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Abstract: State estimation (SE) is an essential tool of energy management systems (EMS), providing
power system operators with an overall grasp of the actual power system operating conditions
and aiding them in sustaining reliable and secure operation of the grid. In modern transmission
sectors, two main measurement systems are deployed, namely the supervisory control and data
acquisition (SCADA) and the wide area monitoring systems (WAMS). The multiple advantages of
augmenting conventional SCADA-based SE algorithms with synchrophasor measurements from
WAMS are already well-established; thus, an abundance of different methodologies has been reported
in the field of hybrid SE (HSE). Under this premise, this paper provides a thorough literature review
of novel HSE methods in transmission systems and proposes a classification based on the scope
and mathematical modeling of each method. Following a brief introduction to the concept of SE
based on WAMS and SCADA measurements, an insight into the main challenges emerging in HSE
implementations is provided. Various HSE methods which overcome these challenges are reviewed,
for both static and dynamic SE implementations. In conclusion, the research trends in the area of HSE
are summarized, and the main findings of this literature review are discussed.

Keywords: data fusion; dynamic state estimation; EMS; hybrid state estimation; PMU; RTU; SCADA;
static state estimation; WAMS

1. Introduction

Power system State Estimation (SE) is arguably one of the most important functions of
the Energy Control Center (ECC), being essential for near real-time monitoring of the power
system, as well as for supporting various applications of modern Energy Management
Systems (EMS). The first formulation of SE dates to the 1970s, when [1] described the SE
procedure as the result of the combination of load flow and statistical estimation theory.
The objective of the state estimator is to determine the state vector (positive sequence bus
voltage phasors) with the highest probability of appearing, considering a system-wide
measurement set and the current network topology [1].

In the EMS, SE plays a vital role, enabling the operation of the monitoring and control
functions and contingency analysis. In modern ECCs, the state estimator identifies and
corrects anomalies in field data, suppresses the effect of gross measurement errors, and
refines the measurements, thus providing a reliable set of system states to be used by the
operator and as inputs to other computational functions of the EMS. Accurate knowledge
of the system operating conditions is directly related to the accuracy, availability, and
reliability of the measurements provided to SE [2,3]. State estimators generally comprise
the following functions [2,3]:

• Topology processor: the status of switches and circuit breakers are processed to determine
the current network topology.

• Observability analysis: the observability of the system for executing SE is verified
by analyzing accrued field measurements. In the case of insufficient measurement
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redundancy, full observability of the network is not achieved; thus, observable islands
must be detected for the execution of SE, or observability is reinstated using pseudo-
measurements.

• SE algorithm: an optimization process that utilizes the aggregated real-time measure-
ments in a certain time frame and provides the estimated state of the network. The
random noise (due to instrument transformers, communication errors, limited meter
accuracy etc.) intrinsically existing in field data is filtered out; then, these data are
used to calculate the most probable operating state of the power system.

• Bad Data (BD) detection and identification: an algorithm that enables detection, identifi-
cation, and elimination of gross measurements in the dataset, based on the statistical
properties of measurements. Depending on the employed SE algorithm, this step may
be integrated directly into the estimation process, or it can be a post-processing step;
in the latter case, if BD are detected and eliminated, the SE process is repeated.

• Topology error identification and system parameter estimation: similar to the process of
handling BD, the SE results are analyzed to diagnose errors in the assumed network
topology due to erroneous reporting of switching component states. Finally, parameter
estimation is executed to extract the updated (most probable) values of network
parameters based on the SE solution.

In Figure 1, the data flow diagram of a typical SE implementation in the ECC is
presented. Modern measurement networks usually employ IEC 60870-5, DNP3, IEC
61850, or Modbus messaging protocols for transmitting unsynchronized measurements.
Synchronized data are transmitted according to the IEEE C37.118.2-2011 standard for
synchrophasor data transfer, using either TCP or UDP as the transport protocol [3,4].
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The fundamental problem of SE, solved using the SE algorithm, is essentially an
overdetermined system of nonlinear equations. The relation between the state variables
and the measurements comprises the so-called measurement model, which, for a power
system of N buses, is generally given by [2,5]:

z = h(x) + e (1)

where h(·) ∈ Rn → Rm is the vector of nonlinear functions relating the measurement
vector z ∈ Rm and the true (unknown) state vector x ∈ Rn, n = 2N < m, e ∈ Rm is the
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measurement error vector that is assumed to have zero mean, and a diagonal covariance
matrix R ∈ Rm×m, with Rii = σ2

i being the variance of the ith measurement.
Under the assumption of Gaussian measurement noise, the mathematical formulation

of the SE problem is usually obtained by maximizing the log-probability function of
observation z, resulting in the following optimization problem with objective function
J(x) [2,5]:

min
x

J(x) = [z− h(x)]T R−1[z− h(x)] = eT R−1e (2)

According to (2), the SE is solved by minimizing the Weighted Least-Squares (WLS) cri-
terion, which is accomplished via iterative numerical methods. Besides the WLS algorithm,
other SE methods, such as decoupled WLS and Least Absolute Value (LAV) SE, have also
been proposed. However, WLS still prevails in practical implementations [2]. Irrespective
of the SE solution algorithm, most methods in the literature refer to the measurement model
(1), which is used as a basis for subsequently defining the objective function employed in
the SE algorithm.

Equation (1) is used to formulate the Static SE (SSE) problem, disregarding any infor-
mation pertaining to state transition, i.e., a memory of the state estimates of previous SE
executions. Information about the state vector at previous time instant(s) can be exploited
in a prediction scheme to aid subsequent SE executions, resulting in Dynamic SE (DSE)
formulations. With the increased uncertainties introduced by the rapid integration of
Distributed Energy Resources (DERs) on the generation side, and volatile loads/modern
demand-response technologies on the demand side, DSE offers the added benefit of ac-
curately capturing system dynamics, thus becoming crucial to power system monitoring,
control, and protection [6].

According to [6], the majority of proposed DSE methods are variants of the Kalman
Filter (KF) technique, which is derived from the Bayesian framework of leveraging prior
knowledge of a system’s states obtained over time, along with the available measurement
data. KF methods utilize the measurements and conjoin them with the state transition
model of the system to compute an optimal state estimate. This process typically consists of
two stages, namely, the prediction (time update) and the correction (measurement update).
Depending on how the state statistics are propagated, i.e., the presumed state transition
model, different KF methods have been developed [7,8]: Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF), Cubature Kalman Filter (CKF), and Ensemble Kalman
Filter (EnKF).

The most common measurement data sources in modern power systems are the
Supervisory Control and Data Acquisition (SCADA) system and the Wide Area Monitoring
System (WAMS). Classic SE algorithms utilize voltage magnitude and active/reactive
power injection/flow measurements gathered by the SCADA system via Remote Terminal
Units (RTUs) deployed across the grid. Existing SCADA systems generally have long
data update periods by today’s standards, at approximately 2–8 s, and offer moderate
measurement accuracy. Nevertheless, SCADA technology is now quite mature and well-
established and has thus become a powerful tool for dispatching operators [3].

WAMS generally comprise diversely placed Phasor Measurement Units (PMUs) and
Phasor Data Concentrators (PDCs). PMUs have been under development since the early
1980s and have since become a widely accepted measurement system of modern WAMS.
PMUs are devices capable of providing high-fidelity GPS-synchronized timestamped
snapshots of bus voltage and branch current phasors, as well as frequency and Rate
of Change of Frequency (ROCOF) measurements, at high reporting rates (10–120 Hz,
depending on nominal system frequency and PMU manufacturer) [9,10]. Synchrophasor
data can be best utilized in modern SE algorithms, effectively enhancing their accuracy and
performance, due to the following reasons [10,11]:

• The quality of the state estimates is significantly improved, owing to the high mea-
surement accuracy of PMUs (0.1% for magnitudes, 0.001 rad for phase angles [4]).
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This aspect provides operators with greater confidence in the system conditions and
reliable data for downstream control functions in the EMS.

• PMUs directly measure the system states, i.e., bus voltage phasors, hence simplifying
the mathematical formulation of the SE problem into a linear one.

• Measurement synchronization is crucial for obtaining accurate snapshots of the es-
timated system operating conditions in different areas. Leveraging the absolute
GPS-dictated time reference is decisive for achieving an overall and detailed picture of
the operating state of the network.

• PMUs offer superfast measurement reporting rates (~100 times faster than RTUs),
which is important for tracking the trajectory of the system states, above all in scenarios
characterized by high dynamics.

In this context, the utilization of PMU data provides important benefits for all stages
of the SE process, and, to this end, synchrophasor networks are being rapidly deployed
worldwide. However, as the deployment of PMUs is still somewhat limited due to technical
and economic constraints, in the vast majority of transmission systems, the synchrophasor
measurements are not sufficient to ensure full network observability for SE execution.
Therefore, it is reasonable to anticipate that WAMS and SCADA will still coexist and
complement each other in the foreseeable future, and conventional RTU measurements will
be used, along with a limited number of PMU measurements, for implementing viable SE
algorithms [11,12]. Under this premise, the integration of SCADA/WAMS measurements in
SE has drawn considerable attention in both transmission and distribution levels, resulting
in the accumulation of a large amount of corresponding literature.

This paper aims to give insight into recent research progress and achievements consid-
ering the development and implementation of Hybrid SE (HSE) algorithms for transmission
systems, utilizing both RTU and PMU measurements. Based on the examined research
trends, future work on such SE algorithms is proposed. The rest of the paper has the follow-
ing structure. In Section 2, the major challenges of integrating synchrophasor measurements
in conventional SE methods are described. In Sections 3 and 4, several SE approaches pro-
posed for overcoming these challenges are categorized and analyzed, according to recent
literature, for both SSE and DSE, respectively. Finally, in Section 5, the prospects of this
research area, based on the outcomes of the examined work, are identified, and the paper
is concluded.

2. State Estimation under Sensor Diversity

Incorporating measurements from different types of sensors (RTUs and PMUs) im-
proves SE performance in terms of precision and BD processing, as these are closely related
to measurement redundancy. However, the integration of data from multiple sources in SE
is not straightforward; the most widely recognized challenges can be summarized in two
aspects, according to research into HSE formulation:

1. Different sensor reporting rates and time-inconsistent data. The first aspect is that PMU
measurements are updated at a much higher rate than RTU measurements. Further-
more, there is no coordinated timing of measurement arrivals between different data
sources, referred to as the asynchronization or time-skew problem, which indicates
that the field measurements will likely not form a dataset captured at an exact time in-
stance. Apart from the uncoordinated timestamping of RTU data, time inconsistencies
also occur due to different communication delays among sensors [12,13].

2. Different types and accuracy levels of measured quantities. The measured quantities
provided by RTUs and PMUs are different, which leads to challenges in practical
implementations, as existing SE software needs to be modified. Numerical problems
may also arise at flat start involving current phasor measurements, when these are
expressed in polar coordinates [14]. Different accuracy levels between sensor types
have an impact on the choice of appropriate measurement weights, which in turn
negatively affects SE convergence in case of excessively diverse values [15].



Energies 2023, 16, 618 5 of 20

In the context of these challenges, various methods proposed for effectively overcom-
ing the above issues in HSE are elaborated on and discussed in the following. Figure 2
depicts the hierarchical structure of the diverse categories of HSE methods that are pro-
posed in this paper. It is worth mentioning that SSE methods are categorized according
to their scope and algorithmic process, while considering the challenges discussed in this
Section. DSE methods are principally classified with respect to their employed state space
model, and then subcategories are formed considering the contribution and mathematical
background of each method.
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3. Hybrid Static State Estimation

Utilizing both RTU and PMU measurements, the Hybrid Static State Estimation (HSSE)
is the most widely deployed form of SE in ECCs to date. RTUs are the conventional data
source, while the deployment of PMUs enriches and improves the measurement profile
in transmission systems. Various proposed HSSE methods are organized into different
categories with respect to the main problem tackled, as they pertain to the arising challenges
discussed in Section 2.

3.1. Fusion of Asynchronous and Multi-Rate Data

With higher reporting rates of PMUs, numerous PMU scans are available during the
time interval between two SCADA scans, as shown in Figure 3. However, the system
will likely be unobservable at instants when only PMU measurements are received, on
account of the limited number of PMU measurements in most transmission systems. Under
this premise, several methods have been suggested to address the significantly different
reporting rates of PMUs and RTUs, by restoring system observability between consecutive
RTU measurement sets.

3.1.1. State/Measurement Reconstruction

One approach relies on the utilization of a linear PMU-only SE method for reconstruct-
ing and tracking the network state between instances of the arrival of RTU measurements,
while a nonlinear SE is executed when data from PMUs and RTUs are retrieved simultane-
ously [16–20]. In [16], the linear SE relies on the refreshed synchrophasor measurements
together with power and (generator) voltage pseudo-measurements, derived either from
the last execution of the HSSE algorithm with both PMU and RTU data (fixed values) or
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the last reconstructed values pertaining to the latest PMU-only SE execution (recursively
calculated values). For the linear SE problem, the authors in [17,18] propose that PMU
measurements are jointly processed with voltage and current phasor pseudo-measurements
from the PMU-unobservable subnetwork, calculated using the most recent state estimate.
Work [19] introduces an HSSE method that shifts between using a WLS estimator at in-
stances of simultaneous PMU and RTU measurement update and a robust weighted LAV
(WLAV) estimator when only the PMU measurements are refreshed; in the latter case, PMU
data, along with a minimum number of reconstructed RTU measurements, are leveraged
to attain system observability, similarly to [17,18]. For improving SE performance, in pub-
lication [20], the author proposes a SE decentralization method by exploiting islands of
phasor measurements with common GPS-dictated reference angle and RTU-observable
sub-islands, formed using only critical RTU measurements. This enables the deployment
of computationally demanding HSSE methods, such as the one proposed in [19], against
bad data and cyber-attacks, by exploiting their inherent robustness to the appearance of
outliers in the measurement dataset.
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Alternative methods for overcoming the issue of limited PMU data between SCADA
scans are proposed in [21–24]. Work [21] relies on distributed Compressive Sensing (CS). At
time instants when only PMU measurements are available, RTU measurements are recon-
structed using distributed CS according to the spatial and temporal correlation among the
most recent estimated states to achieve complete system observability. A classic WLS-based
method incorporating PMU-derived power flows, PMU-measured voltage magnitudes,
and RTU measurements, is then used to solve the SE problem. Paper [22] proposes a
robust HSSE method in which processed PMU data are used as a priori information for a
modified WLS-based SE. In the time gap between two SCADA scans, the states of PMU-
unobservable buses are interpolated from limited PMU data using an interpolation matrix,
which is updated upon the arrival of both RTU and PMU measurements. Robustness is
achieved through dynamic readjustment of measurement weights based on the occurrence
of events that can affect measurement reliability. Article [23] proposes a real-time recursion
correction linear HSSE method utilizing stream processing. RTU and PMU measurements
are processed asynchronously, and PMU measurements, along with the most recent SE
results, are utilized in between two consecutive RTU measurement sets to run a recursion
correction. The efficiency of this process is optimized for large-scale power systems by
implementing multithreaded stream processing. Authors in [24] propose an HSSE method
employing a Sequential Quadratic Programming (SQP) algorithm. When only PMU mea-
surements are refreshed, line current pseudo-measurements reconstructed from the most
recent SE results are leveraged to satisfy observability. Non-linearities in the optimization
problem can be efficiently handled by SQP, resulting in a decent performance in the case of
equality-constrained SE problems and large power systems.

3.1.2. Measurement Buffering

Buffering of PMU measurements is also a possible method for tackling the issue of
multi-rate data by considering the statistical properties of a retained set of consecutive PMU
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measurements [25–28]. This approach attempts to sanitize PMU data received in a certain
time window (buffer) by mitigating the effects of measurement noise and the deviation
due to variation of system states. The derived information is then used to perform SE upon
receiving new RTU measurements. Hence, buffering methods are applicable, assuming
that the HSSE is executed periodically at intervals larger than the reporting period of RTUs.
Various methods for optimization of the PMU data buffering process have been proposed
in recent literature: in [25], the optimal buffer length is determined using hypothesis
testing, and in [26], three methods are tested to determine the buffer length by evaluating
the mean and variance shift of a set of consecutive PMU measurements. In [27,28], the
time skew present in unsynchronized measurements is tackled by utilizing buffered PMU
measurements. In [27], a procedure for considering temporal and space correlations in
PMU measurement datasets for HSSE is proposed. A time series of PMU data can be
modeled by stationary Vector Autoregressive (VAR) models to filter measurement and
communication noise stemming from different sensors. Authors in [28] introduce a robust
HSSE method in which the correlations of diverse measurement types are considered to
improve SE accuracy. The Unscented Transformation (UT) is applied to calculate the self-
and the cross-correlations among RTU measurements, while correlations among the PMU
measurements are modeled as in [27].

3.1.3. Summary

This subsection discussed the issue of incomplete observability that arises under the
usually limited number of high-rate PMU measurements. Most methods resort to WLS
linear SE implementations or non-WLS approaches that significantly improve execution
times in order to achieve a high frequency of SE execution while leveraging measurements
or results of previous SE runs. This way, SE results become available in the EMS, even
at time instants of partial (PMU) observability of the system. If the HSSE is solved upon
the arrival of both RTU and PMU data, then buffering methods are also applicable for
enhancing the accuracy and reliability of SE.

3.2. Fusion of Different Measured Quantities

Another important aspect of HSSE formulations lies in combining phasor measure-
ments with conventional measurements in a unified estimator. Due to the different prop-
erties of measured quantities, direct inclusion of phasor measurements in existing state
estimators requires significant modifications to the traditional EMS software. Methods
proposed in literature for incorporating measurements from different sensor types can be
divided into three categories, as reported in [12], which are also illustrated in Figure 4:
One-Stage HSSE methods (OSHSSE), Two-Stage HSSE methods (TSHSSE), and Fusion HSSE
methods (FHSSE).

3.2.1. One-Stage HSSE Methods

One-Stage HSSE (OSHSSE) methods are used to directly combine RTU and PMU
measurements into a single mathematical formulation (Figure 4a). Apart from the necessary
modification of existing SE algorithms in the EMS to incorporate phasor measurements,
several other challenges appear when the above methods are employed:

Numerical stability: The inclusion of current measurements and large variations be-
tween RTU and PMU measurement weights may lead to matrix ill-conditioning at flat
start and poor algorithm convergence, respectively [15]. Methods for circumventing the
emerging numerical issues are reported in [17,29–32]. Work in [29] proposes a unified
HSE, in which RTU measurements are jointly processed with PMU data, and branch cur-
rent phasors are simply converted from polar to rectangular coordinates, thus avoiding
ill-conditioning issues. The employed state space model and calculation of current mea-
surement covariances using error propagation theory are described in detail. Similarly,
a nonlinear WLS formulation of the HSSE problem is presented in [30], which avoids
numerical problems encountered at flat start or for lightly loaded lines when current mea-
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surements are expressed in polar form by employing rectangular coordinates for current
measurements when necessary. Work in [17] expands upon [29,30] by applying the matrix
inversion lemma (Sherman–Morrison–Woodbury formula) so that the structure of con-
ventional SCADA-based state estimators remains intact, while current phasors are again
expressed in rectangular coordinates. In [31], the authors propose an approach of including
only voltage phasor measurements by formulating current measurement equations as a
function of bus voltage phasors adjacent to PMU buses. The state vector comprises bus
voltage phasors, along with the polar form of the branch currents measured by PMUs, and
equality constraints are used to relate PMU buses and their respective adjacent buses. A
regularized HSSE method is proposed in [32] to tackle the problem of numerical instability
of WLS based on least squares optimization and the minimization of the solution norm. The
L-curve method is applied for selecting the regularization parameter due to its robustness
and its ability to handle measurement correlation. Zero injections are modeled as equality
constraints and are included at the post-estimation stage.
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SE algorithm performance: Various formulations have been proposed for enhancing
OSHSSE performance, leveraging a linear measurement model, a distributed multi-area
approach, or by solving SE in the complex domain [33–46]:

• Linear models: Work [33] proposes converting all power measurements into equivalent
current phasors, resulting in the formulation of a linear iterative WLS-based HSSE. The
Jacobian and gain matrices remain constant during the iterative process, consequently
improving SE execution times. In a similar fashion, [34] proposes an estimator based
on the non-iterative linear equality-constrained WLS approach by transforming RTU-
measured quantities into voltages and currents expressed in rectangular form, while
equality constraints are used to model zero injections. A study in [35] proposes a
fully linear robust LAV-based HSSE, which is solved non-iteratively using linear
programming. Reference [36] introduces a linear robust HSSE, employing a Schweppe-
type M-estimator with Huber loss function. The method of Iteratively Reweighted
Least Squares (IRLS) is used to maximize the likelihood function in the M-estimator.
In [37], the authors propose two LAV-based robust HSSE methods, both leveraging
linear measurement models. The first method is based on the linear LAV approach and
is formulated as a single linear programming problem, while the second builds upon
an alternative LAV-based estimator that can be solved by gradient-based methods.
In [38], a linear Equivalent Circuit Formulation (ECF) of the power system is derived
by relating power flows/injections to bus voltage and branch current phasors. Both
RTU and PMU measurement models are expressed using linear circuits; thus, the
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estimated state is obtained by solving a linear set of optimality conditions. In [39],
the authors further enhance ECF for practical implementations by including circuit
models for all possible combinations of RTU measurements, null injections, and the
possibility of having no measurements at a bus.

• Multi-area: Work [40] proposes a decentralized multi-area HSSE, by first implementing
a PMU-only SE concerning area boundary buses and then introducing the boundary
bus state estimates as equality constraints imposed upon the local SE of each area.
Similarly, [41] introduces a decentralized method, which enables exploiting the com-
putation capability of each subarea to solve for a global state vector in parallel via the
Gossip-based Gauss-Newton algorithm. The robustness of the proposed scheme is
achieved by dynamically adjusting the measurement weights based on the measure-
ment quality to suppress the influence of BD on the SE solution. In [42], the authors
propose a multi-area HSSE based on a fully distributed Gauss-Newton method, in
which each area carries out the SE locally and independently, relying on local mea-
surements and limited communication with neighboring areas. Alternatively, [43]
proposes an iterative multi-area HSSE approach, in which all subareas run their SE
sequentially in each iteration, and the problem of area slack bus angle referencing in
case of insufficient PMUs is tackled using pseudo-measurements derived from the SE
solution of boundary buses.

• Complex variables: Various papers have also addressed the solution of the SE problem
in the complex domain, which is also proven to be computationally advantageous.
Publication [44] first presents an implementation of the WLS-based HSSE problem in
complex variables by employing the complex Taylor series expansion, which is based
on Wirtinger calculus. It is worth noting that current measurements do not require
any special handling, unlike HSSE implementations over the real domain. In [45], the
complex normal equations of [44] are expanded to incorporate equality constraints.
Finally, [46] proposes a constant gain matrix method utilizing the perturbed Gauss-
Newton method for nonlinear least-squares formulated in the complex domain as
in [44].

3.2.2. Two-Stage HSSE Methods

The concept of Two-Stage HSSE (TSHSSE) algorithms is commonly employed to
decouple RTU and PMU measurements in the SE problem. Generally, they consist of a
conventional (RTU-only) SE followed by a linear (PMU-only) SE, or vice versa, so that two
types of measurements appear in separate formulations (Figure 4c).

Publications [47–52] discuss various methods of incorporating phasor measurements
and the results of the traditional state estimator in a post-processing step. This approach
formulates a linear (non-iterative) estimation step that requires no modification of the
traditional EMS software. Refs. [47–50] propose the inclusion of the estimated states from
the conventional WLS SE in the measurement vector of a subsequent linear SE, along with
PMU measurements in rectangular coordinates. Based on this concept, publication [51]
formulates the HSSE problem using various approaches for mixing polar and rectangular
coordinates of measurements and states. In [52], a similar cascaded architecture is em-
ployed, in which the output of the first stage is then taken as a priori state information by
the second PMU-based estimation module. This method also avoids the assumption of
measurement uncorrelatedness while defining measurement weighting factors assigned to
real and imaginary complex measurement components.

Alternatively, in [53], the authors propose a TSHSSE scheme, in which a linear state
estimator is formulated first, using only synchrophasors in rectangular coordinates, to
estimate the states for the PMU-only observable subnetwork. Subsequently, the SE solution
from the first stage and the RTU measurements are simultaneously processed by a nonlinear
WLS SE in the polar form to determine the system-wide state vector. The estimated states
of the first stage are introduced into the second stage either as high-accuracy measurements
or as equality constraints. By adopting this TSHSSE method, in [54], the states of PMU-
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observable buses are introduced directly in the final state vector, along with the results
of the second estimation stage. Expanding upon this approach, [15] proposes a two-stage
process by executing a LAV-based SE with PMU measurements only and then a WLS-based
post-processing step, as in [53]. Thus, numerical problems stemming from incorporating
PMU current measurements in WLS-based algorithms are alleviated.

Publication [55] proposes a decentralization method for the TSHSSE approach. The
network is partitioned into several ‘linear’ and ‘nonlinear’ areas, according to the presence
of PMUs or RTUs at substations, respectively. For each ‘linear’ area, a linear WLS SE is
utilized to estimate subsystem states, while for each ‘nonlinear’ area, the conventional
nonlinear SE is used. As linear SE is solved at a higher rate, estimated states of ‘linear’ area
boundary buses are treated as highly weighted pseudo-measurements for the nonlinear SE.

3.2.3. Fusion HSSE Methods

The Fusion HSSE (FHSSE) and TSHSSE algorithms are similar in that they both
comprise separate SE modules for each measurement type. However, in FHSSE, these two
estimators work in parallel, and their estimates are combined in a post-estimation fusion
scheme to produce the final estimate (Figure 4b). The two produced state estimates are
commonly fused using the following formula [56]:

x̂ = WR x̂R + WP x̂P (3)

where x̂R and x̂P are the estimated state vectors from the RTU- and PMU-based modules,
respectively, WR and WP are the weighting matrices derived from the covariance matrices
of RTU and PMU measurements, respectively, and x̂ is the fusion state vector. The main
advantage of FHSSE formulations is the ability to execute the two modules in parallel,
leading to reduced computational burden. However, it is noteworthy that the application
of (3) requires both complete RTU- and PMU-observability of the system.

In [57], the authors introduce a multi-stage parallel SE architecture based on (3) to
optimally combine results independently obtained from RTU- and PMU-based estimation
modules. In order to satisfy the complete PMU-observability of the system, the inclusion of
a priori information in the SE is proposed. Work [58] enhances this approach and presents a
fast algorithm for implementing FHSSE, improving SE execution times by utilizing parallel
processing of RTU- and PMU-based modules and expediting the bad data handling process.

References [59,60] propose robust FHSSE methods. In [59], a data fusion architec-
ture is proposed in which RTU and PMU measurements are separately processed by
BD-resilient maximum correntropy-based estimators. In [60], authors have devised a ro-
bust FHSSE framework to deal with the unknown (non-Gaussian) statistical properties of
measurement noise and the issue of time skew. The method employs robust Mahalanobis
distances combined with a statistical test for determining the appropriate buffering length
and weights of PMU measurements. A Schweppe-type Huber generalized maximum-
likelihood estimator is then used to filter out non-Gaussian noise and suppress the effects of
measurement outliers.

In [61], a strategy for distributed FHSSE is suggested using a multi-stage approach,
where the RTU- and PMU-based SE modules compute the local state vector separately and
in parallel. In order to overcome PMU observability issues, a local state vector extension
is used, enabling the RTU- and PMU-based local estimators to obtain the SE results for
the same set of buses in each sub-area. The consistency requirement of local SE results
obtained for overlapping regions between sub-areas is satisfied via the exchange of SE
results between neighboring estimators. Finally, the fusion of local state estimates is
attained via (3).

3.2.4. Summary

In this Subsection, the HSSE methods have been categorized with respect to their
mathematical modeling and employed method of handling different types of measurements.
Although OSHSSE methods are prone to numerical instability under certain conditions and
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require modification of existing EMS software, extensive research on the subject has led to
the formulation of easily implementable, numerically stable, and computationally efficient
algorithms. Both TSHSSE and FHSSE methods have been proven to be effective ways
of handling PMU measurements separately from the existing RTU-based SE algorithms
using pre- or post-processing software modules. These formulations are also suitable for
parallel or decentralized SE implementations. For TSHSSE methods, communication of data
between the two estimation stages or between locations/ECCs (in the case of decentralized
approaches) is still an issue, hindering SE efficiency. For FHSSE methods, the assumption
of complete PMU-observability of the system is rarely satisfied in practice, leading to the
utilization of a priori (historical) data to achieve observability instead of highly accurate
real-time PMU measurements. Similar to TSHSSE, implementation of FHSSE using parallel
processing still poses a challenge and should concern future research.

4. Hybrid Dynamic State Estimation

Most of the state estimators deployed in modern ECCs are based on steady-state
power system models. Therefore, they do not consider system dynamics, that is, the power
system’s varying operating conditions over time. This primarily stems from the unsynchro-
nized and low-density information provided by classic SCADA-based measurements [6].
With the increasing number of deployed PMUs, the development of Hybrid Dynamic State
Estimation (HDSE) methods for power system monitoring and control becomes realizable,
significantly enhancing the capabilities of existing SE processes.

The HSE methods examined in Chapter 3 are static in the sense that each measurement
snapshot relates to a single instance of the state vector and does not capture the system’s
dynamics. When changes in the power system are mainly driven by slow load fluctuation,
analysis is performed under a quasi-steady regime, and in this scenario, HSSE is adequate
for providing a reliable state estimate [62]. In the face of large-scale penetration of stochastic
and intermittent renewable energy generation, responsive loads, and microgrids, the power
system is subject to many different types of dynamics. To perform SE for quasi-steady
operating conditions, the use of conventional measurements from RTUs is indeed sufficient.
Conversely, when the system is operating under transient conditions, synchrophasors
could be the only dependable measurements to reliably carry out SE. In this case, low-rate
RTU measurement scans could be used to enhance measurement redundancy and SE
robustness [63].

Various challenges emerge in implementing HDSE methods, similar to the ones arising
for HSSE: fusion of asynchronous measurements with different reporting rates, robust-
ness against corrupted, missing or delayed data from diverse sensors, the inclusion of
heterogeneous measurement datasets, and correlation among measured quantities. In
recent literature [6], HDSE methods have been divided with respect to the mathematical
formulation of power system dynamics in their adopted state space model into three major
categories: Dynamic State Estimation (DSE), Forecasting-aided State Estimation (FASE), and
Tracking State Estimation (TSE). In the following, methods appertaining to all three categories
are reviewed.

4.1. DSE Methods

Generally, in DSE methods, the state vector is augmented with the internal states
of various system components, such as synchronous machines or dynamic loads, and
a nonlinear discrete-time state space model is adopted, involving system inputs, model
parameters and (in)equality constraints. The continuous-time general state space model
associated with DSE is the one customarily adopted for transient stability analysis, given
by [6,63]:

.
x(t) = f (x(t), u(t), p)

0 = g(x(t), u(t), p)
(4)

where f (.) and g(.) are nonlinear functions, x ∈ Rn is the unknown state vector, comprising
voltage phasors and dynamic states, u is the system input vector, and p represents the
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model’s parameters. Equation (4) may also be subject to equality and inequality constraints
pertaining to various electrical quantities. For SE implementation, the continuous time-
domain model in (4) is discretized, yielding:

xk = f (xk−1, uk, p) + wk
zk = h(xk, uk, p) + ek

(5)

where subscript k denotes the time sample, and wk is assumed to be the normally distributed
state transition noise with zero mean and covariance matrix Qk. The remaining quantities
have already been defined in (1) and (4).

The dynamic state vector (or model parameters) in (5) are estimated using various
proposed methods within the KF framework. UKF-based approaches [64–67] propose DSE
frameworks under the presence of multi-rate data from RTUs and PMUs for tracking the
dynamic system state during the transient operating condition. In [64], the dynamic model
(4) is discretized at appropriate sampling periods depending on each sensor’s reporting
rate, and the RTU/PMU equations are then decoupled so that a different estimator is
applied to each discrete model. The final estimated state is calculated using (3). In [65], a
UKF-based covariance intersection method for multi-rate data fusion is considered. Publi-
cation [66] proposes a discrete-time model for state transition derived from an Artificial
Neural Network (ANN) trained for short-term load forecasting. The DSE problem is solved
using a dual-UKF approach, considering the interactions between the state vector and
the dynamic power system model. Different reporting rates of RTUs and PMUs are ad-
dressed using a parameterized process model and a state reconstruction technique. In [67],
the application of the method in [66] is extended to include dynamic state variables of
synchronous machines, and the SE problem is distributed over a multi-agent system.

In [68], a multi-scale SE framework is proposed, which effectively enables the inte-
gration of SSE and DSE in EMS. The system is monitored in real-time using the Singular
Spectrum Analysis (SSA)-based change point detection approach. A robust HSSE algorithm
is executed, and if a disturbance is detected by the SSA, the HSSE results are used for the
initialization of a PMU-only DSE algorithm for real-time monitoring of transient conditions.

4.2. FASE Methods

Various HDSE methods have been developed under the assumption of a quasi-steady
regime, where the state transition depends only on slow load variations and corresponding
generation adjustments. Under this premise, FASE methods neglect the dynamics of x(t) in
(4), i.e.,

.
x(t) = 0, and exploit a linear transition model, resulting in the following discretized

state space representation [69]:

xk = Fkxk−1 + gk−1 + wk
zk = h(xk, p) + ek

(6)

where state vector xk now only contains bus voltage magnitudes and angles, matrix Fk
represents the linear state transition, and vector gk−1 captures the trend of state trajectory.
Conventionally, Fk and gk−1 are model parameters to be estimated, and essentially express
the system memory derived from historical information.

Pioneering work on hybrid FASE methods is presented in [70], by combining the
concepts of unscented filtering and SE. The proposed derivative-free HSE approach updates
the state transition and trajectory parameters via Holt’s linear, exponential smoothing
technique and applies the UT to achieve enhanced estimation accuracy with a relatively
simple implementation.

In [71–74], authors propose FASE methods addressing the issue of missing data. In [71],
an EKF-based FASE framework for HDSE, which is robust against randomly missing
RTU data, is devised. Based on the probability-maximization method, the SE problem
is formulated as a constrained optimization one, with PMU measurements considered
as inequality constraints, which is solved using the Particle Swarm Optimization (PSO)
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algorithm. Work [72] introduces a multi-area FASE method for large-scale power grids
by implementing a modified distributed KF capable of independently estimating local
states using local measurements, taking the appearance of multiple missing measurements
into consideration. The internodal transformation theory is employed to deal with the
communication problem between the distributed subsystems, while the SE formulation
and solution are identical to that in [71]. Work [73] presents a CKF-based FASE, which
utilizes a state forecasting technique for state prediction during periods of missing PMU
data under an unreliable communication network. State forecasting is accomplished via
Holt’s smoothing technique. In [74], the authors leverage the spherical cubature and
the Gaussian quadrature rules to estimate the properties of the prior and the posterior
probability densities of the state space and the measurement space. The estimated mean
and the associated covariance are then utilized by the CKF to estimate the final states of the
power system. State forecasting during the interval between SCADA scans is accomplished
as in [73].

Papers [75–79] focus on the time alignment of different data sources for FASE. Ref. [75]
proposes a robust UKF algorithm based on constrained quadratic estimation. The syn-
chronization of PMU and RTU data is achieved by combining the maximum correlation
and interpolation synchronization methods, and robustness is attained by introducing the
strong tracking UT algorithm to modify the prediction covariance matrix in the presence of
gross measurement errors. Authors in [76] propose a FASE method considering irregular
sampling and random delay of measurements, in which an EKF-based algorithm is used for
the time alignment of measurements and SE results. Work [77] suggests the utilization of
the Unscented Rauch–Tung–Streibel (URTS) smoothing algorithm, which handles the time-
skew problem by optimally predicting the values of RTU measurements during the absence
of SCADA information, thus reducing the corresponding estimation errors. Paper [78]
introduces a two-stage FASE considering the different sensor reporting rates. The first
stage employs traditional RTU-only WLS SE and computes an a priori evaluation for the
state variables; the second stage leverages PMU data to update the posterior distribution
obtained according to Bayesian inference concepts. Work [79] addresses random time
delays between SCADA updates in FASE, using Bernoulli distributed random variables.
Results obtained from two separate unsynchronized SEs are fused, based on the covariance
intersection scheme.

Parallelization techniques for mitigating the increased computational load of FASE
methods are reported in [80–82]. In [80], the application of parallel processing for FASE is
proposed, aiming to accelerate the DSE solution for large-scale systems using PMU and
RTU measurements. A massively parallel HDSE is developed on a Graphics Processing Unit
(GPU), employing a lateral two-level FASE solution algorithm based on the EKF method.
In [81], an ANN-assisted dual-UKF FASE algorithm is developed using a multi-agent-
based model. A dynamic ANN is applied for developing a discrete-time state transition
model, which is used for short-term load forecasting. The dual UKF simultaneously
estimates the state vector and determines the parameters of the dynamic ANN. In the same
spirit, [82] proposes a distributed CKF algorithm for FASE implementation in large-scale
power systems consisting of non-overlapping sub-areas. The FASE algorithm is executed
in parallel among the subsystems to forecast and estimate each local state, mitigating the
computational and communication load of SE, lacking a central coordinator.

Various two-stage FASE methods have also been proposed [83,84]. Work [83] is based
on a KF-aided two-stage FASE, in which a linear PMU-only state estimator serves as a
preprocessing first stage, and the second stage is an iterative WLS formulation that combines
RTU measurements with pseudo-measurements obtained from the first stage. The method
introduces a recursive KF, which uses consecutive scans of PMU measurements to provide
more accurate pseudo-measurements for the second stage. Likewise, [84] proposes a two-
stage FASE, in which a limited number of PMU measurements, along with an UKF-based
estimation of the RTU measurements, are utilized to obtain the SE solution at intervals
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between two successive SCADA scans. A conventional HSE method is executed at each
arrival of both measurement sets.

4.3. TSE Methods

By introducing the assumption that Fk = I and dropping the term gk−1 in (6), the
simplified state-space model of TSE is obtained as follows:

xk = xk−1 + wk
zk = h(xk, p) + ek

(7)

Work [85] addresses the effects of time-skew between simultaneously processed RTU
and PMU data for TSE implementation. The proposed method includes a prediction step,
an innovation analysis and event detection step, and a correction step. Predicted RTU
measurements are used to ensure observability, a combined analysis of synchronized mea-
surement variations and innovation vectors is utilized to distinguish between abrupt system
state changes and gross errors, and a constrained least-squares optimization problem is
solved in the correction step.

The parallelization and performance enhancement of TSE is reported in [86], which
introduces a decentralized UKF-based method employing a consensus algorithm for multi-
area TSE. The UKF is used to execute TSE locally in each of the non-overlapping power
system subareas, and the consensus algorithm carries out the exchange of local state
information between neighboring areas.

A TSE approach considering the temporal aspects of the estimation process within
a maximum correntropy-based EKF is proposed in [87]. By representing the behavior of
the state variables with a nonparametric probabilistic model within the kernel density
estimation, this approach considers sudden state transitions as part of the non-Gaussian
process noise. To suppress the effects of suspect BD, a novel strategy to update the size of
Parzen windows in the kernel estimation is introduced.

Correlated prediction and measurement errors are addressed in [88], which proposes
a KF-based TSE method for joint state and parameter estimation, capable of incorporating
RTU and PMU measurements and abrupt state change detection by implementing an
adaptive filter based on optimal tracking. The estimation problem is formulated as two
loosely coupled linear subproblems of state and parameter tracking.

4.4. Summary

Based on this review of HDSE methods, it becomes clear that the inclusion of system
dynamics in the SE model can greatly benefit power system monitoring and control. The
computationally demanding DSE methods generally adopt highly detailed state transition
models and mainly exploit high-rate PMU data. On the other hand, SCADA measurements
are often utilized only as supplementary information. TSE methods offer easily imple-
mentable enhancements to existing SSE algorithms and are proven useful for sustaining SE
reliability under the appearance of BD. However, they are not suitable for tracking system
dynamics. FASE methods form a middle ground between DSE and TSE. These approaches
assume a linear transition model. While they are not ideal for tracking dynamics, they
are more computationally efficient and suitable for augmenting SSE in the EMS compared
to DSE.

5. Discussion

After extensively discussing the various HSSE and HDSE methods developed, a sum-
mary of the identified challenges to be addressed, along with possible research directions
in the area of SE, are presented.

1. Numerical stability and convergence: For OSHSSE formulations, attention has been
mainly given to issues such as estimation optimality and computational performance.
However, diverse accuracy classes of sensors, and widely differing measurement
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values, may result in poor SE convergence under direct RTU and PMU measurement
fusion. Recent research has proven that decoupling the SE formulations of SCADA
and WAMS in TSHSSE and FHSSE architectures offers the benefits of improved nu-
merical stability and good convergence properties. Optimality of the estimated states,
communication load, parallelization and observability are issues that arise with these
methods. Future works on HSE should also cover the effect of PMU measurements on
systems with insufficient redundancy levels in traditional measurements and systems
that are observable only under both SCADA and WAMS measurements.

2. Diverse reporting rates: The issue of multi-rate RTU and PMU measurement fu-
sion is taken into consideration in numerous proposed approaches. However, the
effect of measurement time-skew and observability with respect to PMU measure-
ments on the quality of the SE results should be investigated further. Uncoordinated
SCADA scans and individual asynchronous measurements (e.g., from FACTS con-
trollers, DERs, etc.) may still not arrive periodically, as is usually assumed in the
literature. Therefore, the case of SE under unsynchronized multi-rate/multi-sensor
measurement infrastructure should be investigated further, in order to develop im-
plementable SE algorithms. Possible solutions would be to implement HSE methods
that consider estimation fusion without any assumptions on sensor reporting rates
or utilizing buffering techniques and treating asynchronous and low-rate data as a
statistical trend that enhances real-time SE. Groundwork on this research has been
recently laid in [89,90] under the concepts of extreme learning machines and Bayesian
SE, respectively.

3. Robustness: With respect to BD and cyberattack resilience, further investigation in BD
detection and identification methods is needed, especially for practical implementa-
tions of TSHSSE and FHSSE. Future works should consider more realistic modeling
of the communication networks and HSE algorithms that are robust against miss-
ing, corrupted, or even deliberately altered measurements [91]. By examining recent
literature, one can infer that the utilization of machine learning-based or forecasting-
aided SE methods could provide acceptable SE solutions by mitigating the effect of
such anomalies in the measurement network. Most inherently robust non-WLS SE
approaches (e.g., [19,32]) involve a trade-off between computational efficiency and
accuracy/convergence/BD resilience. Practical implementations of such methods
need to be addressed in future work, and ways for them to possibly complement
existing WLS algorithms should be investigated further [92–94].

4. Performance: SE performance also becomes a crucial factor for fully exploiting high-
rate PMU data between SCADA scans. In the face of the increasing complexity of
modern power systems, the need to optimize SE algorithms for large-scale systems
arises, especially when considering HDSE techniques could be vital to fast control ac-
tions. This has led to the implementation of distributed HSE methods, which provide
accuracy comparable to centralized HSE methods while significantly enhancing SE
performance by solving subarea SE problems in parallel. Such performance enhance-
ments are of utmost importance for the real-time implementation of HSE in the ECC
and should thus concern future publications [95,96]. Interarea communication and
information exchange between boundary buses is a topic that should be expanded
upon in future research, particularly in the case of missing measurements or BD and
the unobservability of subareas. It would also be interesting to investigate employing
distributed algorithms for handling BD in such SE methods.

5. Measurement model: Improvements in the HSE measurement model could also con-
cern future publications. The measurement noise statistics are usually unknown or
time-varying, an issue that is accentuated in the presence of multiple data sources.
The assumptions pertaining to the statistical properties of measurements (noise Gaus-
sianity and uncorrelatedness) should be alleviated in future work, expanding upon
the research in [97–99]. Furthermore, network modeling also emerges as an issue, with
wide integration of FACTS, HVDC, and DERs that need to be included accordingly in
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the measurement model and considered in the parameter estimation step. Mathemati-
cal formulations for different combinations of system components and measurement
data need to be derived, to broaden the current SE modeling framework.

6. State transition models: Future work on DSE should focus on more accurate and
detailed state transition models. In order to obtain reliable state estimates for dynamic
systems, state prediction and filtering should be robust against the various uncer-
tainties inherently present in the power system, possibly using pattern recognition
which could capture the effects of stochastic components, such as DERs. Multi-area,
numerically robust and efficient data-driven DSE methods also comprise fruitful
approaches that deserve further investigation [100,101]. Considering that the accuracy
of PMUs is reduced during transient conditions, it is also imperative to test and
validate DSE methods with real field data and assess their real-time accuracy and
performance under such circumstances. It is worth noting that already existing static
state estimators could benefit significantly in terms of accuracy and convergence by
incorporating a simple state space model, such as the ones adopted in TSE or FASE
methods. In order to improve upon such methods, future research could consider
simultaneous topology and parameter estimation, the correlation between different
PMU channels and measurement scans, as well as more advanced techniques for state
forecasting and formulating the transition function.

6. Conclusions

To conclude, this paper conducted a comprehensive literature review of various HSE
methods by categorizing them depending on their scope and applicability for facing the
most prominent challenges of multi-sensor SE in modern transmission systems. Overall,
HSSE algorithms are widespread owing to their simple implementation, good convergence
properties, and estimation quality. HDSE methods prove to be most suitable for leveraging
high-refresh-rate PMU data in real-time monitoring of the system while utilizing RTU
data as a secondary source of information. The key topics that should be investigated in
future HSE implementations are found in computational performance, accuracy and BD
resilience, adaptability and tracking of operating conditions, as well as optimal exploitation
of multi-rate and historical data.

Author Contributions: Conceptualization, G.K.; investigation, O.D.; writing—original draft prepara-
tion, O.D.; writing—review and editing, O.D. and G.K.; supervision, G.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank the reviewers for their invaluable comments
and recommendations, which significantly aided in improving the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schweppe, F. Power System Static-State Estimation, Part III: Implementation. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 130–135.

[CrossRef]
2. Abur, A.; Gómez Expósito, A. Power System State Estimation: Theory and Implementation; Power engineering; Marcel Dekker: New

York, NY, USA, 2004; ISBN 978-0-8247-5570-6.
3. Thomas, M.S.; McDonald, J.D. Power System SCADA and Smart Grids; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA,

2015; ISBN 978-1-4822-2674-4.
4. Phasor Measurement Units and Wide Area Monitoring Systems: From the Sensors to the System; Monti, A. (Ed.) Elsevier: Amsterdam,

The Netherlands, 2016; ISBN 978-0-12-804569-5.
5. Monticelli, A. State Estimation in Electric Power Systems: A Generalized Approach; The Kluwer international series in engineer-

ing and computer science; Power electronics and power systems; Kluwer Academic Publishers: Boston, MA, USA, 1999;
ISBN 978-0-7923-8519-6.

http://doi.org/10.1109/TPAS.1970.292680


Energies 2023, 16, 618 17 of 20

6. Zhao, J.; Qi, J.; Huang, Z.; Meliopoulos, A.P.S.; Gomez-Exposito, A.; Netto, M.; Mili, L.; Abur, A.; Terzija, V.; Kamwa, I.; et al.
Power System Dynamic State Estimation: Motivations, Definitions, Methodologies, and Future Work. IEEE Trans. Power Syst.
2019, 34, 3188–3198. [CrossRef]

7. Simon, D. Optimal State Estimation: Kalman, H Infinity and Nonlinear Approaches; Wiley-Interscience: Hoboken, NJ, USA, 2006;
ISBN 978-0-471-70858-2.

8. Liu, H.; Hu, F.; Su, J.; Wei, X.; Qin, R. Comparisons on Kalman-Filter-Based Dynamic State Estimation Algorithms of Power
Systems. IEEE Access 2020, 8, 51035–51043. [CrossRef]

9. Phadke, A.G.; Phadke, A.G.; Thorp, J.S. Synchronized Phasor Measurements and Their Applications; Power electronics and power
systems; Springer: New York, NY, USA, 2008; ISBN 978-0-387-76537-2.

10. Terzija, V.; Valverde, G.; Cai, D.; Regulski, P.; Madani, V.; Fitch, J.; Skok, S.; Begovic, M.M.; Phadke, A. Wide-Area Monitoring,
Protection, and Control of Future Electric Power Networks. Proc. IEEE 2011, 99, 80–93. [CrossRef]

11. Gomez-Exposito, A.; Abur, A.; Rousseaux, P. On the Use of PMUs in Power System State Estimation. In Proceedings of the 17th
Power System Computation Conference, Stockholm, Sweden, 22–26 August 2011; p. 14.

12. Jin, Z.; Wall, P.; Chen, Y.; Yu, J.; Chakrabarti, S.; Terzija, V. Analysis of Hybrid State Estimators: Accuracy and Convergence of
Estimator Formulations. IEEE Trans. Power Syst. 2019, 34, 2565–2576. [CrossRef]

13. Application of Time-Synchronized Measurements in Power System Transmission Networks; Kezunovic, M. (Ed.) Power electronics and
power systems; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-319-06217-4.

14. Chakrabarti, S.; Kyriakides, E.; Ledwich, G.; Ghosh, A. A Comparative Study of the Methods of Inclusion of PMU Current Phasor
Measurements in a Hybrid State Estimator. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July
2010; pp. 1–7.

15. Kabiri, M.; Amjady, N. A New Hybrid State Estimation Considering Different Accuracy Levels of PMU and SCADA Measure-
ments. IEEE Trans. Instrum. Meas. 2019, 68, 3078–3089. [CrossRef]

16. Glavic, M.; Van Cutsem, T. Reconstructing and Tracking Network State from a Limited Number of Synchrophasor Measurements.
IEEE Trans. Power Syst. 2013, 28, 1921–1929. [CrossRef]

17. Manousakis, N.M.; Korres, G.N. A Hybrid Power System State Estimator Using Synchronized and Unsynchronized Sensors. Int.
Trans. Electr. Energy Syst. 2018, 28, e2580. [CrossRef]

18. Asprou, M.; Chakrabarti, S.; Kyriakides, E. A Two-Stage State Estimator for Dynamic Monitoring of Power Systems. IEEE Syst. J.
2017, 11, 1767–1776. [CrossRef]

19. Gol, M.; Abur, A. A Hybrid State Estimator For Systems With Limited Number of PMUs. IEEE Trans. Power Syst. 2015, 30,
1511–1517. [CrossRef]

20. Gol, M. A Decentralization Method for Hybrid State Estimators. IEEE Trans. Power Syst. 2018, 33, 2070–2077. [CrossRef]
21. Hamidi, R.J.; Khodabandelou, H.; Livani, H.; Sami-Fadali, M. Hybrid State Estimation Using Distributed Compressive Sensing.

In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016;
pp. 1–5.

22. Zhao, J.; Zhang, G.; Das, K.; Korres, G.N.; Manousakis, N.M.; Sinha, A.K.; He, Z. Power System Real-Time Monitoring by Using
PMU-Based Robust State Estimation Method. IEEE Trans. Smart Grid 2016, 7, 300–309. [CrossRef]

23. Sun, K.; Huang, M.; Wei, Z.; Zhao, J.; Sun, G. A Real-Time Recursion Correction Hybrid Linear State Estimator Using Stream
Processing. IEEE Trans. Ind. Inform. 2022, 1–12. [CrossRef]

24. Dubey, A.; Chakrabarti, S.; Sharma, A.; Terzija, V. Optimal Utilisation of PMU Measurements in Power System Hybrid State
Estimators. IET Gener. Transm. Distrib. 2019, 13, 4978–4986. [CrossRef]

25. Zhang, Q.; Chakhchoukh, Y.; Vittal, V.; Heydt, G.T.; Logic, N.; Sturgill, S. Impact of PMU Measurement Buffer Length on State
Estimation and Its Optimization. IEEE Trans. Power Syst. 2013, 28, 1657–1665. [CrossRef]

26. Murugesan, V.; Chakhchoukh, Y.; Vittal, V.; Heydt, G.T.; Logic, N.; Sturgill, S. PMU Data Buffering for Power System State
Estimators. IEEE Power Energy Technol. Syst. J. 2015, 2, 94–102. [CrossRef]

27. Chakhchoukh, Y.; Vittal, V.; Heydt, G.T. PMU Based State Estimation by Integrating Correlation. IEEE Trans. Power Syst. 2014, 29,
617–626. [CrossRef]

28. Zhao, J.; Wang, S.; Mili, L.; Amidan, B.; Huang, R.; Huang, Z. A Robust State Estimation Framework Considering Measurement
Correlations and Imperfect Synchronization. IEEE Trans. Power Syst. 2018, 33, 4604–4613. [CrossRef]

29. Bi, T.S.; Qin, X.H.; Yang, Q.X. A Novel Hybrid State Estimator for Including Synchronized Phasor Measurements. Electr. Power
Syst. Res. 2008, 78, 1343–1352. [CrossRef]

30. Korres, G.N.; Manousakis, N.M. State Estimation and Bad Data Processing for Systems Including PMU and SCADA Measurements.
Electr. Power Syst. Res. 2011, 81, 1514–1524. [CrossRef]

31. Valverde, G.; Chakrabarti, S.; Kyriakides, E.; Terzija, V. A Constrained Formulation for Hybrid State Estimation. IEEE Trans.
Power Syst. 2011, 26, 1102–1109. [CrossRef]

32. Mallik, S.K.; Chakrabarti, S.; Singh, S.N. A Robust Regularized Hybrid State Estimator for Power Systems. Electr. Power Compon.
Syst. 2014, 42, 671–681. [CrossRef]

33. Khalili, R.; Abur, A. Iterative Linear State Estimation Using a Limited Number of PMU Measurements. In Proceedings of the 2021
IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1–6.

http://doi.org/10.1109/TPWRS.2019.2894769
http://doi.org/10.1109/ACCESS.2020.2979735
http://doi.org/10.1109/JPROC.2010.2060450
http://doi.org/10.1109/TPWRS.2018.2871192
http://doi.org/10.1109/TIM.2018.2872446
http://doi.org/10.1109/TPWRS.2012.2231439
http://doi.org/10.1002/etep.2580
http://doi.org/10.1109/JSYST.2014.2375951
http://doi.org/10.1109/TPWRS.2014.2344012
http://doi.org/10.1109/TPWRS.2017.2720626
http://doi.org/10.1109/TSG.2015.2431693
http://doi.org/10.1109/TII.2022.3202522
http://doi.org/10.1049/iet-gtd.2019.0010
http://doi.org/10.1109/TPWRS.2012.2215890
http://doi.org/10.1109/JPETS.2015.2448115
http://doi.org/10.1109/TPWRS.2013.2284560
http://doi.org/10.1109/TPWRS.2018.2790390
http://doi.org/10.1016/j.epsr.2007.12.002
http://doi.org/10.1016/j.epsr.2011.03.013
http://doi.org/10.1109/TPWRS.2010.2079960
http://doi.org/10.1080/15325008.2014.890968


Energies 2023, 16, 618 18 of 20

34. Jovicic, A.; Hug, G. Linear State Estimation and Bad Data Detection for Power Systems with RTU and PMU Measurements. IET
Gener. Transm. Distrib. 2020, 14, 5675–5684. [CrossRef]

35. Dobakhshari, A.S.; Azizi, S.; Abdolmaleki, M.; Terzija, V. Linear LAV-based State Estimation Integrating Hybrid SCADA/PMU
Measurements. IET Gener. Transm. Distrib. 2020, 14, 1583–1590. [CrossRef]

36. Dobakhshari, A.S.; Abdolmaleki, M.; Terzija, V.; Azizi, S. Robust Hybrid Linear State Estimator Utilizing SCADA and PMU
Measurements. IEEE Trans. Power Syst. 2021, 36, 1264–1273. [CrossRef]

37. Jovicic, A.; Codoni, N.; Hug, G. Computationally Efficient Robust State Estimation for Power Transmission Systems with RTU
and PMU Measurements. In Proceedings of the 2020 52nd North American Power Symposium (NAPS), Tempe, AZ, USA, 11–13
April 2021; pp. 1–6.

38. Jovicic, A.; Jereminov, M.; Pileggi, L.; Hug, G. A Linear Formulation for Power System State Estimation Including RTU and PMU
Measurements. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest,
Romania, 29 September–2 October 2019; pp. 1–5.

39. Jovicic, A.; Jereminov, M.; Pileggi, L.; Hug, G. Enhanced Modelling Framework for Equivalent Circuit-Based Power System State
Estimation. IEEE Trans. Power Syst. 2020, 35, 3790–3799. [CrossRef]

40. Fan, X.; Duan, D. Decentralized Multi-Area State Estimation with Hybrid Measurements. In Proceedings of the 2017 IEEE Power
& Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.

41. Li, X.; Scaglione, A. Robust Decentralized State Estimation and Tracking for Power Systems via Network Gossiping. IEEE J. Sel.
Areas Commun. 2013, 31, 1184–1194. [CrossRef]

42. Minot, A.; Lu, Y.M.; Li, N. A Distributed Gauss-Newton Method for Power System State Estimation. IEEE Trans. Power Syst. 2016,
31, 3804–3815. [CrossRef]

43. Sharma, A.; Srivastava, S.C.; Chakrabarti, S. An Iterative Multiarea State Estimation Approach Using Area Slack Bus Adjustment.
IEEE Syst. J. 2016, 10, 69–77. [CrossRef]

44. Dzafic, I.; Jabr, R.A.; Hrnjic, T. Hybrid State Estimation in Complex Variables. IEEE Trans. Power Syst. 2018, 33, 5288–5296.
[CrossRef]

45. Džafić, I.; Jabr, R.A. Real-Time Equality-Constrained Hybrid State Estimation in Complex Variables. Int. J. Electr. Power Energy
Syst. 2020, 117, 105634. [CrossRef]

46. Dzafic, I.; Jabr, R.A.; Hrnjic, T. A Complex Variable Perturbed Gauss-Newton Method for Tracking Mode State Estimation. IEEE
Trans. Power Syst. 2021, 36, 2594–2602. [CrossRef]

47. Zhou, M.; Centeno, V.A.; Thorp, J.S.; Phadke, A.G. An Alternative for Including Phasor Measurements in State Estimators. IEEE
Trans. Power Syst. 2006, 21, 1930–1937. [CrossRef]

48. Nuqui, R.F.; Phadke, A.G. Hybrid Linear State Estimation Utilizing Synchronized Phasor Measurements. In Proceedings of the
2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 1665–1669.

49. Jamuna, K.; Swarup, K.S. Two Stage State Estimator with Phasor Measurements. In Proceedings of the 2009 International
Conference on Power Systems, Kharagpur, India, 27–29 December 2009; pp. 1–5.

50. Moshtagh, S.; Rahmani, M. Robust Hybrid State Estimation for Power Systems Utilizing Phasor Measurements Units. Electr.
Power Syst. Res. 2021, 196, 107195. [CrossRef]

51. Rathod, N.; Patel, H.; Joshi, S. Implementing Two Stage Hybrid State Estimation with Various Approaches. In Proceedings of the
2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 23–26 November 2020; pp. 627–632.

52. Bez, D.M.; Costa, A.S.; Ascari, L.B.; Junior, E.Z. A Block Version of Orthogonal Rotations for Improving the Accuracy of Hybrid
State Estimators. IEEE Trans. Power Syst. 2020, 35, 4432–4444. [CrossRef]

53. Manousakis, N.M.; Korres, G.N.; Aliprantis, J.N.; Vavourakis, G.P.; Makrinas, G.-C.J. A Two-Stage State Estimator for Power
Systems with PMU and SCADA Measurements. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France, 16–20
June 2013; pp. 1–6.

54. Kashyap, N.; Werner, S.; Huang, Y.-F.; Riihonen, T. Power System State Estimation Under Incomplete PMU Observability—A
Reduced-Order Approach. IEEE J. Sel. Top. Signal Process. 2014, 8, 1051–1062. [CrossRef]

55. Yang, T.; Sun, H.; Bose, A. Transition to a Two-Level Linear State Estimator—Part II: Algorithm. IEEE Trans. Power Syst. 2011, 26,
54–62. [CrossRef]

56. Bar-Shalom, Y.; Campo, L. The Effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance. IEEE Trans.
Aerosp. Electron. Syst. 1986, AES-22, 803–805. [CrossRef]

57. Costa, A.S.; Albuquerque, A.; Bez, D. An Estimation Fusion Method for Including Phasor Measurements into Power System
Real-Time Modeling. IEEE Trans. Power Syst. 2013, 28, 1910–1920. [CrossRef]

58. Wu, T.; Chung, C.Y.; Kamwa, I. A Fast State Estimator for Systems Including Limited Number of PMUs. IEEE Trans. Power Syst.
2017, 32, 4329–4339. [CrossRef]

59. Ascari, L.B.; Costa, A.S.; Miranda, V. Correntropy-Based Fusion Strategy for Incorporating PMU Measurements into Power
System State Estimation. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6.

60. Zhao, J.; Mili, L. A Framework for Robust Hybrid State Estimation with Unknown Measurement Noise Statistics. IEEE Trans. Ind.
Inform. 2018, 14, 1866–1875. [CrossRef]

61. Ban, J.; Im, J.; Kim, Y.-J.; Zhao, J. Decentralization of Phasor-Aided State Estimation Using Local State Vector Extension. IEEE
Trans. Power Syst. 2021, 36, 4645–4659. [CrossRef]

http://doi.org/10.1049/iet-gtd.2020.0487
http://doi.org/10.1049/iet-gtd.2019.1850
http://doi.org/10.1109/TPWRS.2020.3013677
http://doi.org/10.1109/TPWRS.2020.2974459
http://doi.org/10.1109/JSAC.2013.130703
http://doi.org/10.1109/TPWRS.2015.2497330
http://doi.org/10.1109/JSYST.2014.2316205
http://doi.org/10.1109/TPWRS.2018.2794401
http://doi.org/10.1016/j.ijepes.2019.105634
http://doi.org/10.1109/TPWRS.2020.3034371
http://doi.org/10.1109/TPWRS.2006.881112
http://doi.org/10.1016/j.epsr.2021.107195
http://doi.org/10.1109/TPWRS.2020.2991863
http://doi.org/10.1109/JSTSP.2014.2333712
http://doi.org/10.1109/TPWRS.2010.2050077
http://doi.org/10.1109/TAES.1986.310815
http://doi.org/10.1109/TPWRS.2012.2232315
http://doi.org/10.1109/TPWRS.2017.2673857
http://doi.org/10.1109/TII.2017.2764800
http://doi.org/10.1109/TPWRS.2021.3068607


Energies 2023, 16, 618 19 of 20

62. Zhao, J.; Netto, M.; Huang, Z.; Yu, S.S.; Gomez-Exposito, A.; Wang, S.; Kamwa, I.; Akhlaghi, S.; Mili, L.; Terzija, V.; et al. Roles of
Dynamic State Estimation in Power System Modeling, Monitoring and Operation. IEEE Trans. Power Syst. 2021, 36, 2462–2472.
[CrossRef]

63. Liu, Y.; Singh, A.K.; Zhao, J.; Meliopoulos, A.P.S.; Pal, B.; Ariff, M.A.b.M.; Van Cutsem, T.; Glavic, M.; Huang, Z.; Kamwa, I.; et al.
Dynamic State Estimation for Power System Control and Protection. IEEE Trans. Power Syst. 2021, 36, 5909–5921. [CrossRef]

64. Ghosal, M.; Rao, V. Fusion of Multirate Measurements for Nonlinear Dynamic State Estimation of the Power Systems. IEEE Trans.
Smart Grid 2019, 10, 216–226. [CrossRef]

65. Abooshahab, M.A.; Hovd, M.; Brekke, E.; Song, X. A Covariance Consistent Data Fusion Method for Power Networks with
Multirate Sensors. In Proceedings of the 2020 IEEE Conference on Control Technology and Applications (CCTA), Montreal, QC,
Canada, 24–26 August 2020; pp. 807–814.

66. Goleijani, S.; Ameli, M.T. Neural Network-Based Power System Dynamic State Estimation Using Hybrid Data from SCADA and
Phasor Measurement Units. Int. Trans. Electr. Energy Syst. 2018, 28, e2481. [CrossRef]

67. Goleijani, S.; Ameli, M.T. A Multi-Agent Based Approach to Power System Dynamic State Estimation by Considering Algebraic
and Dynamic State Variables. Electr. Power Syst. Res. 2018, 163, 470–481. [CrossRef]

68. Zhao, J.; Wang, S.; Zhou, N.; Huang, R.; Mili, L.; Huang, Z. A New Multi-Scale State Estimation Framework for the Next
Generation of Power Grid EMS. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta,
GA, USA, 4–8 August 2019; pp. 1–5.

69. Do Coutto Filho, M.B.; de Souza, J.C.S. Forecasting-Aided State Estimation—Part I: Panorama. IEEE Trans. Power Syst. 2009, 24,
1667–1677. [CrossRef]

70. Valverde, G.; Terzija, V. Unscented Kalman Filter for Power System Dynamic State Estimation. IET Gener. Transm. Distrib. 2011,
5, 29. [CrossRef]

71. Hu, L.; Wang, Z.; Rahman, I.; Liu, X. A Constrained Optimization Approach to Dynamic State Estimation for Power Systems
Including PMU and Missing Measurements. IEEE Trans. Control Syst. Technol. 2015, 24, 703–710. [CrossRef]

72. Cheng, Z.; Ren, H.; Zhang, B.; Lu, R. Distributed Kalman Filter for Large-Scale Power Systems with State Inequality Constraints.
IEEE Trans. Ind. Electron. 2021, 68, 6238–6247. [CrossRef]

73. Sharma, A.; Samantaray, S.R. Power System Tracking State Estimator for Smart Grid Under Unreliable PMU Data Communication
Network. IEEE Sens. J. 2018, 18, 2107–2116. [CrossRef]

74. Sharma, A.; Srivastava, S.C.; Chakrabarti, S. A Cubature Kalman Filter Based Power System Dynamic State Estimator. IEEE Trans.
Instrum. Meas. 2017, 66, 2036–2045. [CrossRef]

75. Xiao, Y.; Lu, M.; Huang, Z.; Wang, Y.; Lin, L.; Zhang, C. Dynamic State Estimation of Power System Considering Asynchronous
Measurement. In Proceedings of the 2020 International Conference on Electrical Engineering and Control Technologies (CEECT),
Melbourne, VIC, Australia, 10–13 December 2020; pp. 1–6.

76. Stankovic, A.M.; Svenda, V.; Saric, A.T.; Transtrum, M.K. Hybrid Power System State Estimation with Irregular Sampling. In
Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.

77. Geetha, S.J.; Sharma, A.; Chakrabarti, S. Unscented Rauch–Tung–Streibel Smoother-based Power System Forecasting-aided State
Estimator Using Hybrid Measurements. IET Gener. Transm. Distrib. 2019, 13, 3583–3590. [CrossRef]

78. Massignan, J.A.D.; London, J.B.A.; Maciel, C.D.; Bessani, M.; Miranda, V. PMUs and SCADA Measurements in Power System
State Estimation through Bayesian Inference. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019;
pp. 1–6.

79. Qu, B.; Wang, Z.; Shen, B. Fusion Estimation for a Class of Multi-Rate Power Systems with Randomly Occurring SCADA
Measurement Delays. Automatica 2021, 125, 109408. [CrossRef]

80. Karimipour, H.; Dinavahi, V. Extended Kalman Filter-Based Parallel Dynamic State Estimation. IEEE Trans. Smart Grid 2015, 6,
1539–1549. [CrossRef]

81. Goleijani, S.; Ameli, M.T. An Agent-Based Approach to Power System Dynamic State Estimation through Dual Unscented Kalman
Filter and Artificial Neural Network. Soft Comput. 2019, 23, 12585–12606. [CrossRef]

82. Sun, Y.; Zhao, Y. Distributed Cubature Kalman Filter with Performance Comparison for Large-Scale Power Systems. Int. J. Control
Autom. Syst. 2021, 19, 1319–1327. [CrossRef]

83. Kirincic, V.; Skok, S.; Terzija, V. A Two-Step Hybrid Power System State Estimator. Int. Trans. Electr. Energy Syst. 2015, 25,
1158–1172. [CrossRef]

84. Dubey, A.; Chakrabarti, S. An Unscented Kalman Filter Based Hybrid State Estimator Considering Conventional and PMU
Measurements. In Proceedings of the 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India, 4–6
March 2016; pp. 1–6.

85. Alcaide-Moreno, B.A.; Fuerte-Esquivel, C.R.; Glavic, M.; Van Cutsem, T. Electric Power Network State Tracking From Multirate
Measurements. IEEE Trans. Instrum. Meas. 2018, 67, 33–44. [CrossRef]

86. Qing, X.; Karimi, H.R.; Niu, Y.; Wang, X. Decentralized Unscented Kalman Filter Based on a Consensus Algorithm for Multi-Area
Dynamic State Estimation in Power Systems. Int. J. Electr. Power Energy Syst. 2015, 65, 26–33. [CrossRef]

87. Massignan, J.A.; London, J.B.; Miranda, V. Tracking Power System State Evolution with Maximum-Correntropy-Based Extended
Kalman Filter. J. Mod. Power Syst. Clean Energy 2020, 8, 616–626. [CrossRef]

http://doi.org/10.1109/TPWRS.2020.3028047
http://doi.org/10.1109/TPWRS.2021.3079395
http://doi.org/10.1109/TSG.2017.2737359
http://doi.org/10.1002/etep.2481
http://doi.org/10.1016/j.epsr.2018.07.019
http://doi.org/10.1109/TPWRS.2009.2030295
http://doi.org/10.1049/iet-gtd.2010.0210
http://doi.org/10.1109/TCST.2015.2445852
http://doi.org/10.1109/TIE.2020.2994874
http://doi.org/10.1109/JSEN.2018.2789353
http://doi.org/10.1109/TIM.2017.2677698
http://doi.org/10.1049/iet-gtd.2018.6811
http://doi.org/10.1016/j.automatica.2020.109408
http://doi.org/10.1109/TSG.2014.2387169
http://doi.org/10.1007/s00500-019-03809-7
http://doi.org/10.1007/s12555-019-1054-9
http://doi.org/10.1002/etep.1894
http://doi.org/10.1109/TIM.2017.2754838
http://doi.org/10.1016/j.ijepes.2014.09.024
http://doi.org/10.35833/MPCE.2020.000122


Energies 2023, 16, 618 20 of 20

88. Bian, X.; Li, X.R.; Chen, H.; Gan, D.; Qiu, J. Joint Estimation of State and Parameter with Synchrophasors—Part I: State Tracking.
IEEE Trans. Power Syst. 2011, 26, 1196–1208. [CrossRef]

89. Wang, Y.; Xia, M.; Chen, Q.; Chen, F.; Yang, X.; Han, F. Fast State Estimation of Power System Based on Extreme Learning
Machine Pseudo-Measurement Modeling. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT
Asia), Chengdu, China, 21–24 May 2019; pp. 1236–1241.

90. Camoes, F.; Massignan, J.A.D.; Miranda, V.; London, J.B.A. Sliding-Priors for Bayesian Information Fusion in SCADA+PMU-Based
State Estimation. In Proceedings of the 2022 17th International Conference on Probabilistic Methods Applied to Power Systems
(PMAPS), Manchester, UK, 12–15 June 2022; pp. 1–6.
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