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Abstract: The aim of the paper is to present the change in the radiation noise of the single-phase
voltage source inverter (VSI) when the Si-MOSFET transistors are replaced by the wide-band-gap
(WBG) SiC-MOSFET and GaN transistors. The power spectral density of the near-field interference is
used to visualise the change of the radiation noise of the VSI. The conclusions concern the results of
the experimental replacement of the switches to the WBG technology in the existing inverters. Three
switching frequencies and two gate circuits were used to show the change in the radiation noise. The
measurements of the experimental VSI are presented.

Keywords: voltage source inverter; wide-band-gap transistors; near-field interferences; power
spectral density; radiation noise

1. Introduction

The voltage source inverters (VSI) work in the switching mode. It always produces
all the types of disturbances that depend on the pulse slope increase or decrease speed,
the switched current, and the switched PWM voltage amplitude. Different types of semi-
conductor power switches can be used. In the small and middle power converters (IEC
62040-3 [1] define the borders of measuring parameters methods to 3 kW or 4 kW), the
Si-MOSFET enhancement-mode switches are the most often used. However, in the last
years, they are replaced with the wide-band-gap (WBG) transistors or for the low drain to
source voltages VDS (about 30 V), a third-generation of macrocell power MOSFET tech-
nology recently introduced by Texas Instruments, NexFETTM technology, that offers a
very low resistance RDSON of the open channel and low capacitances Cgd, which is very
important because of the Miller effect during switching. In this paper, the GaN, SiC (WBG)
technologies of transistors will be compared with the standard Si-MOSFET n-channel
switches. It should be mentioned that the advantage of enhanced n-channel Si switches
is the driving threshold voltage over zero and they are much cheaper than WBG transis-
tors. The Si-MOSFET transistors require a “current attack” during switching on; however,
the commercial drivers fill this requirement by giving over a very short current pulse to
recharge the input capacitances of the transistor. For the inductive load (e.g., the output
filter inductance) during loading the gate to source capacitance Cgs and, more significantly,
the gate to drain capacitance Cgd when the Miller effect ([2,3]) exists, the power losses
when MOSFET goes through the active region are significant. The static power losses on
the RDSON resistance are the result of the vertical structure of the power MOSFET and
are proportional to the maximum drain to source VDS voltage—the higher VDS the higher
conducting channel resistance RDSON. So, the goal of replacing the Si-MOSFET transistors
with new WBG technology is the reduction of the reverse transfer capacitance Crss = Cgd,
the input capacitance Ciss = Cgs + Cgd, and the output capacitance Coss = Cgd + Cds (Cds is

Energies 2023, 16, 870. https://doi.org/10.3390/en16020870 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16020870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4647-7114
https://orcid.org/0000-0002-5316-0214
https://doi.org/10.3390/en16020870
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16020870?type=check_update&version=1


Energies 2023, 16, 870 2 of 12

not so important). The other parameter [2,4] that should be decreased is the gate charge Qg;
however, the switching power losses are during loading the charge Qsw (where Qsw < Qg,
Qsw > Qgd). So, the basic parameters—RDSON and Ciss (but, mainly Cgd)—that are propor-
tional to the charge Qg (but, strictly to Qsw) decide about the static and dynamic losses
of the Si-MOSFET switch. WBG semiconductor devices appeared in the semiconductor
market [5–8] in the last few years. The GaN and SiC technologies are presented in the
paper. With every year, they were improved for easy replacement with Si-MOSFET. Now,
they are produced in the enhanced-mode channel versions (an early problem with GaN
that is solved through cascade hybrid transistors) with threshold voltages over zero (an
early problem with SiC). The WBG transistors with the VDS voltage of transistors equal to
hundreds of volts have a much lower RDS resistance and much lower internal capacitances.
The typical high-electron-mobility GaN transistor (HEMT), also known as a heterostructure
field-effect transistor (HFET) or modulation-doped FET (MODFET), were depletion chan-
nel transistors, inconvenient for control. That is why GaN HEMT with low voltage (very
low RDSON of the channel) Si-MOSFET is used in the cascode device structure operating
together as a substitute for the enhancement channel transistor. HEMT is a field-effect
transistor incorporating a junction between two materials with different bandgaps (i.e., a
heterojunction) as the channel instead of a doped region. The main charge carriers in the
HEMT transistor are the majority carriers, which results in its high speed. The possible
reduced dead times in the inverter GaN HEMTs bridge make that the inverter can operate
with a higher efficiency and a lower THD of the output VSI voltage. Low on-state resistance
RDSON and smaller capacitances compared to Si-MOSFETs make GaN HEMTs useful for
high-speed switching power conversion.

The SiC technology offers a higher allowable junction temperature than Si. Owing to
this, the SiC devices are predicted for automotive applications and industrial applications.
The lower energy loss of the SiC technology during the reverse recovery phase (e.g., in
the body diode of SiC-MOSFET) is one of their advantages (approximately 1% of the
energy lost by Si technology). The SiC-MOSFET dissipates less energy and can switch
at higher frequencies and improve efficiency. The SiC technology offers up to ten times
higher dielectric breakdown field strength, twice higher electron saturation velocity, triple
higher energy bandgap, and triple higher thermal conductivity than Si devices. The SiC-
MOSFET advantages include high efficiency of the power conversion by lowering power
loss, greater power density, higher operating frequency, and increased temperature range
operation. Initially, SiC-MOSFETs required the negative gate driving voltage for off-state
(for n-channel), which disable the simple exchange with Si-MOSFETs, now SiC-MOSFETs,
with a positive threshold voltage being present on the market.

The possibility of exchanging the Si-MOSFETs in the existing inverter project for the
WBG transistors present on the market is an important designer problem. The first problem
is about the 5 to 10 times higher price of the WGB transistors with a similar VDS voltage
than the price of the Si-MOSFET. However, in some projects, the higher efficiency is worth
it. The other problem is the control system. It is designed to take into care the higher
equivalent serial resistance of the inverter with the Si-MOSFETs bridge than for the WBG
transistors bridge. In [9], the possibility of simply replacing the old Si-MOSFET on GaN
and SiC transistors concerning the control system was discussed. It was presented that
for multi-input single-output (MISO) control by measuring the output voltage, the output
current and the inductor current in the exemplary passivity based control (PBC) [10–14]
decreasing the equivalent serial resistance does not influence the maximum voltage and
current gains of the control system [9]. So, the exchange is possible without adjusting the
control. On the contrary, when using the single-input single-output (SISO) control [15–19],
the influence of the decreasing the equivalent serial resistance is noticeable; in addition,
in the case of the exemplary coefficient diagram method for the low order (the second
order) of the nominator and denominator of the controller transfer function, this can cause
instability. In the case of the higher order of the controller transfer function, the improper
setting of the equivalent serial resistance of the inverter in the control law leads to the
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higher total harmonic distortion (THD) of the output voltage [9]; for example, the nonlinear
rectifier RC load [1]. The equivalent serial resistance of the inverter depends on the many
elements, e.g., the power losses in the core of the output filter coil [20–22]; however, we
discuss the case when all these factors are the same (switching frequency, the core magnetic
material, the PCB layout), while only switching transistors are changed from Si-MOSFETs
to WBG transistors.

The lower input capacitances and shorter switching slopes for WBG transistors make
that transistor’s gate driving circuits for Si-MOSFETs; this can be a reason for the oscillations
after changing transistors. WBG transistors can oscillate owing to the associated parasitic
elements, e.g., the imperfect PCB layout. Switching oscillations can be damped using RC
snubbers, ferrite beads, the reduction of di/dt or novel gate driver designs [23]. Too long
a trace designed in a printed circuit board (PCB) between the gate driver output and the
gate-source terminal leads to a high parasitic inductance in the gate loop and can damage
the SiC transistor [24]. What is more, the SiC MOSFET is sensitive even to parasitics in
the measurement probe and measuring; e.g., the gate-source voltage can introduce the
parasitic inductance between the test point and the ground lead of the probe, and as the
result decrease the stability of SiC MOSFET [25]. The simplest solution is adding the higher
serial resistor in the gate circuit; if for the previously designed PCB for the Si-MOSFETs
bridge, we notice the drain-source oscillations after exchange to WBG transistors. However,
it makes the slower drain to source voltage increase/decrease and the higher dynamic
power losses.

The electromagnetic compatibility (EMC) of the VSI depending on the PWM schema
was presented in [26] and the EMC of VSI with the impedance networks in [27]. The
aim of this paper is the experimental comparative checking of the radiation noise of the
single-phase VSI when changing Si-MOSFET to SiC-MOSFET and the GaN&Si-MOSFET
cascode device structure. The simplest way for the comparison is measuring near-field
interference [28,29] on the gate, drain, and source of the chosen transistor from the bridge.
The most useful is the measurement of the source of one of the high transistors in the bridge
when using so-called the first modulation scheme [26] (Figure 1 where the output switching
frequency is the double transistors switching frequency fs.
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Figure 1. The block diagram of the tested VSI and the control waveforms.

The serious impact on the near field interference can have the serial resistance RG in
the gate circuit (it will be discussed). Section 2 presents the methods of the measurement of
near-field interference. Section 3 is a comparative presentation of the measurement results.
Section 4 presents the results of the measurements and Section 5 contains conclusions. The
basic static and dynamic properties of the tested Si, SiC, and GaN transistors are presented
in Table 1.
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Table 1. Basic properties of the tested transistors.

VDS [V],
ID [A] RDS [mΩ] (Tj = 25 ◦C) Ciss, Coss, Crss [pF]

(VGS = 0 V, f = 1.0 MHz)

Standard
Si-MOSFET

IRFP360 (Vishay)

400 V,
23 A

200
(VGS = 10 V, ID = 14 A)

4500, 1100, 490
(VDS = 25 V)

GaN + Si-MOSFET
Cascode device structure

GAN041-650WSB

650 V,
47.2 A

35
(VGS = 10 V; ID = 32 A)

1500, 147, 5
(VDS = 400 V)

SiC-MOSFET
AIMW120R060M1H

1200 V,
36 A

60
(VGS = 18 V, ID = 13 A)

1060, 58, 6.5
(VDS = 800 V)

2. Methods of the Near-Field Interference Measurement of the Inverter

The experimental model of the voltage source inverter (VSI) with the replaceable
transistors and possibility of changing the serial resistors in the gate circuit, inserted in the
open iron box is presented in Figure 2.
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Figure 2. The experimental model with the replaceable transistors.

The experimental model of VSI (100 V, 1 A) operated with the switching frequency
fs = 12,800, 25,600 and 51,200 Hz with a filter with inductor with a super MSS core LF = 2 mH
and MKP capacitor CF = 50 µF; the resistive load 50 Ω. It worked with the most commonly
used first schema [26,30] of the 3-level, double-edge PWM modulation (Figure 1). This
schema of modulation results in the double 2 fs transistor switching frequency fs in the
output filter and the load. It helps to reduce the filter inductor value and this type of PWM
scheme enables the precise control of the output voltage when crossing zero. It is expected
that the higher interferences will be generated on the source pin of the T1 (or T3) or drain of
T2 (or T4) transistors where there is the highest change of voltage with the double switching
frequency. However, the double switching frequency of the transistor current makes the
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interference generated on the drain and source not so different (5 dB). The interferences
generated on the source, gate, and the drain of T1 were measured for two values (10 and
30 Ω) of the RG resistors (protecting transistors from oscillations). The experimental com-
parative measurements of the Si-MOSFET, GaN-hybrid, and SiC-MOSFET (Table 1) were
presented and discussed. The near-field interferences (NFI) depend on the many features
of the VSI including PCB layout; so, only comparative measurements in the same VSI can
give valuable data. The near field probe RF U 2, 5-2 with the bandpass up to 3 GHz from
the near-field probe set RF 1, AFJ International SRL for NFI measurements were used.

The 14,000,000 samples of the NFI time-dependent waveform during 28 ms were
collected in the Siglent SDS 1104X-E 100 MHz digital oscilloscope. So, the sampling
period was 2 ns and the sampling frequency was 500 MHz. In the result of the Fourier
transform, the harmonics up to 250 MHz were measured, which is a sufficient range
(taking into care the damping of harmonics over about 50 MHz). The simple FFT analysis
gives unclear results. That is why the power spectral density—the distribution of power
into frequency components composing the measured NFI signal—was used [31,32]. The
measured VSI had switching frequencies fs = 12,800 Hz, 25,600 Hz and 51,200 Hz. The
resolution 2 fs of the power spectral density in the MATLAB “pspectrum” function was
used because the load current and voltage have the double switching frequency. To protect
the analyzed data against frequency leakage, the Blackman window that has better than
the Hamming window stop band attenuation and advised for the collected samples in [30]
was implemented.

3. The Comparative Analysis of the Power Spectral Density of the Near-Field
Interferences

The near-field interferences were measured at the drain, gate, and source pins of the
T1 transistor that was replaced between Si-MOSFET, GaN-hybrid, and SiC-MOSFET for
two-gate resistor values RG equal to 10 and 30 Ω. For fs = 12,800 Hz, the power spectral
density characteristics of the NFI on the pins of T1 from Figure 1 are presented in Figure 3,
for fs = 25,600 Hz in Figure 4, and fs = 51,200 Hz in Figure 5. The NFI at the source of T1 for
all the switching frequencies and two RG values is presented in Figure 6.

The highest power spectral density of NFI is on the source of T1 from Figures 2 and 6,
and presents the comparison between NFI (Table 2) in this place. The measurements of
the power spectral density present that near-field interferences have three or four (for
GaN only) local maxima—below 2 fs, the range 2.4–3.4 MHz, the range 23–24 MHz (for
GaN only), and the range 29–35 MHz. For the low frequency, the gate resistor RG damps
interferences on the source of Si and SiC transistors from −36 dB to −56 dB; however, the
interferences of the source of the GaN transistor stay on the same level. For the range
2.5–3.3 MHz, the highest interferences are for Si transistors and they do not seriously
depend on the gate resistor. For the 23–24 MHz range, only the GaN source has the local
NFI maximum and for 29–35 MHz, the highest interferences are for the GaN transistor.
The conclusion for the measurements of NFI is such that for the same fs, the increase of
RG from 10 to 30 Ω reduces the power spectral density of NFI over 20 dB in the case of
Si-MOSFET and SiC-MOSFET transistors and does not influence the GaN transistor in the
case of low-frequency NFI for f < 2 fs. For the two higher ranges of frequency, the influence
of increasing RG is not noticeable (up to −2 dB). Interestingly, the GaN-hybrid transistor
has two local maxima of NFI in the 23–24 MHz and 34–35 MHz ranges, probably owing to
two internal transistors, while Si and SiC transistors have only a single maximum in this
range (29–35 MHz). The power spectral density of the NFI difference between different
types of transistors in the range over 2.5 MHz is not higher than 10 dB. Over 50 MHz, the
power spectral density of NFI is about −90–−100 dB and is not considered (power spectral
density is measured in the range up to 250 MHz). Doubling the switching frequency causes
a 2–10 dB increase of NFI in two higher ranges of frequency.
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Table 2. Local maxima of the power spectral density of the near-field interferences (bold—the highest
values appointed in Figure 6 for the particular switching frequency and the chosen frequency range).

Frequency Range for RG = 10 Ω Frequency Range for RG = 30 Ω

fs 6400 Hz <2 fs 2.45–3.38 MHz 22.99–23.56 MHz 30.45–34.82 MHz <2 fs 2.44–3.24 MHz 23.14–23.54 MHz 29.50–34.97 MHz

Si

12.8 kHz

−36.52 dB
@6400 Hz

−73.49 dB
@2.59 MHz ————– −72.90 dB

@30.45 MHz
−54.64 dB
@6400 Hz

−73.64 dB
@2.64 MHz ————- −77.19 dB

@34.97 MHz

SiC −36.52 dB
@6400 Hz

−82.28 dB
@3.38 MHz ————– −73.8764 dB

@34.59 MHz
−56.21 dB

@6400
−81.55 dB

@3.24 MHz ————- −76.64 dB
@34.95 MHz

GaN −36.52 dB
@6400 Hz

−76.22 dB
@2.47 MHz

−66.47 dB
@23.56 MHz

−68.11 dB
@34.78 MHz

−36.95 dB
@6400 Hz

−77.23 dB
@2.44 MHz

−68.83 dB
@23.54 MHz

−71.42 dB@
34.93 MHz

Si

25.6 kHz

−36.33 dB
@6400 Hz

−64.07 dB
@2.61 MHz ————– −64.32 dB

@32.50 MHz
−54.08 dB
@6400 Hz

−67.56 dB
@2.61 MHz ————- −71.91 dB

@29.50 MHz

SiC −36.33 dB
@6400 Hz

−76.55 dB
@3.19 MHz ————– −67.48 dB

@34.82 MHz
−55.52 dB
@6400 Hz

−74.00 dB
@3.23 MHz ————- −69.13 dB

@34.39 MHz

GaN −36.33 dB
@6400 Hz

−71.68 dB
@2.45 MHz

−61.90 dB
@22.99 MHz

−64.31 dB
@33.91 MHz

−36.41 dB
@6400 Hz

−72.60 dB
@2.52 MHz

−61.20 dB
@23.30 MHz

−62.11 dB
@34.56 MHz

Si

51.2 kHz

−36.49 dB
@6400 Hz

−61.36 dB
@2.55 MHz ————– −62.53 dB

@31.33 MHz
−53.57 dB
@6400 Hz

−60.78 dB
@2.66 MHz ————- −67.43 dB

@30.71 MHz

SiC −36.49 dB
@6400 Hz

−71.43 dB
@3.17 MHz ————– −64.11 dB

@34.51 MHz
−53.57 dB
@6400 Hz

−67.26 dB
@3.28 MHz ————- −65.90 dB

@34.23 MHz

GaN −38.66 dB
@6400 Hz

−62.70 dB
@2.46 MHz

−59.36 dB
@23.14 MHz

−60.82 dB
@34.36 MHz

−36.41 dB
@6400 Hz

−66.94 dB
@2.47 MHz

−59.88 dB
@23.03 MHz

−61.96 dB
@35.05 MHz

The background power spectral density should be known to prove that the local
maxima of transistors’ source NFI have no origin from, e.g., DC power supply. So, the NFI
was measured on the same load resistor (50 Ω) connected directly to the power supply
(Figure 7). The background NFI is 5 to 30 dB lower than the measured NFI on the transistor
source. The interferences for the frequency range over 50 MHz are from external sources.
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4. Results

The maximum power spectral density of the near-field interferences measured in the
experimental model of the voltage source inverter on the source of one of the high transistors
in the inverter bridge is presented in Figure 8. It is shown that in the low-frequency range
(f < 2 fs), the increase (from 10 to 30 Ω) of the serial resistor RG in the gate circuit seriously
reduces the NFI (about 20 dB) and about 0–5 dB in the higher frequency range for Si-
MOSFET and SiC-MOSFET; however, it has no (for f < 2 fs) or low (for f > 2 MHz) influence
on the NFI for a GaN transistor. Si and SiC transistor bridges have three maxima of NFI; a
GaN transistor bridge has four maxima (the double maxima between 23–35 MHz), probably
of its double transistor circuit (the hybrid cascade). SiC transistors cause a lower power
spectral density of NFI (1–10 dB) in the frequency range over 2 MHz (Table 2, Figure 8)
than Si and GaN transistors. The increase of the switching frequency increases the NFI in
this range of frequency.
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5. Conclusions

The initial assumption that generally faster transistors cause the higher radiation
noise measured using the power spectral density of the near-field interferences on the
source of one of the high transistors (where the highest interferences were identified) is
false. The lowest radiation noise was for the SiC-MOSFET bridge, lower than for slower
Si-MOSFETs. The highest radiation noise was for the GaN cascode device structure and it
almost does not depend on the gate RG resistor. The reason is probably the hybrid (double
transistors) structure of the GaN device. It seems the most important influence (concerning
the radiation noise) on replacing transistors. The change of Si transistors to SiC transistors
decreases the radiation noise of the voltage source inverter; the change to the GaN cascode
device structure increases it. Increasing the switching frequency obviously causes the
higher radiation noise.
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