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Abstract: Thermal gradient is inevitable in a lithium-ion battery pack because of uneven heat
generation and dissipation, which will affect battery aging. In this paper, an experimental platform for
a battery cycle aging test is built that can simulate practical thermal gradient conditions. Experimental
results indicate a high nonlinear degree of battery degradation. Considering the nonlinearity of
Li-ion batteries aging, the extreme learning machine (ELM), which has good learning and fitting
ability for highly nonlinear, highly nonstationary, and time-varying data, is adopted for prediction. A
battery life prediction model based on the sparrow search algorithm (SSA) is proposed in this paper
to optimize the random weights and bias of the ELM network and verified by experimental data.
The results show that compared with traditional ELM and back-propagation neural networks, the
prediction results of ELM optimized by SSA have lower mean absolute error percentages and root
mean square errors, indicating that the SSA-ELM model has higher prediction accuracy and better
stability and has obvious advantages in processing data with a high nonlinear degree.

Keywords: thermal gradient; capacity degradation; life prediction; extreme learning machine;
sparrow search algorithm

1. Introduction

The lithium-ion battery has the advantages of good safety performance, high specific
energy, low self-discharge rate, good charge−discharge cycle performance, and no memory
effect [1–3]. During the use of a lithium-ion battery, the positive metal ions dissolved in
the electrolyte because of the side reaction have a reduction reaction with the negative
electrode, which forms a solid electrolyte interface (SEI). This reaction will reduce the active
lithium ions [4], leading to the degradation of the lithium battery’s capacity. When the
battery capacity declines to 80% of its rated value, it is deemed to have reached the failure
threshold. Some external factors will accelerate the degradation of lithium battery capacity,
such as high or low ambient temperatures [5]. If the battery is used again after its service
life ends, potential risks may arise. It is necessary to replace the battery in time to ensure
device performance and security.

To meet the high power output requirements of electric vehicles, individual cells must
be grouped to form a battery pack. After the battery is grouped, due to problems such as
packaging, box design, self-heating, uneven heat generation and dissipation [6], etc., the
temperature of each cell in the battery pack is uneven, which will inevitably produce a
thermal gradient [7]. This will further affect the performance of the cell and the battery
pack [8,9]. Battery aging is affected by its temperature. As a temperature characteristic
of the battery, the influence of thermal gradient on battery life has not been uniformly
concluded in the existing literature [10]. Therefore, it is of great significance to study the
battery capacity degradation process and predict the remaining useful life (RUL) of the
battery under thermal gradient conditions.
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The existing RUL prediction methods are mainly divided into model-based methods,
data-driven methods, and fusion-based methods. For the data-driven method, it is unnec-
essary to analyze the internal characteristics of lithium batteries. By collecting the historical
data of lithium batteries, the internal laws are excavated and the RUL is calculated by
intelligent algorithms. The data-driven method includes statistical methods, stochastic
processes, and machine learning. The statistical methods use time-series models to predict
the state of the battery at a certain point in the future through a linear combination of
historical monitored values. Liu et al. [11] proposed an improved nonlinear degradation
autoregressive model to improve the accuracy of battery RUL prediction. However, there
are still problems such as underfitting and sensitivity to outliers. Stochastic processes, such
as the Gaussian process regression (GPR) model, are nonparametric models for regression
analysis of data by a priori of Gaussian processes. It has good effects in dealing with
problems such as high dimensions, nonlinearities, and small samples. Sazzad et al. [12]
established a training set with discharge capacity as the key predictor index and used GPR
fitting data to estimate the root mean square error of life prediction up to 0.02%. However,
when the battery working condition of the training set is different from that of the test
set, the prediction effect is poor. The principle of the support vector machine to obtain
a globally optimal solution is to minimize structural risk and handle classification and
nonlinear regression problems. Deng et al. [13] proposed to build an SOH estimation
model for lithium batteries suitable for multi-working conditions based on the least squares
support vector machine, which is more robust and accurate than the former. Artificial
neural networks (ANN) is an operation model that mines the internal correlation of data
by training limited samples, which is good at fitting highly nonlinear and time-varying
data. Long et al. [14] proposed an improved long short-term memory network to achieve
higher prediction accuracy and simpler model construction. Selina et al. [15] adopted a
naive Bayesian method to predict the RUL of lithium-ion batteries under different ambient
temperatures and discharge current values. This work is challenging under changing
temperature conditions.

In this paper, the aging experiments under different thermal gradient conditions are
designed for the lithium iron phosphate square battery with a nominal capacity of 12 Ah.
The experimental data shows that the capacity fade performance of lithium batteries under
thermal gradient conditions has a high degree of nonlinearity, so neural network algorithms
are adopted to predict battery life. The extreme learning machine (ELM), which has good
learning and fitting ability for highly nonlinear, highly nonstationary, and time-varying
data, is adopted for prediction. However, the input weights and bias generated by the ELM
model at the initial moment have a greater impact on the model training results because
of their randomness. To avoid the blind training of the ELM model, the sparrow search
algorithm (SSA) is used to optimize the input weights and bias of the model and establish
a hybrid prediction model of SSA-ELM for RUL prediction.

The remainder of this paper is organized as follows. Section 2 introduces the acqui-
sition of battery aging data. Section 3 details the proposed SSA-ELM hybrid prediction
model. Section 4 compares the prediction results of the back-propagation model, the ELM
model, and the SSA-ELM model. Finally, the conclusions are drawn in Section 5.

2. Battery-Aging Data Acquisition
2.1. Experimental Objects and Equipment

The battery used in this article is a square lithium iron phosphate battery with a
rated capacity of 12 Ah and rated voltage of 3.2 V. The cathode and anode material are
respectively lithium iron phosphate and graphite, and the electrolyte is mainly comprised
of LiPF6. The voltage window is 2.6–3.65 V. Six of this type of battery are tested in the
presented paper. The experimental equipment includes one single charging and discharging
equipment, a CT-4008-5 V20 A of the Shenzhen Xinwei Company, six groups of temperature-
controlled semiconductor refrigeration modules, and six temperature-controlled silicone
rubber heating plates.
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The temperature-controlled semiconductor refrigeration module is composed of a
semiconductor refrigeration chip, a radiator, a radiator fan, and a digital display tempera-
ture controller. The working principle of the semiconductor refrigeration chip is based on
the Peltier effect—when the current flows through the circuit formed by two different con-
ductors, the two conductor contacts will respectively produce exothermic and endothermic
phenomena. The power of exothermic and endothermic heat absorption depends on the
size of the current. The temperature-controlled silicone rubber heating plate is composed
of a silicone rubber heating plate and a digital display thermostat. The silicone rubber
heating plate is mainly composed of nickel−chromium alloy heating wire and silicone
rubber high-temperature insulation layer. The silicon rubber high-temperature insulation
layer is plastic in shape and size, which transfers heat to the surface of the object by closely
combining with the object to be heated.

The temperature-controlled semiconductor refrigeration module and the temperature-
controlled silicone rubber heating plate are respectively used for cooling and heating on
the two large sides of the battery to form a forced thermal gradient, as shown in Figure 1.
In the refrigeration module on the left, a 12 V switching power supply is used to supply
power to the semiconductor refrigeration chip through the digital display temperature
controller. When the cold surface temperature is in the set temperature range, the tempera-
ture controller stops supplying power. In the heating module on the right side, another
12 V switching power supply is used to supply power to the silicone rubber heating plate
through the digital temperature controller. When the hot surface temperature is in the set
temperature range, the temperature controller stops supplying power. The role of both the
cold conduction plate and the thermal conduction plate is to make the temperature of the
two large sides of the battery uniform. The control accuracy of the temperature is ±1 ◦C.
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Figure 1. Block diagram of battery module with forced thermal gradient.

Among the six cells used in the aging experiment, there are five cells with a forced
thermal gradient. The complete experimental bench is shown in Figure 2. The host
computer sends instructions to the midlevel computer through software, and the median
computer controls the charge and discharge equipment (lower computer) to charge and
discharge the battery. At the same time, the charging and discharging equipment measures
voltage and current, as well as transmits the data to the midlevel machine in real time and
store them in the host computer.

2.2. Aging Experimental Design and Results

The suitable working temperature of the battery is generally about 25 ◦C, and the
battery working at this temperature can maintain a long service performance. However,
the uneven internal temperature of the battery pack can lead to thermal gradients. Since
the front and rear surfaces with larger areas have more impact on the battery temperature,
the thermal gradient between the front and rear surfaces is designed to approximate the
uneven temperature.
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Figure 2. Battery aging test bench under thermal gradient conditions.

Before the aging experiment begins, the temperature of the semiconductor refrigeration
module and the silicone rubber heating plate are controlled by the thermostat and then
applied to the cold and hot surfaces of the batteries, respectively. The cooling surface
temperature, heating surface temperature, and thermal gradient of six cells are shown in
Table 1. Among them, battery 1 is in a constant-temperature environment of 24 ◦C, so the
thermal gradient is 0 ◦C. The cycle aging conditions of each battery are the same, as shown
in Table 2.

Table 1. Cell number and corresponding thermal gradient.

Battery Number 1 2 3 4 5 6

Cooling surface
temperature (◦C) 24 24 28 28 20 20

Heating surface
temperature (◦C) 24 28 32 36 24 28

Thermal gradient (◦C) 0 4 4 8 4 8

Table 2. Cyclic charging and discharging process.

Step Working Condition End Condition Time

1 1C CC-CV Charging Cut-off current 0.6 A ——
Cut-off voltage 3.65 V

2 Rest —— 30 min
3 1.5C CC Discharging Cut-off voltage 2.6 V ——
4 Rest —— 30 min
5 Loop: Steps 1–4 Number of cycles: 100 ——

After 1500 cycles of aging experiments, the capacity-fade performance of six cells is
obtained, as shown in Figure 3. Experimental results show that the capacity degradation
curves of cells under thermal gradient conditions have a high degree of nonlinearity. As
can be seen from the figure, cells with thermal gradients demonstrate a slower degradation
than the cell without a thermal gradient. The main reason for this phenomenon is that the
cell under a thermal gradient performed as a cell at a higher temperature than its theoretical
average temperature of the imposed gradient [7]. Such cells can therefore be regarded
as cells at elevated temperature, decaying more slowly than cells at room temperature
because of a decrease in the ionic conductivity of electrolyte, as well as a slowdown in
electrochemical reactions in these cells [16].
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3. Proposed Prediction Model
3.1. Extreme Learning Machine

The extreme learning machine is an algorithm for solving single-hidden-layer feed-
forward neural networks. It has a good learning fitting ability for highly nonlinear, highly
nonstationary, and strongly time-varying data, which are widely used in regression pre-
diction. Compared with a traditional neural network algorithm, the ELM model has
high accuracy and obvious advantages in learning speed. Its network model is shown in
Figure 4.
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In Figure 4, x1~xn are the inputs of ELM,ω11~ωnk are the weights between the input
layer and the hidden layer, g(x) is the activation function, b1~bk are the hidden layer node
bias, β11~βnk are the weights between the hidden layer and the output layer, and y1~yn are
the outputs of the model.

There are N arbitrary training samples {(xi, yi)}N
i=1. The n-dimensional input data of

the training set in the sample is set as xi = [xi1, xi2, xi3,···, xin]T∈ Rn, and the m-dimensional
output value of the training set is set as ti = [ti1, ti2, ti3,···, tim]T∈ Rm. The ELM network
model with the number of K hidden-layer nodes and the activation function gi(xi) can be
represented as:

yj =
K

∑
i=1

βigi
(
ωi · xj + bi

)
, j = 1, 2, · · · , K (1)

where ωi is the input weight vector between the input layer node and the ith hidden layer
node; βi represents the output weight vector connected between the ith hidden layer and
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the output layer; bi is the bias of the ith hidden layer node; yi is the true output of the
neural network model; gi(ωi·xj + bi) is the activation function.

If there are K hidden-layer nodes, the feedforward neural network can approach any
N training samples without errors, and the expression is:

N

∑
i=1
‖yi − ti‖ = 0 (2)

That is, the existence of ωi, βi, bi makes:

tj =
K

∑
i=1

βigi
(
ωi · xj + bi

)
, j = 1, 2, · · · , N (3)

The matrix can be represented as:

Hβ = T (4)

H =

g1(ω1 · x1 + b1) · · · gi(ωK · x1 + bK)
...

. . .
...

gi(ω1 · xN + b1) · · · gi(ωK · xN + bK)


N×K

(5)

where H represents the output matrix of the hidden layer; T represents the ideal output
vector.

In the ELM algorithm, the input weight vector ωi and the hidden-layer bias bi are
randomly determined. The output matrix of the hidden layer can be obtained through
network training, and the output weight vector βi is then determined. Equation (4) can be
regarded as the least square solution of linear regression based on the generalized inverse
theory of matrices, thus obtaining:

β̂ = H+T (6)

where H+ is the augmented inverse matrix of matrix H. The reason why the ELM prediction
model has a fast learning speed is that ω and b are randomly generated by the network
before training. It is only necessary to determine the number of hidden-layer nodes and
the corresponding activation function g(x) to obtain the value of the β. The ELM training
step is actually to find the linear regression least squares solution, and the optimal solution
can be obtained by running it once.

3.2. Sparrow Search Algorithm

The sparrow search algorithm is a swarm intelligence optimization algorithm proposed
by Xue et al. [17] in 2020. The algorithm is novel and effective for optimization. The
algorithm is inspired by the predatory behavior of sparrow populations, whose rules can
be summarized as follows:

(1) Explorers have higher energy reserve capabilities and provide foraging directions and
areas for followers in the population. The health status of an individual determines
its energy reserve level.

(2) When a sparrow perceives a predator, it chirps to tell other sparrows that danger
is coming. When the danger level is above the threshold, the explorer guides the
sparrows in following it to areas away from the predator.

(3) Sparrows become explorers on the premise of finding a better food source, but the
ratio of explorers to followers remains constant across the population.

(4) Sparrows with higher energy will become explorers. Many hungry followers will fly
to other places to get food, hoping to gain enough energy to become explorers.

(5) Because the explorer has a good food source, followers will follow the explorer to find
food. Meanwhile, to gain energy, followers may spy on the explorer and snatch food
when the time is right.
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(6) When perceiving danger, sparrows at the edge of the group will immediately move
away from the predator, while those in the middle of the group will fly closer to other
sparrows and move around at will.

In the SSA model, the priority of explorers for getting food depends on their fitness.
Because of their responsibility for finding food, explorers can fly to a wider area to find
food. According to the first two rules of the SSA, the explorer position in the iteration is
updated as follows:

Xt+1
i,j =

{
Xt

i,j · exp
(

−i
α·itermax

)
R2 < ST

Xt
i,j + Q · L R2 ≥ ST

(7)

where t is the number of real-time iterations, j is the real-time dimension. Xt
i,j is the position

of the ith sparrow in the jth dimension of the iteration. itermax is the maximum number of
iterations. α is taken randomly from [0, 1]. R2∈[0, 1] and ST∈[0.5, 1] are hazard values and
safety thresholds, respectively. Q is a random number that follows a normal distribution.
L is the unit vector where the d-dimensional elements are all 1, and dimension d is the
dimension of the variable to be optimized.

When R2 < ST, indicating that the situation is currently safe, the explorer will look for
food in a larger area; when R2 ≥ ST, it means that the predator is nearby and found by the
sparrow, and the group needs to fly quickly to safety. Followers need to implement Rules (4)
and (5). Followers frequently spy on the explorer. If they perceive that the explorer has
found a high-quality food source, they will immediately fly to its position and fight with it.
If the followers win, the explorer’s food belongs to them; if the followers fail, proceed to
Rule (5). The position of followers is updated iteratively as follows:

Xt+1
i,j =

 Q · exp
(

Xt
worst−Xt

i,j
i2

)
i > n

2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L i ≤ n
2

(8)

where Xt
worst represents the worst position of the sparrow population in the tth itera-

tion; Xt+1
P represents the best position of the explorer at the t + 1 iteration; A is a 1×

d-dimensional matrix with the same input dimensions, and each element in the matrix is
randomly 1 or −1; n is the number of sparrows.

When I > n/2, it means that the ith follower has a high probability of being eliminated
because of its poor health; when i ≤ n/2, it represents the update position of the followers
in the iteration.

Sparrows that could detect the approach of predators account for 10% to 20% of the
total population, and their positions will appear randomly in the sparrow population at
the beginning of the algorithm. Rule (6) is expressed as follows:

Xt+1
i,j =


Xt

best + λ ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ fi > fg

Xt
i,j + J

(
Xt

i,j−Xt
worst

( fi− fw)+ε

)
fi = fg

(9)

where Xt
best is the global best position for the tth iteration; λ is a random number that

represents the step size control parameter and follows a normal distribution with a variance
of 1 and a mean of 0; J∈[0, 1] is a random number; fi is the fitness value of the sparrow; fg
and fw are the global best fit and the worst fit, respectively; ε is a small constant to avoid
fi − fw = 0.

To reduce model complexity, when fi > fg, Equation (9) represents the latest position of
the sparrow at the edge of the group in the iteration. When fi = fg, it means that the sparrow
in the middle of the population detects an approaching predator and needs to fly to other
sparrows. J is the control coefficient of sparrow step length. The flow of SSA is as follows:



Energies 2023, 16, 767 8 of 13

Step 1: set algorithm parameters, such as the total number of sparrow population,
the number of explorers, the number of sparrows found to be close to the predator, the
maximum number of iterations itermax, and the safety threshold R2.

Step 2: the algorithm uses mean squared error (MSE) as a fitness function to calculate
the health status of sparrows, from which the best and worst fitness values are found.

Step 3: calculate the latest position of the explorer, follower, and sparrow that detects
an approaching predator using Equations (7)–(9), respectively. If the sparrow can get more
food at this position, the position information is updated.

Step 4: repeat Step 3 and stop iteration when the number of iterations reaches the
maximum. The sparrow with the lowest fitness value among all iterations is the optimal
solution.

3.3. SSA-ELM Prediction Model

When ELM is used for prediction, the input weights and bias generated by the network
model at the initial moment have a greater impact on the model training results because
of their randomness. To avoid blind training of the ELM model, this paper uses SSA to
optimize input weights and bias of the ELM model. The optimal network weights and
bias found by SSA are substituted into the ELM model. The updated output weights and
optimized ELM model are obtained and established. The specific algorithm flow of the
proposed SSA-ELM hybrid prediction model is shown in Figure 5.
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The process of SSA to find the optimal input weights and bias is as follows. Based on
the six proposed rules, the SSA first divides the sparrows into explorers, followers, and
sparrows that detect an approaching predator. The fitness value of each individual sparrow,
MSE, is then calculated. The optimal fitness and the corresponding sparrow position can
be therefore obtained. The model is then iterated to find the optimal network weights and
bias by comparing the values of the fitness function. In each iteration, the minimum MSE in
this iteration is compared with the optimal fitness in all previous iterations. If it is less than
the optimal fitness, it indicates this sparrow has better fitness. The optimal position is then
updated to that of this sparrow. If it is greater than the optimal fitness, it is not necessary to
update the data and proceed directly to the next iteration until the maximum number of
iterations is reached. When all iterations are completed, the optimal input weights and bias
obtained by SSA are used to build a new ELM prediction model.

4. Results and Discussion

Based on the 1500 cycles aging experiment data of six cells, the accuracy of different
algorithms is tested on the platform of Matlab. In the training set, discharge capacity data
of the first 800 cycles of six cells are used as model input and discharge capacity of the last
700 cycles of six cells are served as model output.

To verify the superiority of the proposed SSA-ELM model for predicting battery life
under thermal gradient conditions, the prediction results of six cells are compared with
those of the traditional ELM model and back-propagation (BP) neural network, as shown
in Figure 6.

The simulation is run in Windows 11 with Intel(R) Core(TM) i7-10700F CPU @
2.90 GHz, 16.0 GB RAM. The computational time for ELM, SSA-ELM, and BP is about
0.235 s, 138.818 s, and 0.273 s, respectively. By observing Figure 6, it can be intuitively
found that the SSA-ELM hybrid prediction model has less fluctuation than the traditional
ELM prediction curve and the BP neural network prediction curve. The prediction results
of the proposed prediction model have a higher degree of fit with the true value curve.
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To increase the reliability of the simulation results, the mean absolute percentage error
(MAPE) and root mean square error (RMSE) are added as evaluation indicators of model
accuracy. The equations to calculate MAPE and RMSE are as follows:

MAPE =
1
m

m

∑
t=1

∣∣∣∣ et

Rt

∣∣∣∣ (10)

RMSE =

√
1
m

m

∑
t=1

(et)
2 (11)

where m represents the prediction time point, et represents the absolute error between the
actual value at time t and the predicted value, and Rt represents the actual value at time t.



Energies 2023, 16, 767 12 of 13

The MAPE and RMSE error indexes of the predicted results of the SSA-ELM model
for six batteries were compared with those of the ELM model and BP neural network, as
shown in Table 3.

Table 3. Comparison of prediction results.

Battery
Number

MAPE RMSE (mAh)

ELM SSA-ELM BP ELM SSA-ELM BP

Battery 1 2.9639% 1.8129% 2.8011% 334.63 218.82 342.01
Battery 2 1.3194% 0.6150% 0.5375% 143.62 77.48 72.78
Battery 3 2.1539% 0.4189% 0.6779% 241.02 59.25 90.41
Battery 4 2.7101% 0.5236% 2.0839% 285.52 69.34 250.17
Battery 5 2.1598% 1.1032% 1.3193% 267.29 145.80 165.65
Battery 6 0.9815% 0.7615% 1.8256% 111.91 102.74 203.69

Average value 2.0481% 0.8725% 1.54% 230.67 112.24 187.45

As can be seen from the table, most of the MAPE and RMSE of the SSA-ELM prediction
result of each battery are lower than that of the ELM and BP. The average value of MAPE
of the six cells using the SSA-ELM model is 0.87%, which is lower than that of the ELM and
BP. The average value of RMSE is 112.24 mAh, which is also lower than that of the ELM
and BP. For batteries 2–6 with different thermal gradients, the SSA-ELM still achieves high
accuracy prediction results. This shows that the proposed algorithm has an advantage in
predicting data with a high degree of nonlinearity.

According to the results of the algorithm, it is concluded that: (1) compared with
the traditional ELM model and BP neural network, the SSA-ELM-based life prediction
model has higher prediction accuracy under thermal gradient conditions; (2) the SSA-ELM
prediction model can better handle data with high nonlinearity (such as battery capacity
degradation data under thermal gradients); and (3) since SSA optimizes the ELM network
weights and bias, the proposed prediction model can maintain good prediction stability.

5. Conclusions

Analysis of battery aging experimental data under thermal gradient conditions shows
that the capacity degradation curves of lithium batteries under thermal gradient conditions
have a high degree of nonlinearity. In this paper, an SSA-ELM model is proposed to improve
the robustness of the ELM and the accuracy of RUL prediction. SSA is used to optimize the
network weights and bias of the ELM. The life of lithium-ion batteries is predicted based
on aging experimental data and the proposed prediction model. Comparing the proposed
SSA-ELM prediction model with the traditional ELM and BP neural network, it is found
that the average value of MAPE and RMSE of the six cells of SSA-ELM are both lower
than those of the ELM and BP, indicating that the SSA-ELM prediction model has higher
accuracy. For batteries 2–6 with thermal gradients, the accuracy of the SSA-ELM prediction
is highly improved, indicating that the proposed algorithm has an advantage in predicting
data with a high degree of nonlinearity.
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