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Abstract: Worldwide energy shortages and the green energy revolution have triggered an increase in
the penetration of standalone microgrids. However, they have limited generation capacity and are
wasteful when excess generated energy is curtailed. This presents an opportunity for the coordinated
operation of multiple prosumer microgrids that absorb this waste to enhance their resiliency and
reliability. This paper proposes a reliable prosumer model with an inbuilt energy management system
(EMS) simulator that considers the mentioned deficiencies for constructing resilient interconnected
prosumer microgrids. The EMS simulator operates in a real-time dynamic environment to coordinate
the prosumer components and performs flexible switching for (1) prioritizing critical load by shedding
the non-critical load and (2) meeting load demand locally or from other interconnected prosumers.
The EMS simulator maintains energy balance by setting limits for the battery energy storage system
(BESS) to preserve energy during low generation and performs real-time monitoring. The novelty of
this model lies in its simplicity and flexibility, which allows interconnected prosumer microgrids to
operate in cooperation without the need for communication. The proposed model is evaluated in a
post-disaster off-grid scenario using a single-phase average value model that considers reasonable
computation time. The simulation results of the proposed system indicate the preservation of stored
energy while maintaining critical resources beyond three days of poor weather conditions.

Keywords: energy management system; battery energy storage system; demand and supply balance;
photovoltaic system; reliability; resilient; prosumer

1. Introduction
1.1. Background and Motivation

The drive towards net-zero carbon emissions remains an important goal for govern-
ments worldwide. Recent statistics shared in [1-4] indicate the growth of renewable tech-
nologies globally, both as standalone entities that produce and consume energy (prosumers)
and as small-scale shared energy sources such as photovoltaic (PV) power generations,
often termed distributed energy resources (DERs). The authors attribute this progress to
the reduced costs of production driven by market growth and the adoption of supportive
policies.

The integration of DERs that include renewable energy sources, loads, and BESSs that
operate collectively as controllable units is termed a microgrid [5,6]. Microgrids can range
from simple and small to complex and large. A review of existing DER literature in [7,8]
reveals that the terms microgrid and minigrid are often used interchangeably. However,
various authors agree that the key differentiator is the size and capability of the DER. Since
there is no standard classification of the microgrid in terms of capacity or capability, this
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article’s authors attempt to classify the position of the proposed model in terms of capacity,
size, and capability in relation to a power system in Figure 1. A nanogrid refers to home
energy management systems (HEMS). While HEMS systems that are grid-connected but
do not sell power to the grid exist, this literature defines the HEMS equivalent prosumer
referenced in the article as capable of two-way power flow in its grid connection.

Power System (National Grid Utility)
* > Medium Voltage
* Utility Grid Connection

Minigrid
Medium Voltage (6600Vac)

* Several Interconnected Microgrids
(50kW-5kW)

Microgrid
*  Medium Voltage (6600Vac)
+  Several interconnected prosumers with HEMS

*+  BEMS, CEMS ( 10kW-50kW)

Nanogrid (HEMS/Prosumer )
*  Low Voltage (200Vac)

*  Produce and Consumer = Prosumer

*  Energy trading
«  <]0kW

Figure 1. Classification of grids by capacity.

Researchers in [9-11] observe that increased penetration of DERs derives challenges,
manifesting as voltage and frequency fluctuations, phase mismatches, and supply-demand
imbalances that could disrupt power systems and effectually reduce their reliability. Despite
these challenges, many researchers contend that as a clean inexhaustible energy source,
with their ease and inexpensive deployment cost, and characteristic storage ability through
their battery energy storage systems (BESS), DERSs still offer a formidable solution. Various
deployments as standalone solutions and supplements to consumer grid networks are
increasingly prevalent and have proved beneficial to bridging the energy generation gap.

Concurrently, authors in [12] observe that interconnected systems offer the advantages
over standalone systems of improved resilience and reduced energy losses, thus cost-saving
through sharing resources. Particularly, the resiliency characteristic of DERs is essential
to power system collapse prevention during planned and unplanned shutdowns [13].
Unplanned outages are becoming increasingly common worldwide, caused by natural
disasters, common faults, and, more recently, cyber-attacks. The authors have shared
accounts of disaster-related power outages in [14-17], detailing immense losses to the
affected communities. These researchers cast light on the lack of resilient power systems
characterized by emergency backup systems to grid power supply should a disaster occur.
Various authors have proposed solutions to improve the reliability of the grid, for example,
the scheduled generation dispatch proposed in [11,13].

The authors extensively explored the concept of “resilience” in [15,16], who define a
resilient power system as flexible, robust, adaptable, and resourceful with prediction capa-
bilities. Moreover, the importance of storage systems is amplified to be critical to resilience
as energy market concept recognition grows. Noteworthy is the dependence of DERs on
external factors such as weather, which implies that, short of prediction methodology, their
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BESS’s measured state of charge (SOC) is the true measure of the guaranteed output power
for a particular period. Therefore, the proposed prosumer model considers BESS SOC as
the basis for the resulting energy management system’s decision-making process. Within
this context, the proposed prosumer model and EMS ensure demand and supply balance in
standalone and interconnected prosumer modes while controlling system characteristics.

Microgrid operators often require approximate models of the basic system compo-
nents which manifest real system characteristics to design feasible interconnected power
systems. These approximate system models serve as test systems to iron out typical system
installation-related issues, including human errors, inconsistencies, cost, and time [18].
Therefore, if they were simplified, more flexible, and able to run fast and accurate simula-
tions, they would greatly aid the design process. Consequently, the developed prosumer
model adopts approximate average value models that significantly allow for reduced
‘practical’ simulation time during long steady-state simulations.

1.2. Related Works

The authors in [6,19,20] present an overview of microgrid architectures, definitions,
and control strategies in their definition of the single-bus topology adopted for this article
as the commonly used topology in microgrid systems. These authors also document the
concept of the prosumer model, at times referred to as a HEMS and commonly known as
a residential microgrid. Tables 1 and 2 present a summary of the proposed models from
various researchers selected for their close relation to our proposed model in terms of type,
objective, and key control parameters.

Arani et al. in [21] contend that microgrids are low- and medium-voltage network
distribution systems where the growth rate for the residential-type prosumer model type is
rapid. Their observation motivates this article’s single-phase approach to the inverter and
load modelling. In addition, an analysis of the published research in the two tables points
to little attention from researchers on single-phase modelling, with most of the research
focusing on three-phase systems, further warranting our proposed approach. In some of
this literature, researchers do not indicate the load types.

The literature review also shows that little emphasis has been put on load model
designs regarding mixed loads and exploring possibilities of partitioned loads for improved
load management. While some authors [22,23] include load shedding as part of their control
algorithms, only Michaelson et al. in [24] apply load shedding by separating it into critical
and sheddable non-critical loads. However, this author opts for an arbitrary load profile to
demonstrate the performance of the proposed algorithm, thus leaving their feasibility in
practical situations to question. Other authors explored a re-schedulable load modelling
approach to supply and demand balance which is demonstrated to even the balance curve.
Still, these authors ignore the control of characteristics such as frequency control, voltage
control, and phase matching of the generated load current and supply voltage that lead to
power loss and system instability.

Furthermore, in modelling their prosumer models, it is observed from Table 1 that the
objective of the research biases the design of the microgrid model. For example, the authors
in [22,23,25], whose objective is reducing the electricity bill’s cost, assume a balanced
system to perform optimized outcomes and thus ignore the characteristics of the electrical
components. This exclusion of system characteristics results in the inaccuracy of the results
of the proposed control algorithms. The papers with detailed voltage source controllers
(VSCs) in [26,27] either consider only active load or are three-phase VSC approaches,
such as in [28,29]. Most models from these tables that focus on pricing implement long
duration, i.e., 24 h or more, using average value VSC simulation designs but ignore system
characteristics.

By comparing this existing literature in Table 2, we observe the inconsideration of
energy sharing and increasingly often disaster occurrences in the model designs. Con-
sidering the rising applicability of energy-sharing systems to create the so-called energy
markets, energy sharing, with a bidirectional flow of power to and from the prosumer’s
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installation, is imperative. However, few authors, such as [25], consider this advance-
ment in the prosumer model. The popularity of energy sharing is not just a result of the
interrelated financial gain but also a recently popular method for guaranteeing power
security against disasters. As disasters are increasingly common, their consideration in
prosumer designs, simulations, and test scenarios would significantly improve the results.
Accordingly, our proposed prosumer model employs load shedding, PV curtailment (PVC)
as demand and supply balancing methods, and voltage and phase matching control during
long steady-state simulations to ensure fast disaster recovery.

Table 1. Summary of Related Works: Objectives and model.

Model
Objecti
References Jectives PV and BESS VSC Type Load Grid Connected
[22] Load scheduling for a reduced bill v Average Active v
[23] Load scheduling for a reduced bill v Average Active v
[24] Increase uptime v Average Mixed ! x
[25] Load scheduling for a reduced bill v Average Active v
[26] Demand and supply balance v Detailed Active x
[27] Demand and supply balance v Detailed Active x
[28] Demand and supply balance v Detailed Mixed 12 v
[29] Demand and supply balance v Detailed Mixed ! x
[30] Demand and supply balance v Average Mixed ! v
[31] Power flow Controlhby day-ahead v Detailed Mixed 2 /3
scheduling
[32] System stability by treziltmg BESS v Detailed Active <
thermal constraints
133] System stablhty in grid-forming v Detailed Mixed 2 v
applications
The proposed Energy preservation c.iurmg low v Average Mixed 2 v
method generation periods
! Three-phase, 2 Single-phase, > Buying.
Table 2. Summary of Related Works: Control Parameters and Features.
Control Parameters and Features
Disaster
References Voltage/Frequency/ Energy Sharin Load Sheddin PV Consideration
Phase Control ergy sharng 8 Curtailment
[22] N/A x v v x
[23] N/A x v v x
[24] x x v v x
[25] N/A v v v x
[26] v x v v x
[27] v x x x x
[28] v x x x x
[29] v x x x x
[30] v x x x x
[31] x x x x x
[32] v x x x x
[33] v v x x x
The proposed
method v v v v v

DERs are essentially powered electronic systems supported by information and com-
munication technology applications. Therefore, as DER penetration into grid networks
increases, part of the role of the EMS is to ensure smooth synchronization when integrated.
Phase-locked loop (PLL) techniques are increasingly popular in synchronizing, monitoring,
and controlling grid-connected inverter-based DERs. PLLs are preferred because they are
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typified by frequency, phase angle, and amplitude detection of the system voltage to ensure
the correct generation of a matched local reference current signal. This allows matching
the inverter current phase angle with the grid voltage phase angle to obtain a power factor
close to unity [34]. To this effect, PLLs of different types have been proposed by various
researchers to synchronize the injected current with the grid voltage. These techniques
include time delay PLL, inverse park transform PLL, enhanced PLL, and second-order
generalized integrators (SOGI)-PLL, among others. Amongst these, the SOGI-based PLL
is popular in single-phase applications, given its harmonic rejection capability, high accu-
racy, and fast response to grid variations [35,36]. However, a quadrature signal generator
(QSG)-SOGI is still unstable when its input signal contains frequency harmonic currents
and other harmonic components, as deliberated by the authors in [37]. Therefore, the
authors of this article implement the double SOGI-QSG PLL to match the generated current
phase angle to the prosumer supply voltage. The double QSG is preferred for its improved
harmonic rejection while maintaining simplicity [38], which enables its fast response during
switching and grid variations hence its applicability in long-duration simulations

1.3. Contributions

This study is an extension of the authors’ previous research [39-47] published in
various proceedings. The study develops a compressive prosumer model with an inbuilt
EMS simulated with MATLAB/Simulink Simscape. The contributions are summarized
below:

o Development of a prosumer model that includes PV generation, BESS, and electricity
load and can flexibly change its mode of operation according to supply and demand
conditions. The prosumer model incorporates further characteristic functions to
complement its operation that include:

A PVC function that prevents excess generation;

DC bus voltage control by using a proportional integrator (PI) controller;

An improved electricity mixed load model based on actual measurement data using a
SOGI-QSG PLL for phase matching;

e  System power security by separating critical and non-critical load through the non-
critical load shedding (NCLS) function.

e  Construction of an EMS simulator that operates in a real-time dynamic environment
to coordinate the prosumer components and perform the following functions:

e  Flexible load switching (FLS) function where the local generation meets the demand
or the demand switches to the external supply from cooperating prosumers during an
emergency, within the set BESS limits;

e  Real-time monitoring, observation, and an alert warning system for system operation
by creating a colour-coding scheme for each operating mode.

The resulting system is a simple, flexible average value model that allows for the
interconnection of prosumers to form microgrids that operate in cooperation without the
need for communication, thus reducing the cost. In addition, potential revenue can be
realized from participating entities if cost incentives are included.

1.4. Paper Organization

The rest of the article is organized as follows: In Section 2, the proposed prosumer
model with a detailed description of the comprised components and its control scheme
is presented; in Section 3, the simulation design is presented, including the proceeding
simulation results and their discussion; finally, Section 4 concludes this article.

2. The Prosumer Model and Control Scheme

Figure 2 depicts the architecture of the adopted prosumer model. The structure
consists of a PV system with maximum power point tracking (MPPT) control to maximize
power generation as the primary power source and a BESS to store excess generation and
support the control of the DC bus to a constant 400 Vdc reference to which they both
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connect. Several converters, as depicted in the figure, are used. A unidirectional DC-DC
converter (boost type) steps up the generated PV system voltage to 400 Vdc, the reference
voltage of the DC bus. A bidirectional DC-DC (buck-boost) converter enables a two-way
power flow to and from the BESS. The single-phase VSC synchronous inverter from [33]
converts the DC bus voltage, 400 Vdc, to 200 Vac, 60 Hz. This voltage supplies an adjustable
single-phase load apportioned into non-sheddable critical and sheddable non-critical loads
through switch L (NCLS function). The proposed prosumer model can interconnect with
other prosumers on a private line or grid for bidirectional energy sharing through an ideal
transformer. Switch S implements the FLS function, where the demand can be met locally
or from the private line, depending on the operating mode, while switch L implements the
NCLS function.

IMPPT & PVC | ' Switch S

’

v
Y7 — DC Bus — : N
_ : = [ 400VDC ~| 1. ) r00vac @6.6KVAC
: : . __
\

.......... ! - sst /'

/

\ / Private Line

/

| ] ., .
! L—»{Non-critical Load

! ;' -

E : g ----+ Signalling line
: Power line

. :i Private line

' EMS Supply OFF

' $ &
SOC 1, SOC pe 100
Battery SOC (%)

Figure 2. The proposed prosumer model.

2.1. The Battery Energy Storage System (BESS)

The BESS consists of the battery, its bidirectional DC-DC converter, and a DC bus
controller. The battery model is adopted from MATLAB/Simulink. The battery is assumed
to operate between 10% and 90% SOC for consistency in the battery characteristic and
to avoid overcharging and over-discharge, synonymous with reduced battery life. Lead-
acid type batteries are selected for their competitive cost and popularity. However, all
other battery operation-dependent factors such as temperature and power density are not
considered as the focus is mainly on the SOC.
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The battery is connected to a bidirectional DC-DC converter that enables charging
and discharging battery operations. The converter is of average value type, consisting of
controlled current and voltage sources. A duty cycle is generated by comparing the DC
bus reference voltage and measured voltage using a PI controller. As a result, the DC bus
is maintained at 400 Vdc. Equations (1) and (2) below represent the BESS and its DC bus
controller’s constraints.

i.  Limitations of the BESS SOC (%):

SOCjgss < SOChess(t) < SOCy6 @
ii.  Upper and lower bounds of DC bus voltage (V):

VR < Vie(t) < Vi @
where i: Prosumer number (I, ..., Np), P]ij(t): Electric load [kW] of prosumer i at time ¢,
V5" DC bus minimum Voltage V), VEC(t): DC bus voltage (V)' at time £, V51**: DC Bus
maximum voltage (V), SOCfc: BESS minimum SOC (%), SOCf s (t): BESS SOC (%) at
time t, SOCyp¢s: BESS maximum SOC (%).

2.2. The PV System

The PV array model from MATLAB/Simulink that inputs temperature and irradiance
data to generate the I-V characteristic is used. The input to the PV array is 5-minute data
that is interpolated into one-minute data. An array of 3 modules connected in parallel, each
string consisting of 13 modules connected in series, is adopted. The output of the PV array
is a voltage V;Z, and a current [ ;,U. The resulting system has a rated output of 7.5 kW. The
PV system is fitted with an MPPT controller whose algorithm is shown in Figure 3, which
maximizes the PV output based on the incremental conductance algorithm. This algorithm
follows the principle that the PV characteristic curve has a gradient zero at MPP, which
results in Equation (3).

an,() I,
AV, (t) Vi

®)

The incremental inductance algorithm is a typical algorithm shown in Figure 3 where
vy and #; are the instantaneous voltage and current, and v;_; and 7;_; are the values from
the previous time step. The MPPT controller generates the duty ratio that controls the
boost DC-DC converter’s output to the DC Bus. The converter is of average value type and
contains controlled current and voltage sources. The PV output upper and lower limits are
defined by Equation (4) where P is the maximum PV output (kW) and Pb,,(t) is the PV
output (kW) at time ¢.

0 < Phy (1) < PRy™ )

However, instead of depending solely on MPPT to control the boost DC-DC con-
verter’s output, this paper incorporates a PVC method, whose decision algorithm is shown
in Figure 3, as an alternate when the PV output is surplus. During PVC mode, a fraction of
the PV system’s rated output PI%’” is defined as the prorated new maximum power point,
Ppy - of PV system output expressed by Equation (5). This new Py, is used as a reference
to calculate the next steps of input voltage v;_1 by defining a new reduced MPPpy ¢ for the
gradient calculation in Equation (3). The SOC of the BESS at PVC SOCk,, -, above which
curtailment is implemented, is also set by Expressions (6) and (7). The EMS operator sets
these values through the proposed EMS simulator. Therefore, depending on the current
mode of system operation, the EMS controls the separating PVC switch to interchange
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between MPPT and PVC. The boundaries for implementing the PVC function are defined
by the Expressions (4) and (5)—(7) below.

Phy (t) < Phyc < Pp™ )
SOCHEY. < SOChyc < SOCKE ()
SOC%"S;"S < SOC%ESSG) < SOC%VC (7)

START
A 4
i imax i V-1 = Vo
Set: Ppyc, Fpy, SOCpyc, i—1 =1

Measure: SOChy (1), Phyc(t), Uy, U

S0Ch,(t) > SOCLy¢

YES

Phy(t) > Phyc
YES =PVC

i i,max
Ve < Ve—1*(Poyc/Poy )
ir =1

/ YES

PVC Decision

MPPT v
Algorithm i

Figure 3. MPPT algorithm, including a PV curtailment function.

2.3. The Single-Phase Synchronous Inverter (551)

The SSI used in this study is also of average value type and consists of a controlled
current source on the DC side and a controlled voltage source on the AC side. By combining
the output of the AC side and the input of the DC side with the reference voltage values
of the DC bus (400 Vdc) and the AC bus (200 Vac, 60 Hz), we can calculate a duty ratio
that drives the inverter’s bidirectional energy conversion operation. This inverter model is
adopted from in-house research by Yorino et al. [33] that directly implements the dynamic
characteristics of synchronous machines using the swing equation.

2.4. The Load Model

The non-sheddable critical, P(fn. tica1 @0d sheddable non-critical, P; on—critical (1) 10ads are
separated by switch L, a conventional circuit breaker, as shown in Figure 4. The circuit
breaker takes input commands from the EMS to control its state through the NCLS function
as instructed by the proposed EMS. This article’s simulation uses the ideal switch available
in MATLAB/Simulink. The load model inputs externally generated demand data, recorded
over time, to generate a current I,.;. It takes the form of a controlled current source in

MATLAB/Simulink.
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i
P criiea™ Apparent

p.f > Power
Calculation l
Switch L

P Apparent Apparent power
fl Power
p- Calculation !
Oy . Current I
i ref
$ .| Reference
Double Vs Generator
V. = QSG-SOGI 3 ¢V

PLL -

Figure 4. The proposed load model.

In the proposed load model, we have considered both the active and reactive power
components and ensured that the phase of the generated current is matched with the supply
AC voltage. This is necessary because the supply voltage source alternates between the
private line and the local prosumer source, and mismatched phases can cause instability in
the system. Before combining the critical and non-critical loads, we calculated apparent
power. The combined critical and non-critical load is then forwarded to the current reference
generator shown in Figure 4. The other inputs to this current reference generator are the ac
voltage V¢ and the voltage phase angle 6'. These values are generated through the double
QSG SOGI-PLL, whose open-loop transfer function is expressed by Equations (8)—(11).
The QSG SOGI-PLL is thoroughly described by the authors in [34,48], while the improved
double QSG SOGI-PLL from [38], which uses a double SOGI-QSG, is implemented for our
load model. The equations below summarize the parameter design.

klkzw/SZ
I =

GI(s) ((s2 + kpw!s + wl?) (s2 + wi?) ®

where 44
Wy = E )
ky = Wi (10)

~ A4lwy
k= — (11)

where ¢, is the selected settling time, { the damping ratio, and w/ the centre frequency.
Voltage, V;ius and phase angle, 6/ are combined within the current reference generator to
generate I, ¢, the current reference that drives the controlled current source block.

During normal operation, the demand at time ¢ is defined by Equation (12). However,
durmg NCLS, the total demand reduces to the critical load P;,.,;,; only since the non-critical
load P! (t) is disconnected. Further limitations (13) and (14) are enforced by the

non—critical

NCLS function which is implemented through switch L.

crztzcal < PD( ) = Péritical + Prltonfcriticul(t) (12)
0< P;lon—critical(t> = P;lquzaxcmtzcal (13)

0 < SOCLy(t) < SOCE, (14)
where PIS(t): Active load demand (kW), P! Critical electric load (kW), P!

critical’ non—critical®

Non-critical load (kW), P""* : Maximum non-critical load (kW); Pé?gg : BESS dis-

non—critical”®
charging maximum output (kW).
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SOCHTes

SOC[%]

soc

i,min
BESS

2.5. The Proposed EMS Simulator

The proposed EMS simulator redefines the BESS SOC operation area whose limits are
defined by equation (1) by dividing it into regions, as shown in Figure 5. New constraints
SOCE, and SOCE, are introduced to the BESS SOC’s operation region, which modifies
its operation to limit its depletion during a disaster. These limitations are intended to
prevent the BESS SOC from being depleted during a disaster, with the assumption that
the prosumer is more concerned with maintaining uptime by drawing power from the
network rather than minimizing cost, for example, in a critical installation such as a hospital.
Historical data on consumption can be analyzed to define the BESS SOC limits based on
the primary objective of the installation concerning uptime requirements.

PV Curtailment Region

Normal Region

Emergency L2 or Critical Region
Time

A — A" = PVC Control (PVC switch = ON)

= Emergency L1 Mode (Switch S = ON, Switch L = OFF)

C — C' = Emergency L2 Mode (Switch S = OFF, Switch L = OFF)
C — D = Critical Mode (No conncetion to Private Line (Switch S = ON, Switch L = OFF)

Figure 5. Definition of the BESS SOC operating region.

Therefore, by setting a lower limit of BESS’s SOC SOC! |, the EMS maintains the critical
load beyond a prolonged period; for example, T = 3 days for the proposed case, a duration
typically sufficient for availing initial relief services should an outage occur. The function
in Equation (15) defines the proposed EMS:

T T ) )
Z rltlcul Z PPV + PBESSd h( ) - PIZEESSCh( ) + Plrwl( ) Piionfcritical(t)) (15)

The proposed SOC-based EMS tool maintains supply and demand balance based
on Equation (15) and the defined constraints (1), (2), (4)—(7), (12)-(14), and the following
additional constraints in (16)-(18). Expressions (16) and (17) are BESS power charging and
discharging constraints, while (18) is the constraint for FLS control which takes effect when
the BESS SOC level is within the region defined by (19).

l min 1 max
PBESSd hn — PBESSd h (t) PBESSdch (16)

1 min l max
Pgpgs,, < PhEss h(f) PgEss,, (17)

0 < Pyig(t) < P, (18)

rltzcul
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SOCH, < SOCL,(t) < SOCt, (19)

where P;m. 4(t): Net power from the private line (kW), Plignvmx: PV maximum output (kW),
P;’g’;dch: BESS discharging minimum output (kW), Pg’gggdch: BESS discharging maximum
output (kW), ng’é’;chz BESS charging minimum output (kW), Pé’?ggch: BESS charging maxi-
mum output (kW).

Additionally, Figure 6 is the proposed control flow through which the proposed EMS
makes decisions. The defined regions in Figure 5 of the BESS’s SOC operation range
determine the alert trigger points for the proposed control actions defined below with

different constraints for the BESS and PV system emphasized for each mode:

e Normal mode (Green): Under optimum conditions, the control algorithm maintains
the battery operating in the normal area. Here, the load demand is satisfied by the PV
and BESS power. The prosumer can also supply power to the private line in case of a
surplus in its generation. The expression (15) and its generally defined constraints (1),
(2), (4), and (12) for the system operation limits apply to this mode.

e PV Curtailment Mode (Blue): However, when the PV output is surplus to the require-
ments, i.e.,'when the BESS SOC, SOC%ESS (t) > SOC};VC and the PV system’s output,
Ppy (t) > Phyc, PVC function curtails the PV output to avoid system instability. The
prosumer operation range can gradually return to the normal mode through the PI
controller-enabled PVC function with pre-set parameters. During the PVC mode of
operation, the PVC function overrides the MPPT controller. Therefore, expression
(15) applies, but the PV and BESS constraints (5)—(7) are emphasized. Emergency
L1 Mode (Orange): If the BESS SOC SOCkL.«s(t) level falls beyond the upper limit
value SOCh, NCLS mode follows, where switch L opens, the non-critical load is shed,
and only the critical load is supported. Therefore, a modified constraint (12) with

PT’; on—critical(£) = 0, and the BESS SOC constraint (14) are stressed.

e  Emergency L2 Mode (Red): The EMS, through the FLS function, opens switch S below
the lower limit value, SOC!,. In this region, other cooperating prosumers connected
to the private line meet the critical load demand. The expressions in (18) and (19) take
priority.

e  Critical Mode (Brown): The EMS engages the critical mode if the private line discon-
nects through an outage or lack of supply. The prosumer utilizes the remaining BESS
SOC by taking on normal mode operation but with P;,ri ;(t) = 0 in expression 15 until
Emergency L1 mode is restored. However, if the private line reconnects during the
critical mode, Emergency L2 mode is instead assumed.

e  System failure (Grey): System failure results if there is no PV output and the BESS
SOC is depleted beyond the minimum value. For network and prosumer equipment
safety, all loads are shed.

As illustrated in Figure 2, the EMS simulator communicates with components within
the prosumer model to ensure proper system operation. It executes the flow described in
Figure 6 for each iteration of the input conditions. The EMS simulator enables the creation
of cooperative interconnected prosumer microgrid systems in a distributed architecture
without the need for communication between them, providing a robust system that is resis-
tant to communication failures and potentially cost-effective to implement in microgrids.
In this simulation, we have not considered energy costs, but this will be an area of future
research.
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. ; 2 /—\ .
SOCpgss(t) < SOCy, S0Chgss(t) < SOC,

Emergency L1
Mode
(Switch S =ON
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SOCgss(®) > SOCye SOCsrsg(®) > SOCia +d;

i i = T
Ppy () > Pevc SOCipss(t) > SOC),

SOChggs(t) < SOChye
Pev(®) < Poye —dy Emergency L2

Mode
: : Switch S = OFF
PV Curtailment Private Line ( o D
disconnected Switch L =
Mode _ ! . e
SO0Cggss(t) > SOCE,

- . Private Line
; {mi Private Line disconnected
SOCggss(t) = SOCgggs re-connected

SOCH™R < S0Ckgss(t) < SOCE,

System failure
Critical Mode

(Switch S = ON

Switch L =

' o OFF)

SOCggss(t) < SOCggss
0 < Ppy(t)

Figure 6. The proposed EMS simulator flow.

3. Simulation and Results

To ensure the consistency of our results, we assumed that the two prosumers in
Figures 6 and 7 were operating under identical weather conditions. Both prosumers were
designed with identical components, including a 7.5 kW-rated PV system with a 40 AH
lead acid BESS system with a 5-h discharge rate, a 48 V nominal voltage, and a 17.4 A /unit
rated discharge current. These components were modelled using the models provided
in MATLAB/Simulink. We set the PVC value Pliavc = 5 kW for the prosumer and the
parameters d; and d, in Figures 5 and 6 were set to 1% of the maximum BESS SOC. The
system was operated at 60 Hz, and the test cases assumed a post-disaster situation.

_ = Prosumer X
Load data | - » =
Eu’
INPUT—| Weather data ‘anmunity
H Private Line
Lu|Prosumer Y
Load data o 4

Figure 7. Simulation setup.
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The BESS settings for each prosumer were chosen arbitrarily and are shown in Table 3.
Prosumer X represents installations that require high BESS SOC backups, while prosumer
Y represents those with minimal backup requirements and a preference for energy trading.
For this simulation, energy trading and the associated tariffs were not considered.

Table 3. SOC Settings for Each Prosumer.

Initial PVC ; o i o
Prosumer Value [%] Value [%] SOCj, Value [%] SOCj, Value [%]
X 80 80 65 60
Y 50 80 45 40

3.1. Simulation Conditions

Various three-day weather patterns in Figure 8 were formulated from the sunny
(S)-rainy (R)-cloudy (C) options in Figure 9a and were considered for the simulation.

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

1200 35

SUNNY RAINY CLOUDY Dayl Day2 Day 3
o) g [Prosumer X Total Load
1000 z
5
&
25
= . & \Crilical Load
E ) 0
z "'
g 600 £
] 2
E 15 8 10
400 Irradiance Temperature - —
o _ |ProsumerY
§ Total Load
200 §s /\—//{
s <

0 S e s i Critical Load
O O ® ® OO ® ® ®® ® ® O ® W ® O ® W ® 0
T T T PT LT AT BT T Q@ @ T @7 AT AT AR VT T @ g8 @ LT ST BT N O . O O O ® ® O D O D o 0 o .0 )
Time(min) B e R R e R AR CAVASCAR OSSR
Time(min)

(a) (b)
Figure 9. (a) Three-day weather data. (b) Three-day load profiles.

This figure’s temperature and radiance data were used to generate the corresponding
PV curves. When the simulation was run with day one as rainy in the third tree, it failed
because the demand exceeded the sum of the generated power and the energy stored in the
BESS, thus violating the constraints of Equation (15). Consequently, the feasible worst-case
scenario was the cloudy-rainy-rainy pattern from the second tree used for the simulation.
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Figure 9b includes the demand curves for the two considered prosumers. Following
the proposed load model, the data shows variable non-critical and constant critical loads
used as input. The load data was fed into the proposed load model to generate the load
supply current. This load data was collected from the different floors of the electric power
and energy systems laboratory building at Hiroshima university and thus follows a typical
research facility profile. The weather data was collected from the building’s rooftop over
the summer. A comparative simulation was run for five test cases in Table 4, considering
two disconnected and three scenarios where the two prosumers, X and Y, were connected.
FLS is not applicable in disconnected cases as there is no external power source. Test cases
1 and 3 are control cases for each connection status, where the NCLS for both cases and
the FLS function for case 3 were disabled. Test cases 2 and 4 are for the case where only
NCLS was enabled, and finally, test case 5 is the test for the proposed prosumer model and
its EMS where PVC, NCLS, and FLS control are all enabled. For all cases, the PVC was
enabled.

Table 4. Summary of test cases.

Test Case Connection Prosumer X Prosumer Y
Status PVC NCLS FLS PVC NCLS FLS
1 Disconnected v x NA v x NA
2 Disconnected v v NA v v NA
3 Connected v x x v x x
4 Connected v v x v v x
51 Connected v v v v v v

o

CLOUDY

! The proposed method.

3.2. Simulation Results

Figures 10-14 present the three-day simulation results of the five test cases for pro-
sumers X and Y, respectively. All the graphs from top to bottom in each figure include the
power flow, DC Bus voltage, load supply and BESS SOC with colour coding described in
the proposed EMS in Section 2.5.
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Figure 10. Test case 1 (disconnected). (a) Performance of prosumer X. (b) Performance of prosumer Y.

Positive BESS power indicates discharge in the power flow curve for each figure,
whereas negative power denotes BESS charging. Similarly, positive private line power
values signify power flow from the private line, whereas negative flow means power flow
towards the private line from the prosumer.
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Figure 11. Test case 2 (Disconnected). (a) Performance of prosumer X. (b) Performance of prosumer Y.
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Figure 12. Test case 3 (Connected). (a) Performance of prosumer X. (b) Performance of prosumer Y.
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Figure 13. Test case 4 (Connected). (a) Performance of prosumer X. (b) Performance of prosumer Y.

In the disconnected test case 1 (Figure 10), the SOC of prosumer X was observed to
reach 0% on day two due to its low initial SOC, high demand, and low power generation.
As a result, the system collapsed, considering that the generated PV power on the second
rainy day could not support the demand. However, prosumer Y successfully navigated

the three-day simulation by consuming almost half the stored power in its BESS and the
generated PV Power.
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Figure 14. Test case 5 (Connected). (a) Performance of prosumer X. (b) Performance of prosumer Y.

Both prosumers in the disconnected test case 2 (Figure 11) show improved perfor-
mance in the remaining SOC after three simulation days. All prosumers maintain uptime
and depict stable DC bus voltages compared to the control test case 1. This improved
performance results from prolonged load shedding of the non-critical load.

Without any form of demand and supply control or protection, test case 3 in Figure 12
fails on day two of the simulation. This is despite the power flow between the two
prosumers. At the failure instant, both prosumers cannot meet the total demand, and
therefore, this imbalance results in an unstable system. Contrarily, a stable system is
observed in Figure 13 (test case 4), where a power flow between the two prosumers is
observed to supplement their performance. However, it is seen that the SOC for prosumer
X operates far below our proposed lower limit SOC!, = 45%, even with the prolonged
load shedding and the constant power supply from prosumer Y.

The performance of our proposed prosumer model and its EMS depicted in Figure 14
shows an increased flow of power from prosumer Y to prosumer X. This power flow
reduced the shedding of the non-critical load when compared with the test case 4. Therefore,
prosumer X’s SOC remained very close to its initial SOC at the beginning of the simulation.
PVC was enabled for all test cases, but since the weather conditions were the worst-case
scenario, PVC is not observable in the simulation results.

Table 5 summarizes the results of the five test cases depicted in Figures 10-14. A
comparison of the results indicates that the proposed interconnected prosumer model with
its EMS offers the best performance as it maintains the SOC of prosumer X at a relatively
high SOC by the end of the three-day simulation.

Table 5. Summary of results.

Test Case Prosumer Initial SOC (%) Final SOC (%) Result of Simulation

1 X 50 NA Unstable (day 2)
Y 80 46.7 Stable

2 X 50 NA Unstable (day 3)
Y 80 52.10 Stable

3 X 50 NA Unstable (day 2)

Y 80 NA Unstable (day 2)
4 X 50 7.3 Stable
Y 80 38.3 Stable
51 X 50 427 Stable
Y 80 40 Stable

! The proposed method.
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3.3. Results Discussion

It is observable in the results that the proposed model successfully maintains the
system’s stability over three days under a pattern of abysmal weather, hence meeting the
research objective. The maintained high SOC of prosumer X could allow it to run the
critical load for an extra day, which would be ideal for essential facilities critical to disaster
recovery such as hospitals. Prosumer Y is a typical non-essential facility such as an office
building that maintains essential critical services by yielding their stored BESS’s SOC. It
could also benefit if revenue is levied on the shared power.

However, this observed system stability is a trade-off between uptime and prolonged
curtailment of a prosumer’s non-critical load plus the potential cost of purchasing power.
This article omits the costs associated with energy trading by assuming each prosumer pri-
oritizes uptime over cost. Therefore, a consensus approach to trading where the prosumers
are owned by the same entity with uniform or zero costing is ideal.

Nevertheless, the high amount of traded power, as seen in Figure 14, indicates an
opportunity for energy trading. Revenues from energy trading can offset the cost of
installation of prosumer microgrids which could encourage renewable energy growth in
line with the sustainable development goals agenda. Therefore, an economic viability study
is recommended to realize this potential.

The proposed alert warning system enables the system administrator to monitor the
system’s operation and also aids the planning process for disaster recovery. However, the
intended purpose is to share this basic information of colour codes with a proposed future
central control system which could better manage waste from curtailed PV power and
improve the efficiency of the proposed solution as part of our ongoing study.

The initial SOC of each prosumer can affect its performance curve, but it does not
impact system stability for successful days of good weather, as we shared in [44]. The
balance between supply and demand through energy trading, PVC, and FLS, supported by
the included DC bus control technique, ensures the stability of the power system. Therefore,
the initial SOC can take any random value between 0% and 100%. However, as shown
in Figure 8, cases where the weather on the first day was rainy were not able to maintain
uptime beyond the first day due to the high demand of prosumer X with a low initial
SOC. Maintaining a higher initial SOC for the BESS prior to a disaster could improve
post-disaster resiliency. Thus, prosumer owners should consider this requirement when
determining the lower BESS SOC limit for the proposed EMS.

Additionally, this result indicates that the performance of each prosumer is heavily
dependent on an interconnected prosumer’s willingness to participate cooperatively in
energy sharing and is highly susceptible to failure in the disconnected case. While some suc-
cessful situations exist, interconnected prosumers with the switching control will inevitably
become unstable after consuming all their remaining BESS’s SOC when operating in the
Emergency L2 Mode and critical modes. Therefore, when interconnected with multiple
prosumers, a separate generation system or BESS could be essential to buffer the periods
when the initial conditions of the PV generation and BESS SOC are low. Interconnected
prosumers with only PVC and NCLS can potentially sustain long periods of uptime, as
seen in the results of test case 3. The prosumers maintain balance by sharing power to
meet only their critical loads; thus, by the end of the simulation, both prosumers have their
remaining SOC almost depleted. If the generated power of the prosumers on day four
does not improve, it will inevitably result in instability. Therefore, this builds the case for
our proposed model that reduces the load shedding duration while maintaining the SOC
above the emergency operating region with remaining BESS’s SOC almost enough to run
for a fourth consecutive day of bad weather conditions. Ideally, relief services or weather
improvement will be in place after these three days.

To validate our proposed model, we conducted a stress test using the Monte Carlo
simulation in [44] to confirm the model’s performance under various initial BESS SOC
conditions. We also applied the model to a scenario involving a disaster occurring during
mid-operation in [42] and tested it in a large system comprising 11 prosumers and 5 con-
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sumers in an intercommunity microgrid setup in [41]. These tests all returned positive
results in terms of increased uptime, with input and output waveforms that approximated
those of typical systems. In addition, the inverter model proposed in this paper has been
experimentally tested in [33] and compared with existing models, demonstrating increased
stability compared to conventional models. Therefore, the simulation results presented
in this paper further validate the performance of our proposed model and confirm the
reliability of the proposed EMS method.

4. Limitations of the Study

The current study does not take into account the costs associated with energy sharing,
which could significantly impact power flow and decision-making in terms of scheduling.
Additionally, the study does not consider important factors such as AC side and network
voltage control, which are necessary for system stability. Therefore, in future work, we
propose to include additional data related to prosumer uptime optimization, dispatch
scheduling, uncertainties treatment, AC side voltage control, and demand and weather
prediction from [9-11,13,49-51] to further improve the effectiveness of the proposed energy
management system.

Additionally, we will explore the coordinated operation of multiple interconnected
prosumers using a quasi-central control method with minimal data sharing to evaluate the
potential benefits of improved energy utilization and network protection compared to a
distributed approach that prioritizes the needs of individual prosumers.

5. Conclusions

This article presents an approximate prosumer design for long-duration simulations
and its energy management system simulator that manages a prosumer’s BESS state of
charge, intending to increase its uptime. Reactive power components are included in the
load model while maintaining its applicability in long-duration simulations. In addition,
the design includes non-critical load shedding, PV curtailment, and flexible load switching
functions as demand-supply balance techniques to improve the prosumer’s resilience in
situations with limited generation.

When compared to the disconnected and connected cases without an EMS, the pro-
posed prosumer model with its EMS shows a resilient performance under extreme weather
conditions, which can significantly reduce the power generated. The proposed EMS suc-
cessfully prevents the system from operating in a critical mode and maintains the system'’s
characteristics within acceptable levels. The three-day simulation run time of 19.5 min is
practical for long-duration simulation studies for microgrid operators, EMS suppliers, and
consulting firms.

This model is applicable as a test bench to further research on distributed energy
management systems due to its practical computation time and proximity to a real system.
Operators of microgrids can use it to plan for new installations and evaluate the existing
ones by entering only the system specifications [9-11,13,49-51].
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Nomenclature
Main Symbols
ts Settling time
4 Damping ratio
w! Center frequency
Vims RMS voltage
o1 Phase angle of the load supply AC voltage
Lyes The current reference
Ly PV output current
i Prosumer number (1, ..., NP)
Pi) (t) Electric load [kW] of prosumer i at time t,
Ppy(t) PV output
Pé Ess,, (1) BESS charging power
Pg ESS,., () BESS discharging power
P, 5(1) Net power from the private line
P;:;’&l“x PV maximum output
ngg S BESS discharging maximum output
ég’g 5 BESS charging maximum input
Ve DC bus minimum voltage
Vie(t) DC bus voltage
Vet DC bus maximum voltage
Vo PV output voltage
MPPpyc Maximum Power Point Tracking at PVC
socimin BESS minimum SOC
SOCjgs(t) BESS SOC
socyrex BESS maximum SOC
SOCpyc Set PVC SOC
Phyc Set PVC power
! Critical electric load

critical
i

Pnonfcriticul (t)

1,max

non—critical

Non-critical load
Maximum non-critical load

Abbreviations

BESS
BEMS
CEMS
DER
EMS
HEMS
NCLS
PI
PLL
14Y%
pvC
QSG
50C
SOGI
VsC

Battery Energy Storage System
Building Energy Management System
Community Energy Management System
Distributed Energy Resources

Energy Management System

Home Energy Management System
Non-critical Load shedding
Proportional Integrator

Phase Locked Loop

Photovoltaic

PV Curtailment

Quadrature Signature Generator

State of Charge

Second Order Generalized Integrator
Voltage Source Converter
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