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Abstract: Computer modelling and digitalization are integral to the wind energy sector since they
provide tools with which to improve the design and performance of wind turbines, and thus reduce
both capital and operational costs. The massive sensor rollout and increase in big data processing
capacity over the last decade has made data collection and analysis more efficient, allowing for
the development and use of digital twins. This paper presents a methodology for developing
a hybrid-model-based digital twin (DT) of a power conversion system of wind turbines. This
DT allows knowledge to be acquired from real operation data while preserving physical design
relationships, can generate synthetic data from events that never happened, and helps in the detection
and classification of different failure conditions. Starting from an initial physics-based model of a
wind turbine drivetrain, which is trained with real data, the proposed methodology has two major
innovative outcomes. The first innovation aspect is the application of generative stochastic models
coupled with a hybrid-model-based digital twin (DT) for the creation of synthetic failure data based
on real anomalies observed in SCADA data. The second innovation aspect is the classification of
failures based on machine learning techniques, that allows anomaly conditions to be identified in the
operation of the wind turbine. Firstly, technique and methodology were contrasted and validated
with operation data of a real wind farm owned by Engie, including labelled failure conditions.
Although the selected use case technology is based on a double-fed induction generator (DFIG) and
its corresponding partial-scale power converter, the methodology could be applied to other wind
conversion technologies.

Keywords: wind turbine; digital twin; hybrid model; failure diagnosis; synthetic data generation;
predictive maintenance

1. Introduction

In modern times, wind energy conversion is one of the most promising and reliable
energy technologies. Europe already has 220 GW of wind capacity installed and there
are plans to install an additional power of 105 GW over the next five years [1]. Actors
involved in this energy source are continuously researching this technology with the aim
of achieving the best levelized cost of energy (LCOE). According to WindEurope, operation
and maintenance (O&M) expenses account for 25–35% of LCOE of wind turbines [2], where
corrective maintenance is responsible for 30–60% of O&M costs [3]. The current potential
of digitalization and artificial intelligence (AI) can greatly contribute to the increase in the
energy production of wind farms, reducing unplanned interruptions, optimizing O&M,
and extending the lifetime of the components.

Wind turbines systems can be classified depending on the type of generator, gearbox
and power converter used. A double-fed induction generator (DFIG) with a multiple
stage gearbox and a partial scale converter is a widely used technology [4]. In the DFIG
topology [5], there is a direct connection between the stator windings and the constant
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frequency grid while the rotor winding connection to the grid is made through a pulse
width modulation (PWM) power converter, using a set of slip rings. The power converters
can control the rotor circuit current, frequency, and phase angle shifts [6]. This kind of
induction generator can operate in a range of ±30% of synchronous speed, achieving a
high energy yield, a power fluctuation reduction and the capability of controlling reactive
power. A drawback of the DFIG is the inevitable need for slip rings.

A wind turbine is also equipped with a control system, which is responsible for
assuring the correct operation of the wind turbine along its entire power curve and keeping
the wind turbine within its normal operating range. Wind turbines contain electrical,
mechanical, hydraulic, or pneumatic systems, and require sensors to monitor the variables
that determine the required control action. The most common variables sensed in a control
system are wind speed, rotor speed, active and reactive power, voltage, and the frequency
of the wind turbine’s connection point. Moreover, the control system is responsible for
stopping the wind turbine if necessary. One control strategy is the pitch angle control [7],
which is a good option for variable-speed operations in wind turbines generating more
than 1 MW. Using this control, the blades can be correctly oriented with respect to the
wind direction in order to avoid extremal values (too high or too low) of the power output.
The pitch system is based on a hydraulic system, which requires a computer system or an
electronically controlled electric motor.

There are several studies that analyse the critical failure modes of the wind turbine drive-
train system, specifically the electric generator and power conversion system [8–10]. While
identifying the sources of failure in the electric generator [11], the typologies of failures
can be of different kind. Thermal failures can occur due to the effect that currents and
overcurrents circulating through the windings have on the insulation and considering that
a maximum temperature is withstood depending on the type of insulation and operating
conditions. Electrical failures can also occur due to the peaks of voltage that can be applied
to the conductor under normal operating conditions and in anomalous situations, such as
surges coming from the converter. Environmental failures can be caused by environmental
conditions that could degrade insulating material or create corrosion phenomena. Me-
chanical failures are mainly caused by vibrations. Finally, thermo-mechanical failures are
caused by cyclic operating conditions with sudden or continuous variations in temperature,
which have different effects depending on the cable material and its accessories (insulation,
screens, etc.). The electric generator and the power converter have a greater impact on the
reliability, failure rate, and unavailability of the wind turbine. Their failure rate is 15% per
year for the electric generator and 6.8% for power converters of offshore wind farms [12,13].
These components are equipped with sensors (temperature, vibrations, electric parameters
and others) and connected to the wind turbine supervisory control and data acquisition
(SCADA) and condition-based monitoring (CBM) systems. Thus, a long historical real
operation dataset exists for each turbine of a wind farm. Sometimes, this dataset includes
recorded anomalies or failure in the operation of the turbine.

Data-driven models extract knowledge from real measurements that apply AI (artificial
intelligence) techniques, which analyse large amounts of data to identify meaningful
patterns in them. In the field of wind energy generation, there are several approaches for this
type of model. For instance, the spectral analysis of current signals has been used for health
monitoring of stator and rotor windings, as well as the main bearing of wind turbines [14].
In [15], a data-driven model is directly constructed with the objective of detecting and
isolating sensor and actuator failures in wind turbines, while the study of [16] develops a
hierarchical bank of negative selection algorithms (NSAs) to detect and isolate common
failures in wind turbines. The study of [17] uses a data-driven failure diagnosis and isolation
(FDI) method for wind turbines. It consists of the implementation of long short-term
memory (LSTM) networks for residual generators. The decision-making process is made by
applying a random forest algorithm. These FDI methods are designed using experimental
and historical data generated both under normal and failure conditions; therefore, the
availability of well-developed databases that include labelled anomaly/failure data is
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mandatory. The accuracy of data-driven methods is generally poor for cases not included
in a training dataset. In addition, black box models (e.g., deep learning models) show a
low explainability, making it difficult for domain experts to interpret results and gain the
required trust to make decisions based on the output of the models.

As a solution to this main drawback of data-driven models, DTs that use physics-
based models are developed to make the DT self-explanatory. The term “digital twin”
can be defined as “a virtual representation of a real-life system or asset with the same
behaviour”. It allows system states to be calculated using integrated models and data,
aiding the decision-making process over its life cycle from design to decommissioning.
The concept of DT was first described in David Gelernter’s 1991 book Mirror Worlds [18],
and the term “digital twin” was first mentioned in a roadmap report developed by John
Vickers (NASA) in 2010. The DT concept consists of two distinct parts: (1) the physics-based
model representing the asset and (2) the connection of the model with the real asset. This
connection refers to the information transferred (automatically or manually) from the asset
to the DT and the information that could be transferred from the DT to the asset and the
operator. In this way, a DT can accurately estimate an asset’s condition.

A DT is based on mathematic models that represent physical phenomena, making it
possible to understand the behaviour of the real asset in each moment. In addition, using
this physics-based model, it is possible to create synthetic data for events that have never
happened before, acquiring knowledge of the behaviour in some conditions that in other
cases would not be possible. Data-driven models can identify and prevent events that were
measured in the past. However, the training process of the data-driven algorithms, either
non supervised or supervised, always relies on historical data. DTs, on the contrary, provide
two new information sources: firstly, physics-based models can allow us to understand their
real behaviour, and secondly, physical simulation enables the generation of synthetic data
for potential new scenarios, such as potential anomalies or failure conditions. Moreover,
hybrid models, considered to be a combination of physics-based models and data analytics,
provide a powerful tool for diagnosis and prognosis [19]. Hybrid models developed with
this purpose are a good basis for DT creation.

The main advantage of a DT design for a specific industrial setting is the potential to
simulate realistic scenarios that are difficult or costly to create in the real system. These
scenarios might be used for the prescriptive analysis of new operating conditions, or for
testing extreme conditions and responses to anomalies or failures. The main challenge is
to develop a simulation method that can be parametrized to output scenarios that differ
from normal operation and, in some cases, to simulate conditions that have never been
seen before in the real system. The authors of [20] describe four main approaches for the
generation of simulated scenarios based on: (1) a simplified physical model; (2) a more
complex DT design to model the specific properties of the real scenario; (3) a parametrized
statistical generative model built upon prior knowledge of the relationships between
variables; and (4) generative models trained with existing real data distribution.

The methodology proposed in this paper brings together approaches 2 and 4 to
develop a hybrid digital twin that combines physics-based models and data-driven models
to match a specific operation context, both in normal and extreme or failure conditions.
In addition, the DT preserves the constrains, significance and explainability of a physical
model, overcoming some of the main limitations of a purely statistical generative model
(i.e., generative adversarial networks). The physics-based model for the drivetrain of a
wind turbine is developed using MATLAB Simulink R2020b.

The paper is organized as follows: Section 1 describes the developed technical ap-
proaches and the literature review related to such technical approaches, as well the problems
of using data-driven approaches in comparison with hybrid models. Section 2 explains
the proposed methodology for developing a hybrid-model-based digital twin and the
advantages of combining both physics-based and data-driven models. Moreover, this
section describes the principles of synthetic data generation and how such principles can
be applied to failure data generation. In Section 3, this methodology is concretely applied
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to a use case: the drivetrain of a 1.5 MW wind turbine with DFIG technology. Section 4
contains the conclusions and perspectives of future research.

2. Methodology for a Hybrid Model Creation, Synthetic Failure Data Generation and
Failure Classification Applied to a Digital Twin

DT development involves several technical tasks combining domain-specific knowl-
edge and data analytics skills. First, the equipment or system deterministic model in
normality conditions (so-called normality model) must be generated (e.g., by simulation
model). This process includes the representative modelling of underlying physical phe-
nomena and the rigorous selection of design parameters. Then, the constructed model
must be validated using real data in non-failure conditions and optimizing certain model
parameters values to increase the model accuracy and representativeness against the real
equipment behaviour.

In addition, a DT conceived for failure conditions diagnosis includes a suite of physics-
based models able to simulate different anomaly or failure scenarios. These failure models
might be used for a cause–effect analysis and to establish condition indicators (CI) and
they constitute an excellent basis for real failure conditions synthetic data generation [21].
Finally, machine learning (ML) classification techniques (supervised or non-supervised)
might be applied for the diagnosis or early detection of failures. The implementation of all
these models and algorithms in a digital platform and their online use constitute a complete
DT for anomaly/failure diagnosis.

This chapter describes and analyses the methodology for the development and use of
an equipment or system DT based on hybrid models for failure classification, making use
of a normality hybrid model and a synthetic data generation process. Figure 1 summarizes
the whole methodology, and each key component is explained in the following chapters.

Figure 1. Methodology illustration for the creation of a hybrid-model-based DT.

2.1. Normality Hybrid Model

The normality hybrid model of the DT is composed of a physics-based model trained
with real operation SCADA data in normality conditions.

The paper considers the drivetrain of a wind turbine with DFIG technology as a
reference use case in which the proposed DT development methodology is illustrated and
applied. Figure 2 shows how the physics-based model is divided in two modules that
could be used either coupled together or separately, depending on the available operational
data. The first module represents the conversion from kinetic energy from the wind to
mechanical power, taking the real values of the wind speed measured at the turbine and the
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pitch angle of the blades as inputs. The second module represents the electro-mechanical
conversion. It takes the mechanical torque in the shaft of the DFIG as the input and the
generated electric power and its related signals, such as phase currents and voltages or
electromagnetic torque, are the outputs. Moreover, this second module includes a power
converter and control system that enables the optimal operation of the drivetrain.

Figure 2. Physics-based model of the power conversion drivetrain of a wind turbine.

The physics-based model is constructed considering the system design parameters.
Depending on the nature of the equipment it may be difficult to obtain the complete set
of design parameters. In this case, estimations are required, which may impact model
performance. Finally, the physics-based model is trained using real operation SCADA
data (Figure 3). Training consists of optimizing the values of certain independent design
parameters whose exact values are estimated between given realistic intervals.

Figure 3. Training of the physics-based model and obtention of the normality hybrid model.

The objective function of the training process is the minimization of “residue” defined
as the difference between the physics-based model output (prediction) and the SCADA real
operation data (e.g., output power) for the given real inputs (e.g., wind speed or torque).
The resulting calibrated physical model is known as the normality hybrid model.

2.2. Failure Hybrid Model

Once the normality hybrid model is constructed, it can be extended or adapted to
include anomaly or failure situations. This new model is called a failure model. Following
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the same process used in the normality hybrid model, this model is trained using the
operation real SCADA data. Similarly, calibration consists of optimizing the values of
certain independent design parameters that represent failure, whose exact values are
estimated between given realistic intervals.

This resulting new model is also trained with historical and actual operational data
of both normal and failure operation. This is achieved using real failure operation data
inputs, which are fed to the failure models. In other words, when the normality hybrid
model is adapted to represent a failure and trained with failure data (data representing
failure operation), the normality hybrid model becomes a failure hybrid model. Feeding
the failure models with failure data enables the values of the failure model parameters
that define the failure models to be calibrated. The selected values of these failure model
parameters are obtained by minimizing the difference between the prediction obtained by
the failure model using failure operation data inputs and their corresponding well-known
real operation data failure outputs. As a result, the so-called failure hybrid model of the
power conversion system (drivetrain) of a wind turbine is obtained, which considers both
data of the drivetrain in normal operation and in failure operation.

In this case, the overheating of the DFIG stator winding is studied. For this scenario, a
thermal model is added to the normality hybrid model (Figure 4).

Figure 4. Failure hybrid model with a specific thermal failure model.

This thermal model takes as input the real values of the nacelle temperature and
the stator phase currents. These values of these stator currents can be estimated by the
normality hybrid model or any other value that can be useful for testing the thermal
behaviour of DFIG stator windings. The obtained predicted output corresponds to the
temperature of the DFIG stator winding.

2.3. Failure Synthetic Data Generation

The methodology analysed in the article has a fundamental contribution in the gener-
ation of synthetic data. The generation of synthetic data is a key point because it allows
immediate availability of operation data (either normality or failure data), that are difficult
to obtain from simple observation of the reality. In addition, the training of classification
models for failure prognosis is much enriching using a broad and balanced dataset that
represents a variability of behaviour.

Ref. [22] proposes GANs for the generation of synthetic data for wind turbine failure
diagnosis research. This article proposes a method to generate synthetic data using the
hybrid model and a statistical process. The statistical process characterizes the probability
distributions of the occurrence of normal and failure operating scenarios.

The generation of synthetic scenarios in a DT is often deterministic; therefore, the
given input data (i.e., wind speed, nacelle temperature and blade pitch angle) always
calculate the same output data (i.e., active power, winding temperature, etc.). This process
does not consider the variance present in the real data due to factors not modelled by the
DT. Hence, the DT does not have the ability to interpolate within the space of the training
data and cannot generate truly new scenarios, nor can it include the full extent of the
variability observed in the data. In the case of the generation of normal condition scenarios,
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this determinism is compensated by the amount of training data in such conditions. It is
reasonable to assume that these data include a comprehensive range of conditions that
represent the entire feature space.

However, this might not be the case for the generation of failure conditions. Although
the failure hybrid model has been calibrated to simulate the instances belonging to this
type of conditions present in the training SCADA data, this does not guarantee that these
instances are a representation of the entire anomalous feature space. In fact, the frequency
of anomalous conditions and failures is relatively low in SCADA data, and often these
instances are not annotated (labelled). Hence, relaying merely on a deterministic model
to generate synthetic failure scenarios would provide a narrow data sample constrain to
patterns already seen before.

To resolve this limitation, the DT can incorporate stochastic failure models for the
generation of failure scenarios. Each of these models can generate an unlimited number
of synthetic failure scenarios for a particular failure type based on real observations in
SCADA data.

The corresponding models are trained to approximate the distributions of the variables
that define a failure. In addition, some failures cannot be considered instantaneous, but
as a pattern in time that leads to a malfunction, a safety stop or a break. This is especially
important if synthetic generated failures are to be used to train models that can produce
early warnings before a failure is likely to occur.

Both the join probability distribution of the operating variables prior to and during
a failure and their physical constrains are initially defined by domain knowledge and
can then be updated with observations from real SCADA data. The generation of new
failure scenarios is based on random sampling of these probability distribution. Hence,
the synthetic scenarios generated by the model are based on real SCADA observations but
are not identical to any of those. The process for the synthetic failure data generation of
Figure 1 is detailed in Figure 5. It consists of two steps: an observation step and a synthetic
data generation step. The observation step aims to identify the probability density function
(PDF) that characterizes the failure scenario occurrence. For this, SCADA data are filtered
to identify scenarios that correspond to a failure type fk, where k is part of a set of failures K
modelled by the DT, such that k ∈ K. A failure scenario is defined by a set of fixed physical
constrains defined by domain knowledge and a set of parameters (condition indicators) to
be tuned in function of the observed features in failure scenarios from SCADA data.

Figure 5. Observation process for failures.

The PDFs of the parameters are learnt from the observed instances in the SCADA
data. These instances might be exclusively sourced from a single turbine or, in case of an
insufficient number, they can be sourced from different turbines that share some design
and operations characteristics. The decision to include instances from more than one
turbine should be made on the basis of turbine similarity and the variability of failure
parameters, which depends on operation and design characteristics. The distribution of
most parameters might be approximated by a normal PDF with the required precision.
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However, other distributions might need to be considered for certain parameters. In the
case of having access to SCADA data with several instances of a given failure for more than
one turbine, a hierarchical parameter modelling might provide a better balance between
accuracy and generalization. The learnt PDFs of the parameters are used to update the
prior parameter distributions of the corresponding failure model. The data generation
process step consists of generating data sets for normality and failure scenarios. As shown
in Figure 6, the normality scenario data sets are generated either by running the normality
hybrid model or selecting those SCADA data labelled as normal data.

Figure 6. DT generative failure models.

The failure scenario data sets are stochastically generated following the observed and
identified PDF, then running and obtaining the results from the failure hybrid model.

2.4. Potential Application of the Hybrid Models Conforming the Digital Twin

The development of data-driven algorithms for diagnosing normality or failure condi-
tions is a complex task that involves: (i) defining the condition indicators (CIs), (ii) labelling
normality and failure operation data, (iii) conceptualization of the classification model, (iv)
validation of the model (e.g., number of false positives and negatives), and (v) evaluation
of the generalization capacity of the model analysing whether it is representative for a set
of machines. The DT can add value to this endeavour by providing additional synthetic
data to strengthen the dataset.

Figure 7 shows a proposed schema of a supervised classifier training process for failure
diagnosis where the explained models in the previous sections are leveraged. The classifier
is trained with a labelled dataset composed of real SCADA data, augmented with synthetic
data generated via the process described in the previous section.

Figure 7. Supervised classifier training scheme.

In addition, the normality hybrid model is used as a baseline to create new CIs that may
improve the accuracy of the classifier. These CIs are calculated by comparing real operation
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SCADA data with respect to synthetic failure data and/or normality data generated by the
normality hybrid model.

Finally, Figure 8 shows the execution phase, where CIs are created by comparing real
SCADA data with the data simulated by the normality hybrid model. When the values of
these CIs meet certain criteria detected by the classifier, an early alarm is generated.

Figure 8. Execution phase of the developed classifier for anomaly diagnosis.

3. Results of Application of the Methodology to a Use Case: 1.5 MW DFIG
Wind Turbine

The methodology described in previous section was applied and validated with real
SCADA data from a wind turbine in operation owned by Engie. The drivetrain of this wind
turbine comprises a 1.5 MW DFIG and its corresponding back-to-back power converter.

Three years of real operational data were organized and preprocessed before use.
During the data exploration and pre-processing of SCADA data, relationships between
physic parameters were analysed, in order to detect possible outliers, which were removed.

Once the initial data analysis was carried out, the physical model of the power con-
version was developed in Simulink-Matlab R2020b (Figure 9). Information on the design
parameters of both the generator and power converter was used as a basis for constructing
the model. However, some other values were calculated or estimated due to the lack of
information. Wind speed and pitch angle are the input parameters needed to operate the
model. The result is the generated electric power, currents, and voltages, among others.

Figure 9. Wind turbine drivetrain physics-based model representation in Matlab-Simulink.

The DFIG block implements a three-phase wound rotor asynchronous machine, op-
erating in the generator mode. It uses a fourth-order state-space model to represent the
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electrical part of the machine, whereas the mechanical part is represented by a second-order
system. As can be seen in the equations contained in Table 1, all the electrical parameters
are referred to in the stator. All the rotor and stator parameters are expressed in the arbitrary
two-axis reference dq frame.

Table 1. Equivalent circuits and equations involved in a DFIG conversion.

Electrical System

Vqs = Rsiqs +
dϕqs

dt + ωϕqs (1) ϕqs = Lsiqs+Lmi′qr (6)

Vds = Rsids +
dϕds

dt + ωϕds (2) ϕds = Lsids+Lmi′dr (7)

V′qr = R′ri′qr +
dϕ′qr

dt + (ω−ωr) ϕ′dr
(3) ϕ′qr = L′ri′qr+Lmiqs (8)

V′dr = R′ri′dr +
dϕ′dr

dt + (ω−ωr) ϕ′qr (4) ϕ′dr = L′ri′dr+Lmids (9)
Te = 1.5p

(
ϕdsiqs − ϕqsids

)
(5) Ls = Lls + Lm (10)

L′r = L′lr + Lm (11)

Mechanical System
d
dt ωm = 1

2H (Te − Fωr − Tm) (12)
d
dt Θm =ωm (13)

The parameters involved in the resolution of DFIG conversion equations are those
indicated in Table 2.

Table 2. Parameters involved in the DFIG operation.

Parameters Definition

Rs, Lls Stator resistance and leakage inductance
Lm Magnetizing inductance
Ls Total stator inductance

Vqs, iqs q axis stator voltage and current
Vds, ids d axis stator voltage and current
φqs, φds Stator q and d axis fluxes

p Number of pole pairs
ω Reference frame angular velocity
ωm Mechanical angular velocity
ωr Electrical angular velocity (ωm × p)
Θm Mechanical rotor angular position (Θm × p)
Θr Electrical rotor angular position (Θm × p)
Te Electromagnetic torque
Tm Shaft mechanical torque

J Combined rotor and load inertia coefficient (set to infinite to
simulate locked rotor)

H Combined rotor and load inertia constant (set to infinite to
simulate locked rotor)

F Combined rotor and load viscous friction coefficient
L′r Total rotor inductance

R′r, L′lr Rotor resistance and leakage inductance
V′qr, i′qr q axis rotor voltage and current

V′dr, I wouldr d axis rotor voltage and current
φ′qr, φ′dr Rotor q and d axis fluxes
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3.1. Normality Hybrid Model of the Use Case

The initial parameters of the physics-based model are an assumption of the true
parameters controlling the operation of a given turbine. Nevertheless, the true value of
these parameters can be estimated using an optimization algorithm. The algorithm aims to
find the combination of parameter values that minimize the difference between the output
of the physics-based model and the measured SCADA data. In this case, the parameters
are tuned (or calibrated) using a surrogated optimization algorithm (surrogateopt) in
Matlab [23]. This optimization algorithm is a global solver specially indicated for cases
where the objective function is computationally expensive. The algorithm searches for a
global minimum of a cost function min

x
f (x) with multivariate input variable x subject to

linear and non-linear constrains, and some finite bounds. The resulting objective function
can be non-convex and non-smooth. The algorithm starts by learning a surrogate model
of the function considered as objective, using the interpolation of radial basis function
through random evaluations of the objective function within the given bounds. In the next
phase, a merit function is minimized by approximating the minimization of the objective
function. This merit function fm is based on a weighted combination of the evaluation of
the surrogate model calculated in the previous phase, and the distance between the points
sampled from the objective function.

fm(x) = wS(x) + (1− w)D(x) (14)

S(x) =
s(x)− smin
smax − smin

(15)

D(x) =
dmax − d(x)
dmax − dmin

(16)

where S(x) is a scaled surrogated output and D(x) is a scale distance between points
evaluated by the objective function. This distance reflects the uncertainty in the estimations
of the surrogate model. The minimization of the merit function, min

x
fm(x), is performed

using a random search. The obtained global minimum is then evaluated by the objective
function and the result used to update the surrogate model. Now the minimization of the
merit function is calculated using the updated model. This process continues for a given
number of iterations or until a point is found for which the objective function is below
a threshold.

In the case of the drivetrain of the wind turbine, the objective function is defined as
the mean absolute percentage error (MAPE) between the active power estimated by the
physics-based model and the active power measured by the SCADA system.

MAPE =
100%

n ∑n
i=1

∣∣∣∣∣PkWsim
i − PkWreal

i

PkWreal
i

∣∣∣∣∣ (17)

Thirteen parameters are involved in the optimization process: four parameters asso-
ciated with electro-mechanic conversion (electric generator, power converter and wind
turbine control), three parameters related to aero-dynamical conversion, three parame-
ters of the control strategy, and finally, three parameters associated with the mechanical
drivetrain (Table 3).

The calibration was made in two steps: in the first step, six variables were considered,
while in the second step, five more variables were added. Table 4 shows both the initial
values defined for each parameter (design value), as well as the values adopted after second
calibration (calibrated value).
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Table 3. Parameters involved in the optimization process.

Electric Generator Power Converter Control Mechanical Drivetrain

Stator winding resistance Power converter grid-side
coupling resistance

DC bus voltage
regulator gains Wind turbine inertia constant

Rotor winding resistance Power converter grid-side
coupling inductance Speed regulator gains Shaft mutual damping

Generator inertia constant Converter line filter capacitor Wind speed at nominal speed
and at Cp max Shaft spring constant

Generator friction factor

Table 4. Design and calibrated values of parameters involved in the optimization process.

Parameters to Be Calibrated Design Values Calibrated Value

Stator winding resistance (pu) 0.016 0.0036
Rotor winding resistance (pu) 0.023 0.001

Generator inertia constant 0.685 0.1
Generator friction factor 0.01 0.01

Power converter grid-side coupling resistance (pu) 0.03 0.0232
Power converter grid-side coupling inductance (pu) 0.3 0.4811

Converter line filter capacitor (VAr) 120,000 89,200
DC bus voltage regulator gains 400, 8 323, 6.36

Speed regulator gains 0.6, 3 0.69, 2.67
Wind speed at nominal speed and at Cp max (m/s) 11 10

Wind turbine inertia constant (s) 4.32 2
Shaft mutual damping 1 1
Shaft spring constant 1.5 0.5

The new values of the calibrated parameters are established, always keeping their
physical sense. In fact, an interval with a lower and upper threshold was established for
each parameter during the optimization process.

As a result, the mean absolute percentage error (MAPE) between the real active power
measured in the SCADA and the value obtained in the simulation using the calibrated
models improved from 15% to 2.4% (Figure 10).

Figure 10. Generated active power vs. wind speed.

3.2. Failure Hybrid Model of the Use Case

Once the physic model was calibrated, it was used to simulate the failure conditions.
In this use case, the overtemperature in the stator winding was analysed. A thermal circuit
was added to the already developed normality hybrid model in Simulink to estimate
the temperatures in each phase of the stator winding. It must be considered that the
isolation class of the stator winding is a Class F, meaning that it is designed to withstand
temperatures of up to 155 ◦C. As shown in Figure 11, this thermal circuit takes into account
heat transference generated by the stator currents considering the conduction (between the
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winding of each one of the three stator phases) and convection (between the winding of
each one of the three stator phases, between each stator winding and the environment and
between each stator winding and the rotor). The values of radiation were neglected.

Figure 11. Thermal circuit of stator winding.

Conductive heat transfer blocks model heat transfer in the thermal network by con-
duction through a layer of material. The rate of heat transfer is governed by Fourier’s law
(18) and is proportional to the temperature difference, material thermal conductivity, area
normal to the heat flow direction, and inversely proportional to the layer thickness.

Qcond =
k
s

A dT (18)

Convective heat transfer blocks model heat transfer in a thermal network by convection
due to fluid motion (in this case, the air). The rate of heat transfer (19) is proportional to the
temperature difference, heat transfer coefficient and surface area in contact with the fluid.

Qconv = hc A dT (19)

The inputs that feed the thermal model are the stator currents and the room tempera-
ture where the electric generator is installed (in this case the temperature of the nacelle),
while the outputs are the temperatures of each phase of the stator winding.
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In the real data made available during this study, there are five anomaly cases labelled
as overtemperature in the stator winding (Figure 12).

Figure 12. Five labelled anomaly cases of overcurrent during real operation (wind speed and active
power signals).

The failure modelling was validated using data during these five anomaly cases,
obtaining results for the estimated stator winding temperatures, as shown in Figure 13,
compared with the real SCADA winding temperature.
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Figure 13. Temperature values during overtemperature failure-labelled cases.

The MAPE between the real stator winding temperature measured in the SCADA and
the value obtained in the simulation using the calibrated model has a value of 11%, with
a maximum percentage error of 16% in the worst scenario. This value still has room for
improvement if more accurate design data become available for the thermal model.

3.3. Synthetic Failure Data Generation in the Use Case

A failure model for stator winding overheating was trained with real data from five
labelled failures. For this failure mode, four parameters (CIs) were identified: failure or
anomaly duration, ambient temperature, nacelle temperature, and wind speed.

The failure duration and ambient temperature are assumed to be uniform during
the whole duration of the failure. The distribution of these values in the training data is
approximated with a kernel density function (KDE) with a Gaussian kernel (Figure 14).
Continuous line represents the probability density functions of the duration and ambient
temperature observed in the failure/anomaly instances from the real SCADA, while cross
symbols represent real observations This technique, compared with density estimation by
histogram, creates a smooth PDF that does not depend on the choice of binning. Instead,
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a Gaussian component is fitted to each data point. The Gaussian kernel is defined by
the function:

K(x; h) ∝ exp
(
− x2

2h2

)
(20)

where the density function estimated at point x of a univariate distribution is:

f̂ (x; h) = n−1
n

∑
i=1

K(x− xi; h) (21)

where (x1, x2, . . . , xn) are independent and identically distributed random samples from
such distribution. The bandwidth h is a smoothing parameter that controls the balance
between variance and bias in the resulting density function. The resulting Gaussian
mixture is a non-parametric estimator of the probability density function able to represent
the uncertainty present in a small data sample. In addition, a domain expert can intuitively
control the estimator with a bandwidth parameter based on a descriptive analysis of
SCADA data and physical properties of the system.

Figure 14. Probability density functions (continuous line) of the duration and ambient tempera-
ture observed in the failure/anomaly instances from the real SCADA. Cross symbol represents
real observations.

The PDF of the wind speed and nacelle temperature variables are dependent on the
relative time within a given failure or anomaly. Hence, a generative model aims to learn a
PDF from which to sample a time series of a given variable, not simply a single value. Such
a function can be approximated by recursively fitting an ordinary least squares (OLS) model
to the transition between each time point. In this case, the resulting marginal probability
distribution at a given point in time is conditional to the value at the previous time point.
The statistical model of the predicted value is:

Xt1 = Xt0β + ε (22)

Additionally, the estimation error ε is assumed to have a normal distribution such that:

ε|Xt0 ∼ N
(

0, σ2 I
)

(23)

where σ2 is a positive common variance for the elements of the error vector (assuming
homoscedasticity) and I is the identity matrix.

The generation of random samples starts by the sampling an unconditional seed at
time 0. This seed is randomly sampled from a distribution learnt from the training values
at time 0. The distribution is approximated by KDE as seen above for the case of ambient
temperature. The next data point in the time series, Xt1, is sampled from the distribution
of ε around the prediction mean value Xt0β. This process iterates for each data point the



Energies 2023, 16, 861 17 of 20

requested time. Finally, synthetic failure patterns are randomly generated using the learnt
statistical distributions (Figure 15) and are fed as inputs into the developed DT.

Figure 15. Generation of random patterns (in grey) of wind speed based on real SCADA data (in red).

The DT generates the rest of failure synthetic measurements (e.g., stator winding tem-
perature, and generator output current,) creating a multivariate synthetic failure scenario
(Figure 16).

Figure 16. Multivariate synthetic failure pattern formed by the output of the data-driven stochastic
model and the deterministic functions of the DT.

Figure 17 shows both the synthetically generated stator winding temperature values
(in grey), and the stator winding real values measured by the SCADA system (in red). It
can be noted that most of the synthetically generated data are similar to the real SCADA
data. However, few of the synthetically generated data significantly differ from real data
due to the starting seed value.

Figure 17. Stator winding temperature calculated by the DT thermal model from synthetic input
variables (in grey). Stator winding temperature as measured by the SCADA system (in red).
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4. Conclusions and Next Steps

This paper proposes an approach for creating a hybrid model-based digital twin that
combines the benefits of physics-based models with advanced data analytics techniques.

This study has two main innovation outcomes. On the one hand, a process is estab-
lished to generate synthetic failure data based on real data leveraging different statistical
techniques. On the other hand, the process of failure classification based on machine
learning techniques, allows anomaly conditions to be identified in the operation of the
wind turbine. These two innovations can provide solutions for the main limitations of
current digital twin approaches regarding accuracy, explainability, and the lack of sufficient
training data.

The synthetic failure data generation process was validated using real operational
data from a 1.5 MW power double-fed induction generator wind farm owned by Engie. In
more detail, this has been applied to a specific failure (or anomaly) mode, namely the stator
winding overtemperature. The obtained results are satisfactory, although further research
is necessary. One of the limitations found in current research is the difficulty in achieving
detailed labelled failure information.

In future studies, the authors foresee the following research lines. It is envisaged that
a developed methodology for failure diagnosis, leveraging non-supervised and supervised
machine learning algorithms, could be applied, as explained in Section 2.4. The results of
this research could form the basis for future publications, which will likely be derived from
the methodology of this article. These algorithms will be trained using real operational data
augmented with synthetic failure data generated using this methodology. Furthermore, the
authors plan to assess the generalization capacity of the proposed approach, validating it
with additional failure modes and other drivetrain technologies (i.e., permanent magnets).
Equally, the developed hybrid models might be further improved by applying state-of-the-
art deep learning techniques. Finally, the scalability of the proposed solution should be
assessed by implementing and validating it in an online real-time scenario.

5. Patents

The work reported in this manuscript is associated with a patent with application
number EP22382724.7.
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Glossary
AI Artificial Intelligence
CBM Condition-Based Monitoring
CI Condition Indicator
DFIG Double Fed Induction Generator
DT Digital Twin
FDI failure diagnosis and isolation
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GAN Generative Adversarial Networks
KDE Kernel Density Function
LCOE Levelized Cost of Energy
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
ML Machine Learning
NSA Negative Selection Algorithm
OLS Ordinary Least Squares
O&M Operation and Maintenance
PDF Probability Density Function
PWM Pulse Width Modulation
SCADA Supervisory Control Additionally, Data Acquisition
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