 h and 19:00 h–23:00 h periods due to the lack of DR
resources, similarly to what occurred in Test system I. To deal with this situation, PV-DG is
incorporated according to Cases II and III, thereby solving congestion during the midday
peak (12:00 h–15:00 h) when solar power injection is at its maximum. However, in the
19:00 h–23:00 h period, none of the analyzed cases manage to solve the congestion, implying
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that the DisCo may face considerably high operational costs. Despite this, the obtained
numerical results support the effectiveness of the proposed methodology by demonstrating
its ability to achieve satisfactory results related to the various objectives and cases analyzed.

Furthermore, it is important to highlight that one of the main challenges when incorpo-
rating PV-DG is the risk of localized over-voltages. Nonetheless, the proposed methodology
effectively handles voltage management and even leverages this resource to solve con-
gestion. This enhances the hosting capacity of renewable energy sources and promotes
their widespread use within the network, in line with the concept of active distribution
systems. Finally, although this work primarily focuses on day-ahead scheduling with
hourly periods, our proposed methodology can readily adapt to different optimization
horizons and intervals.

5. Conclusions and Future Works

This work proposes a new comprehensive methodology for day-ahead operational
planning in active distribution systems. In this methodology, we mainly consider the
active management of VVC devices and price-based DR to reduce energy losses and
manage the congestion and voltage violation issues existing in the network. In this research,
the objectives are achieved using flexible loads, capacitor banks, and OLTC formulated
as a cost minimization problem. This enables the finding of efficient schedules while
avoiding excessive VVC device operations and load reductions due to DR. Furthermore,
the proposed methodology incorporates a short-term net load forecasting model based on
deep learning to accurately estimate the nodal injection powers observed behind-the-meter
at the MV/LV distribution transformer level. The optimization problem is solved using
genetic algorithms and dynamic programming for each hour of the day-ahead. In this way,
it maintains the accuracy of dynamic programming (based on exhaustive search) while
significantly reducing computation times. Different case studies are conducted on two
test distribution systems to analyze, on the one hand, the impact of renewable energies
on DOP and, on the other hand, to validate the scalability and computational efficiency of
the established formulation. For the base case, the total operational cost is reduced from
$17,150.0 to $944.6 in the modified IEEE 13-node system and from $25,476.4 to $10,660.9 in
the Latin American LA 37-node system (94.5% and 58.2% lower, respectively). In addition,
Cases III and IV of the IEEE 13-node system yielded reductions in total daily costs of 92.3%
and 81.2%, respectively. Cases II and III of the LA 37-node system achieved respective cost
reductions of 58.2% and 56.4%. Furthermore, in the IEEE 13-node system, the integration
of PV generation helps to completely eliminate congestion that is not solved with DOP due
to the lack of DR resources. On the other hand, in the LA 37-node system, the situation
is different, as the peak load demand of the day does not coincide with the hours of the
highest PV generation, leading to sustained congestion and higher operational costs for the
distribution company.

In a future work, an analysis will be conducted of the integration of renewable genera-
tion and energy storage systems as control variables to provide greater flexibility within
the operational planning. On the other hand, the proposed methodology follows a deter-
ministic approach, in which it is assumed that the information related to load demand
and small-scale PV generation is accurately available. However, power output from PV
sources and consumption are not firm but uncertain. These uncertainties can also impact
the configurations of the VVC devices and DR. In [57], the authors propose a scenario-
based stochastic VVC model for a distribution system that minimizes losses and voltage
deviations, considering the probabilistic nature of solar generation and demand. Also,
in [58], a stochastic daily scheduling is conducted for voltage regulation and peak reduc-
tion, using DER. However, in previous studies, generation and demand uncertainties are
modeled independently through common (parametric) probability density functions. Note
that it is no longer appropriate to continue assuming known distributions to model the
uncertainty of blended generation and demand behind-the-meter. To address this, an ex-
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tension of the proposed methodology with uncertainty considerations through appropriate
non-parametric estimation and stochastic optimization methods is under development.
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Nomenclature

DER distributed energy resources
ADS active distribution systems
DOP distribution operational planning
DisCo distribution company
VVC Volt/Var control
CVR conservation voltage reduction
OLTC on-load tap changer
CBs capacitor banks
DS distribution system
DP dynamic programming
DR demand response
GA genetic algorithm
PV-DG photovoltaic distributed generation
RMSE root mean square error
MAAPE mean arctangent absolute percentage error
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