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Abstract: A magnetically insulated transmission line (MITL) is an inevitable choice for ultra-high
power density energy transmissions. Its working process is complex, with an obvious influence on the
working process of electron beam diodes and other load devices. The power coupling process of an
electron beam diode driven by an MITL is a difficult problem in pulse power applications. No research
is available on the electron beam characteristics of its anode. In this paper, a fast time response full
absorption Faraday cup was developed. An intense electron beam measurement waveform showing
the multi-stage characteristics was obtained through measurements using the Faraday cup absorber
as the anode of the electron beam diode. The stage characteristics of the beam were in good agreement
with the vacuum transmission, magnetic insulation formation, and multi-stage process of the stable
magnetic insulation. The beam intensity corresponded with the conduction current of the cathode.
It was obviously smaller than the current of the anode. The results reflected the influence of the
different processes of the magnetic insulation on the transmission line on the beam waveforms in the
diode area and provided a reference for the power transmission of the power device and the load
system design.

Keywords: magnetically insulated transmission line (MITL); Faraday cup; pulse power technology

1. Introduction

An intense beam diode is an important component of pulse power devices [1–5].
This diode can produce a high-energy electron beam and a high-energy X-ray radiation
field in different states such as the relativistic electron beam diode used for producing
intense electron beams in FLASH II accelerators [6]; irradiation diodes used to produce
large areas of high dose-rate, high-energy γ-rays; and self-magnetic pinch diodes used
to produce small focal spot X-ray sources on RITS-6 devices [7–10]. Among these typical
intense beam diodes, the characteristics of the electron beam to the anode are the key factors
that determine the performance of the diode. Furthermore, the measurement result is the
fundamental basis for diode research and the corresponding experimental result analyses.
However, due to the rapid intensity change (ns-level frontier), high intensity (hundreds of
kA or MA), and high energy (hundreds of keV and even MeV) of electron beams, as well as
the complex electromagnetic field, the measurement of intense electron beams has always
been a difficult point in the research of all types of electron beam diode devices.

In addition, to significantly improve the energy, dose-rate, and other radiation field
indicators, the amplitude of the electronic pulse of a pulse power device reaches several
MV or even dozens of MV [11–13]. Under an ultra-high voltage, a magnetically insulated
transmission line (MITL) is an inevitable choice to achieve the safe and efficient transmis-
sion of electric pulses [14–16]. The vacuum insulation failure and magnetic insulation
establishment in its working process have an obvious effect on the electric pulse waveform,
which may further lead to significant changes in the electron beam waveform in the loading
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area of the electron beam diode. In the stable magnetic insulation stage, the cathode current
on an MITL is divided into a conduction current and an electronic charge flow, which also
causes great differences in the electron beam intensity and the anode current on the MITL
at the front end of the load.

Due to the difficulties in the diagnosis of intense electron beams in the load area and
the complex working mechanism of MITLs, ordinary ceramic resistance is unable to obtain
a stable signal of resistance at the m Ω level when measuring high-current electron beams
at the 100 kA level; in our work, this was solved by introducing a constantan film as the
signal resistance. A large-size absorber of a Faraday cylinder, which deals with the wide
distribution of the electron beams, can lead to large inductance and capacitance, which
increases the response time. In this work, a Faraday cylinder that achieved a fast response at
the ns level for the measurement of a high-current relativistic electron beam was developed.
It used a constantan thin film as the signal resistance and reduced the inductance of the
reflux structure. The waveform characteristics of an electron beam in the power coupling
process of an MITL and a high-current electron beam diode are revealed for the first time,
providing direct guidance for the construction of large pulse power facilities.

2. Experimental Setup
2.1. Fast Time Response Full Absorption Faraday Cup Design

The equivalent circuit of a full absorption Faraday cup is presented in Figure 1 [17].
The Faraday cup used was equivalent to the current source I(t). The structural inductance
between the absorber and the resistor was L0, and the capacitance was C0. The structural
inductance between the signal resistance and the grounding electrode was L1, and the
capacitance was C1. Lr and Cr were the equivalent inductance and capacitance on the signal
output cable, respectively. The matching situation was

√
L1/C1 =

√
Lr/Cr = RZ. When

measuring the intense beam, the signal resistance was much smaller than the impedance of
the transmission line (RZ = 50Ω). Thus, i3 was much smaller than i1 and i2, and it could be
approximately assumed that i3 = 0.
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According to the equivalent circuit of the Faraday cup mentioned above, we assumed
that the signal to be measured was a pulse square wave signal. The initial value conditions
of i1 and i2 were:

i1(0) = I0; i2(0) =
di2(0)

dt
= 0 (1)
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where I0 was the amplitude of the square wave. i1 and i2 met the calculus equation:

I(t) = i1 + i2∫ (
1

C0

)
i1dt = L0

di2
dt

+ R0i2 (2)

The above initial value conditions and the calculus equation suggested that:

i2(t) = I0

[
1− e−δt

(
cos ωct− δ

ωc
sin ωct

)]
≈ I0

[
1− e−δt cos ωct

]
(3)

From the above current form, the output voltage signal could be described as:

V1(t) = V0(t) = I0R0 + I0e−δt sin ωct
(

δ
ωc

R0 − δ2

ωc
L0 + ωcL0

)
≈ I0R0 + I0

√
L0
C0

e−δt sin ωct
(4)

where δ = R0/(2L0) and ωc ≈
√

1/(L0C0).
The output voltage formula showed that the oscillating signal of the exponential

attenuation caused by the inductance and capacitance of the Faraday cup could not be
ignored. In addition, a significant anomalous skin effect on the fast signal was formed in
the Faraday cup as the incident electron beam was the fast pulse signal. Assuming that the
frequency of the incident wave was ω, the anomalous skin depth on the Faraday cup was
d(ω). The frequency of the distortion signal of the Faraday cup was ωc and the anomalous
skin depth on the Faraday cup was d(ωc). When d(ωc) was much smaller than d(ω), the
distortion signal was not obvious. At this time, ωc was much greater than ω, which meant
that ω was much smaller than

√
1/L0C0.

Thus, the key to the t Faraday cup design was to strictly control the stray inductance
and capacitance signal to avoid a signal distortion [9,10]. In the structure shown in Figure 2,
reflows with the same amplitude and opposite direction were formed along the axial
direction of the detector between the signal resistance and the grounding copper current.
The reflow structure effectively reduced the structural inductance of the detector. The
Faraday cup adopted tight fit, press fit, and other mechanical structures, which ensured the
compact structure, thus reducing the structural capacitance.
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The small signal resistor structure is shown in Figure 3. A 45 µm-thick constantan foil
was used to prepare the signal resistor by cutting. The amplitude of the signal resistor was
adjusted by controlling the number of parallel lines and the structure on each current path.
In addition, it adopted the parallel of 8 spoke wheel membrane resistors and ensured that
the resistance values R1 to R8 of the 8 parallel branches were equal. I1–I8 were equivalent
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in the process of the signal acquisition, which could reduce the structural inductance of the
signal resistance.
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2.2. Voltage Division Ratio Demarcation of the Full Absorption Faraday Cup

Overall demarcation was adopted to estimate the frequency response, signal distortion,
and voltage division ratio because accurately measuring the inductance and capacitance of
the Faraday cup was difficult. The measurement circuit was calibrated by a DC high-voltage
gap discharge. The calibration circuit is shown in Figure 4.
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The beam signals of the Faraday cup and the current signals of the Pearson coil
obtained from the experiment are shown in Figure 5; these were in good agreement. The
pulse front of the discharge waveform was approximately 32 ns, which was similar to the
characteristics of the measured waveform. The response of the measurement circuit met
the requirements. The measured signals were compared with the signals of the Pearson
coil to obtain a sensitivity of 636 A/V. The signal resistance could be deduced to 1.57 mΩ
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according to the voltage division ratio, which was suitable for the 100 kA intense electron
beam measurement.
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3. MITL Experimental Platform Design

The geometric structure of the secondary MITL could be accurately estimated accord-
ing to the Creedon laminar flow theory. The voltage loaded between the anode and cathode
of the MITL was assumed to be Va, and the corresponding relativistic factor was γ0:

γ0 = 1 +
eVa

mec2 (5)

where me and e were the static mass of the electron and the charge amount, respectively.
For the known γ0, γm could be obtained by Equation (2):

γ0 = γm +
(

γm
2 − 1

) 3
2 ln
[

γm +
(

γm
2 − 1

) 1
2
]

(6)

where γm was the relativistic factor that corresponded with the boundary potential in the
electron charge layer. When γm = γ0, the gap between the anode and the cathode was
filled with electrons. At this time, the trajectory of the electrons just swept over the surface
of the anode.

The geometric structure factor of the coaxial cylinder structure was:

g = 1/ ln(r2/r1) (7)

where r1 and r2 were the outer diameter of the inner conductor and the inner diameter of
the outer conductor, respectively. The relationship between the geometric factors g and
Imin could be solved by the expression of the minimum current Imin when the MITL was
running. The expression of the minimum current Imin was:

Imin = I0gγm
3 ln[γm + (γm

2 − 1)
1/2

] (8)
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The relationship between the minimum current Imin and the operating impedance Zop
and the cathode–anode voltage met:

Zop =
Va

Imin
(9)

The diameter of the outer cylinder of the MITL was set as 234 mm. The regularity
among the working voltage Va, running impedance Zop, and critical current Imin of the
MITL is shown in Figure 6. The higher the running impedance of the MITL, the higher
the corresponding vacuum impedance and the lower the Imin was in meeting the critical
condition of the magnetic insulation; thus, it was easier to realize the magnetic insulation.
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For the pulse source part, based on the Jianguang-I accelerator [18], an experimental
platform of a coaxial cylindrical MITL was set up. The capacitance of the drive source
Marx generator was 0.67 nF, the series resistance of the circuit was approximately 6 Ω, and
the highest output voltage was about 3.2 MV. The charging time for the forming line was
roughly 300 ns, and the impedance of the water medium-forming line and the transmission
line was 7.8 Ω. Based on the MITL characteristics, the radii of the inner and outer cylinders
of the coaxial cylindrical MITL were 90 mm and 117 mm, respectively. The load adopted
the electron beam diode. The gap of the diode was adjusted to conveniently change the
working state of the MITL. In the experiment, the full absorption Faraday cup was installed
in the anode area of the electron beam diode and the graphite absorber was used as the
diode anode. The experimental platform for the MITL-driving electron beam diode is
shown in Figure 7.
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4. Experimental Results and Characteristic Analysis of The Electron Beam

The regional pulse electrical parameters of the MITL in a typical state are shown in
Figure 7. The amplitude of the pulse voltage was 670 kV and that of the pulse current was
137 kA. According to the analytical formula in Section 3, the critical current of the magnetic
insulation was 81 kA, which met the magnetic insulation condition. The peak power was
always in a good state of magnetic insulation.

Assuming that the electron emission thresholds on the surface of the cathode of the
electron beam diode and the cathode of the MITL were both 150 kV/cm, both the anode and
cathode of the diode had a flat-plat structure with the load gap set to 6 mm. Furthermore,
when the electric field intensity on the surface of the cathode of the diode reached the
electron emission threshold, the diode voltage was 90 k V, which corresponded with 17 ns
(A time) of the pulse voltage waveform (Figure 8). The radii of the inner and outer cylinders
were 90 mm and 117 mm, respectively. According to the formula E = V0

(r ln(r2/r1))
, when the

threshold stress of the electron emission was achieved, the gap voltage between the anode
and cathode of the MITL was 354 kV, which corresponded with 35 and 103 ns of the pulse
voltage waveform, as shown in Figure 8 (B1 and B2 times).

Corresponding with the pulse electrical parameter state shown in Figure 8, the electron
beam waveform on the load of the diode was measured by experiments (Figure 9). The
electron beam showed typical multi-stage characteristics.

According to the changing process of the pulse voltage with time, the working process
of the MITL–electron beam diode power coupling system was divided into four stages.

Stage one (0~17 ns): The potential difference between the transmission line and the
diode was 0–90 kV. In this period, the vacuum transmission line and the cathode of the
electron beam diode did not emit electrons. The coaxial transmission line achieved the pulse
power transmission in the form of a vacuum transmission line. The gap between the anode
and cathode of the electron beam diode was equivalent to a flat capacitor structure. The
capacitor was charged when the electrical pulse reached the load area. The displacement
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current was produced in the charging process. The relationship between the displacement
current Id and the charging voltage met Formula (10):

Id = ωV0
ε0S
d

(10)

where ω was the pulse voltage frequency. The electrical pulse front in Figure 8 was ~80 ns;
after the calculation, ω = 19.6 MHz. ε0 was the permittivity of the vacuum, and S and d
were the electrode area and the gap of the diode, respectively. After the calculation, when
the voltage was 90 kV, the corresponding displacement current Id = 10 A. As the signal
resistance was only ~1.57 mΩ, the bias voltage produced by the displacement current on
the signal resistance was very small. Figure 8 shows that there was no obvious signal
output in the stage of 0–17 ns.
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Stage two (17–35 ns): The potential difference between the transmission line and the
diode gap was 90–354 kV. In this period, the coaxial transmission line still realized a pulse
power transmission in the form of a vacuum transmission line. The cathode of the electron
beam diode began to emit electrons. The power coupling system was equivalent to the
electron beam diode driven by the vacuum transmission line. After crossing over the gap
between the anode and the cathode, the electron beams emitted by the cathode of the
electron beam diode bombarded the Faraday cup as the anode of the diode. The electron
beam intensity was positively correlated with the working voltage of the diode, which met
the Child–Langmuir formula:

IBeams =
U3/2

d
1.36× 105

(
Rc

d

)2
(11)

The coaxial cylinder area achieved a maximum voltage of 354 kV during the electric
pulse power transmission in the form of a vacuum transmission line, which corresponded
with the electron beam IBeams = 53 kA. In the stage of 17 to 35 ns in the experimental results
shown in Figure 8, the beam intensity significantly increased with the voltage. At 35 ns,
the electron beam intensity was 51 kA, which was in good agreement with the theoretical
model of the electron beam diode.

Stage three (35–103 ns): The potential difference between the transmission line and the
diode gap was greater than 354 kV. In this period, the coaxial cylinder area was transformed
from the vacuum transmission to the magnetic insulation. In the process of the state of
transformation, the cathode of the transmission line emitted electrons, thereby leading to
the failure of the vacuum insulation, resulting in a power transmission cut-off in a short
period. The size of the diode cathode was much smaller than the radius of the cathode of
the coaxial cylindrical MITL, thereby avoiding the entry of the electric charge in the stable
magnetic insulation stage into the diode gap. The conduction current of the cathode on the
MITL entered the load area and changed into the electron beams. They were then collected
by the full absorption Faraday cup. The electron beam reflected the conduction current of
the cathode of the MITL.

In the laminar flow theory, the conduction current of the cathode ICathode and the
current of the anode met the following formula:

ICathode =
IAnode

γm
(12)

At the time of the peak pulse, γm = 1.41 and the conduction current of the cathode
was ICathode = 97 kA, which corresponded with the electron beam intensity of the diode
gap in the laminar flow theory. In the experimental results shown in Figure 9, the peak
beam was 89 kA, which was slightly lower than the theoretical value.

Notably, the electron beams sharply reduced during the period later than the formation
of magnetic insulation at 35 ns. The analysis indicated that it may have been related to the
vacuum insulation failure and the magnetic insulation establishment on the transmission
line. The simulation results in the early stage generally suggested that this process, being
a sub-nanosecond process, was very rapid when being reflected in the electric pulse
waveform. From the beam waveform obtained through the measurement, the duration of
the beam intensity from the sharp reduction to recovering to the theoretical value reached
7 ns. The analysis showed that this phenomenon was because the wave reflection in the
power coupling process in the power coupling system of the electron beam diode driven by
the MITL could cause the amplification of the waveform distortion in the beam waveform.
The physical mechanism of this phenomenon needs to be studied further.

Stage four (~103 ns): At 103 ns, the coaxial transmission line transformed from the
magnetic insulation into the vacuum transmission line state. The transformation of the
transmission state could lead to changes in the beam waveform and intensity. However,
this process resulted in the vaporization of graphite on the surface of the collector as well
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as plasma formation, ion diffusion, and other processes because of the strong electron
beam that bombarded the graphite collector during the experiment, which accumulated
high energy in a short time. These processes affected the working process of the Faraday
cup and the accuracy of the beam measurement. At the back of the beam waveform, as
shown in Figure 9, the high-frequency interference became significant, which may have
been related to the surface state change and evolution of the absorber. In this case, the
beam measurement experienced a significant deviation.

5. Conclusions

Diagnostic research on an intense electron beam was conducted for the first time in
view of an electron beam diode driven by an MITL. A full absorption Faraday cup with
low inductance and a fast time response was developed. The voltage division ratio of the
full absorption Faraday cup was 636 A/V and the signal resistance was 1.57 mΩ. With
the full absorption Faraday cup absorber as the anode of the electron beam diode, a pulse
waveform of the electron beam was obtained through experiments. The beam waveform
showed typical multi-stage characteristics with the working process of the front-end MITL.
These stages were in good agreement with the formation time and conduction current of
the magnetic insulation through theoretical calculations. The experimental results revealed
the characteristics of the electron beams in the loading area of the complex power coupling
system of the electron beam diode driven by the MITL for the first time. Furthermore,
the designed full absorption Faraday cup met the beam measurement requirements in a
complex electromagnetic environment, providing a reference for subsequent research on
intense electron beam diodes.
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