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Abstract: In this work, a study was performed on the influence of the ratio of height to the diameter
of the reduction zone of a small-size downdraft gasifier as well as of the fuel fraction sizes on the gas
quality (the quality was evaluated for CO content). The ratio of a full side area to the volume of a fuel
fraction (SVR) was used as a fuel parameter. The maximum CO concentration was observed when
using a small fuel fraction with SVR—0.7–0.72 mm−1 and when adhering to the ratio of height to the
diameter of the reduction zone H/D—0.5–0.6. The maximum electric power for gasoline generators
(nominal power equaled 4 kW) when using the gas received from the fast-growing hybrid willow
biomass equaled 2.4 kW. This power is 37.5% lower than when using gasoline and 7.0% lower than
when using the gas received from the hardwood biomass. The emissions of harmful gases into the
atmosphere by the gasoline generator engine equaled 0.12–0.14% CO and 24–27 mln−1 CxHy. The
emissions were 64.8 times less for CO and 8.5 times less for CxHy when compared with using gasoline.

Keywords: carbon monoxide; biomass; gasification; reduction zone; gasoline generators; electric
energy; harmful gases

1. Introduction

The reduction of greenhouse gas emissions and the improved energy supply can be
achieved through the increased use of biofuel [1–5]. The lignin–cellulose mass from plants is
an important raw material for biofuel production [6,7]. As a result of energy conversion, it is
possible to obtain biogas, diesel biofuel, bioethanol, biohydrogen, fuel briquettes, etc. [8–10].
Agricultural production allows to receive a great amount of biomass available for energy
conversion [11–13]. However, the use of biomass for energy conversion can result in a decrease
in food production as well as in some negative impacts on the environment [14–16]. Therefore,
the choice of a raw material is an important efficiency factor in the energy conversion of
biomass. An efficient choice of a raw material can provide the lowest cost as well as the lowest
emission of harmful substances into the atmosphere at all stages of energy conversion [17].
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There is an opinion regarding the low efficiency of the energy conversion of biomass [18,19].
The energy conversion of biomass can disrupt the environmental and economic stability of
agricultural production [8,9,19]. An increase in the number of types of agricultural crops can
increase the stability of agricultural production [20].

One such species can be fast-growing hybrid plants, in particular, hybrid poplar,
hybrid willow, and hybrid aspen [21]. The plantations of fast-growing hybrid plants are a
source of biomass with a high potential for energy conversion [22]. The sources of wood
raw material, such as hybrid poplar and hybrid willow and particularly aspen and northern
hardwoods, are potential sources of wood biomass for obtaining thermal and electric energy
as well as for ethanol production [23]. The use of fast-growing hybrid plants is appropriate
in view of the reduction of carbon dioxide emissions (CO2) [24].

Some scientists state that growing fast-growing hybrid plants is cost-effective if subsi-
dized [25]. Therefore, it is necessary to pay attention to the energy conversion efficiency
of fast-growing hybrid plants. In particular, the efficiency depends on the parameters of
the working machines used in the relevant technological processes. These parameters are
equipment ratio, cost of consumables (fuel and energy), cost of equipment, etc. [26–28].
There are some technical obstacles for efficient biofuel production from the biomass of
fast-growing hybrid plants, for example, a significant energy requirement, a high cost of
the necessary equipment, and some difficulties in providing the necessary technological
conditions. Such technical and financial aspects pose serious problems for the commercial
viability of many technologies of energy conversion of fast-growing hybrid plants [29].

One of the widespread and promising fast-growing hybrid plants for energy con-
version is the hybrid willow Salix Viminalis [30,31]. The fast-growing willow is mainly
used in the processes of direct combustion as it has a high heating value (from 17 to
19.5 MJ/kg) [32,33]. It is common to use the fast-growing hybrid plant’s biomass in the
form of pellets, briquettes, sawdust, chips, etc. [9,34]. The fast-growing hybrid willow
biomass is suitable for efficient torrefaction [35]. It is easy to obtain energy from the fast-
growing hybrid willow biomass by combustion. However, direct combustion causes some
difficulties due to biomass heterogeneity and high ash content [36]. The hard deposits
(agglomerates) are accumulated on the work surfaces of the heating equipment through
ash melting in the process of biomass combustion [37]. In addition, biomass combustion in
small and medium volumes allows to obtain only thermal energy for the consumers. To
obtain electric energy, it is necessary to use large energy complexes that run on biomass [38].

The fast-growing hybrid willow biomass is also suitable for biofuel production by
biochemical transformation, for example, for bioethanol production [31], or by thermo-
chemical transformation—pyrolysis [32]. Bioethanol production and biomass pyrolysis are
rather complicated and energy-intensive technological processes, which can be appropriate
in large-scale industrial production. However, under the conditions of small and medium
enterprises, particularly, agricultural ones, such technologies are not economically and
energetically reasonable. Therefore, to achieve a steady energy supply under conditions
of small and medium agricultural or industrial enterprises, it will be reasonable to use
the gasification technologies in which hard biomass is transformed into a combustible gas,
known as a producer gas [10,36,39–42]. Herewith, the use of a small-size downdraft gasifier
is preferable because of a smaller amount of tar output and fewer requirements for the
gas cleaning that is economically attractive and technically more reliable [39,41]. However,
when using a small gas generator with a downward flow, the geometric parameters of the
working zones and the properties of the fuel have a significant impact on the quality of the
gas. In [43], a study was performed of a downdraft gasifier operation process running on
five types of biomasses, in particular on a hybrid willow.

The studies were aimed at assessing the influence of the equivalence ratio (ER) change,
that is the air supply into a work zone, on the chemical composition of the received gas.
The influence of the gasifier geometric parameters and of the fuel fraction size were not
assessed. In the scientists’ opinion, they have a significant influence on the quality of
the received gas. The use of a fluidized bed gasifier allows to reduce the impact of side
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parameters on the quality of the received gas and to increase its heating value [44,45];
however, the design of such a generator is complicated, and the improvement of gas quality
is insignificant. The authors suppose that the use of a downdraft gasifier in the process
of gas production in small and medium volumes is reasonable. The producer gas that
was received in the process of gasification can be used as fuel for gasoline generators at
small and medium enterprises or for the internal combustion engine CHP system at large
enterprises [46,47]. Such systems can produce electric and thermal energy. In particular, the
performance efficiency of a small-scale cogeneration plant was evaluated in [47,48], but the
level of harmful gas emissions by a combustion engine with which the plant was equipped
was not studied.

Though previous scientific research proves that the gasifier construction is very im-
portant, there is still a small number of multifactorial studies describing the effect of the
recovery zone height on the quality of the gas depending on the size of the fuel particles
when the combustion zone and the recovery zone of the gasifier have the same diameter
without barriers for fuel movement. The goal of the current study is to optimize the ratio of
the gasifier recovery zone height and diameter when the gasifier combustion and recovery
zone have the same diameter without barriers for fuel movement.

2. Materials and Methods

The purpose of the research is to study the features of energy conversion of a fast-
growing willow Salix Viminalis biomass by means of a small-size downdraft gasifier. Two
experimental plants were used for this purpose. The influence of fuel fraction sizes and the
reduction zone parameters of a gasifier on the quality of the received generator gas were
studied in the first plant (Figure 1a,b). The plant was built on the basis of the experimental
downdraft gasifier (position 5 in Figure 1b). In the suggested downdraft gasifier, the
combustion and the reduction zones have the same diameter. Such a construction feature
allows to improve the efficiency of biomass gasification by 15% as compared with the
analogs [49]. The diameter of a reduction zone equaled 200 mm, and the height (the
working length) of the reduction zone could change from 40 to 160 mm. The height to
diameter ratio H/D was chosen as a parameter of the reduction zone (Table 1).

Table 1. The reduction zone characteristics.

The Reduction Zone Height H, mm The Reduction Zone Diameter D, mm H/D, mm/mm

40 200 0.2

100 200 0.5

160 200 0.8

The air flow into the reduction zone was 0.012 m3/s in order to reach a rational equiva-
lence ratio (ER). With that air flow, the ER stayed in the range of 0.3–0.35 and provided the
highest gas quality (according to earlier studies conducted by the authors [40,49]).

The equivalence ratio (ER), which was used in the article, shows the ratio of the
oxygen amount supplied to the gasifier to the oxygen amount required for stoichiometric
fuel combustion [50,51]:

ER =
0.21m2

xm1 + 0.25ym1 + 0.5zm1
(1)

where m1—fuel (biomass) consumption during gas formation, mol/s;
m2—air consumption, mol/s;
x—number of carbon molecules per mole of fuel;
y—number of hydrogen molecules per mole of fuel;
z—number of oxygen molecules per mole of fuel.
In the research, a fuel biomass of a fast-growing willow Salix Viminalis was divided

into four fractions according to the geometrical sizes (Figure 2, Table 2). The fuel pellets
that were made of the ground biomass of a fast-growing willow were used as well.
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Figure 1. General view (a) and a scheme (b) of plant number 1 for conducting research: 1—an
anemometer, 2—an air blower (an oxidant blower), 3—a frequency converter, 4—an electric power
source, 5—a downdraft gasifier, 6—an intermediate purification filter, 7—a cooler, 8—a chemical
analyzer of gas content, 9—a filter for final gas purification, 10—a mixer, and 11—an analyzer sensor 8.
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Table 2. Fuel fraction characteristics.

Fraction No.
Average Sizes, mm Average Area of a

Full Surface S, mm2 Average Volume V, mm3 SVR, S/V mm−1
Length Width Thickness

Large 1 40 15 12 2520 7200 0.35

Medium 2 30 12 8 1392 2880 0.48

Small 3 20 9 5 650 900 0.72

Very small 4 10 4 4 192 160 1.20

Fuel pellets 5 10 4 (diameter) 192 160 1.20

A ratio of a full side area (S) to a fraction volume (V) of fuel—SVR [39] was used as a
fuel parameter (Table 2).

As the fuel with the lowest possible relative humidity was used in the experiment, the
producer gas quality was determined according to the carbon monoxide (CO) concentration [36,40].

The experiment with each fuel fraction and the reduction zone height was repeated
three times. The homogeneity of variances of the experimental data was assessed by
Cochran’s criterion; the significance of the regression equation coefficients was assessed by
Student’s criteria, and the adequacy of the received regression equations was assessed by
Fisher’s criterion.

In the second experimental plant, the influence of the producer gas on the process of
electric energy generation was studied with an electric generator (nominal power 4.0 kW)
equipped with an internal combustion engine (Figure 3a,b).
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Figure 3. General view (a) and a scheme (b) of plant number 2 for conducting research: 1—a downdraft
gasifier; 2—a filter for intermediate gas purification; 3—a refrigerator; 4—a filter for a final gas purifica-
tion; 5—an internal combustion engine; 6—a gas meter; 7 –a mixer for regulating the air supply into the
engine; 8—an air meter; 9—an analyzer of the chemical composition of exhaust gases; 10—an electric
generator; 11—wattmeter; and 12—a standard electrical load consumer.

The second experimental plant was built on the basis of a downdraft gasifier. The
height of the reduction zone of a generator equaled 110 mm (H/D = 0.55). The fuel with
fraction №3 (SVR 0.72, Table 2) was loaded into a gasifier. The process of studying the
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influence of a producer gas on the process of electric energy generation is described in
detail in the authors’ publications [52,53].

3. Results and Discussion

As a result of the data analysis of the experimental studies of the gasification process of
a fast-growing willow Salix Viminalis, an empirical equation (2) was received that describes
the dynamics of change in the CO concentration depending on the sizes of the fuel fractions
and the geometric sizes of the reduction zone:

CCO = −18.27 + 80.80
H
D

+ 53.61SVR − 59.03
(

H
D

)2
− 21.02

H
D

SVR − 31.34SVR2 (2)

where CCO—the concentration of carbon monoxide (CO), %;
H/D—the height to the reduction zone diameter ratio, mm/mm;
SVR—the ratio of the full side area to the volume of a fuel fraction, mm−1.
Visually, Equation (1) can be shown in graphs (Figures 4–6).
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As follows from the analytical study of the graphs (Figures 4–6), the maximum CO
concentration in the gas equals 22.2–22.3%. The maximum CO concentration is observed
when using a small fuel fraction SRV—0.7–0.72 mm−1 and when keeping to the ratio of
height to the reduction zone diameter H/D at the level of 0.5–0.6. Such a ratio for a given
experimental gasifier is achieved when the reduction zone height is within 100–120 mm.
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In the authors’ opinions, when the reduction zone height is more than 120 mm, the
resistance for the air flow (oxidizer) increases, and it results in gas quality deterioration
(CO concentration decreases). If the reduction zone height is less than 100 mm, the CO
concentration decreases as well. It can be explained by the fact that under a low height of
the reduction zone, the producer gas does not pass in full.
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Due to the decrease in the fuel fraction, the intensity of gas formation increases, and
the process of gas renewal improves. However, when the fuel fraction is very small, there
is a significant increase in the resistance for the air flow, and, as a result, the process of gas
formation slows down, and its quality deteriorates.

For comparison, a maximum concentration of CO in the process of hardwood gasifi-
cation in an analogical gasifier was 27.5% [40]. A higher CO content in the gas from the
hardwood as compared with the fast-growing willow was caused by the denser wood
structure of the hardwood. The paper [43] evaluated the chemical composition of fuel
received from the willow biomass; the CO content equaled up to 30%, and the content
of other combustion gases was insignificant. The CO content for other hardwoods was
somewhat higher. As follows from the analysis of the mathematical models [54], the CO
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content in gas that was received from the biomass is within 22–27%. The content of other
combustion gases (except H) is insignificant. Thus, the next stage of the research can be the
evaluation of the H content.

The authors also state that it is not reasonable to use fuel pellets made from fast-
growing willow in gasifiers. The quality of the received gas is somewhat lower in this case.
Furthermore, fuel pellet production needs additional economic and energy costs.

The authors also studied the efficiency of using the gas received in the process of gasi-
fication of the fast-growing willow biomass for the work of small-scale gasoline generators.
The analysis of the results and their comparison with the previous results of the authors’
research [49,52] are given in graphical form in Figures 7–10.
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It is necessary to mention that the maximum electric power when using the gas
received from the fast-growing willow biomass equaled 2.4 kW. This power is 37.5% lower
than when using gasoline and 7.4% lower than when using the gas received from the
hardwood biomass. This can be explained by a smaller lower heating value (LHV) of
the gas received from the fast-growing willow (LHV of the gas—9–10 MJ/m3, LHV of
gasoline—43–44 MJ/l [36,52]).

The consumption of the gas that was received from the fast-growing willow was
somewhat higher (by 6.7% on the average) as compared with the consumption of the
gas received from the hardwood biomass (Table 3, Figure 8). This can be explained by a
smaller LHV of the gas received from the fast-growing willow (LHV of the gas received
from the fast-growing willow—9–10 MJ/m3, LHV of the gas received from the hardwood
biomass—10–13 MJ/m3 [36,52]).

Table 3. Fuel consumption.

Fuel Empirical Equation The Number of the Equation Confidence Level (R2)

Gasoline Q1 = 5.35N + 22.72 (3) 0.99

Gas from the hardwood biomass Q2 = 0.029N2 − 0.027N + 0.20 (4) 0.91

Gas from the biomass of the
fast-growing willow

Salix Viminalis
Q2 = 0.031N2 − 0.020N + 0.22 (5) 0.90

where Q1—gasoline consumption, g/min; Q2—gas consumption, m3/min; and
N—electric power, kW

As for the toxic gas emissions, their amount was practically the same when using
both the gas received from the hardwood and the gas received from the fast-growing
willow—0.12–0.14% CO and 24–27 ppm CxHy. In addition, when using gasoline, the toxic
gas emission was 64.8 times less for CO and 8.5 times less for CxHy (Figures 9 and 10).

The results of the research help to draw a conclusion about the environmental efficiency
of using small-scale cogeneration plants that run on the gas received in the process of fast-
growing willow gasification. However, the received electric power is lower than when using
fossil fuels, gasoline in particular. To increase the energy efficiency of using fast-growing
willow biomass, it is possible to use torrefied biomass [35,55,56].

The authors are planning to conduct research into the gasification rate of different
fractions of fast-growing willow biomass to determine the ash content and to estimate
the rate of ash melting in the process of biomass gasification, to conduct a comparative
study of the effectiveness of the torrefied biomass gasification, and to conduct an economic
assessment of the expediency of receiving energy by a small-scale cogeneration plant that
uses fast-growing willow biomass as fuel.
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4. Conclusions

In the process of gasification of a fast-growing willow Salix Viminalis in a downdraft
gasifier, the maximum CO concentration in a producer gas equals 22.2–22.3%. The maxi-
mum CO concentration is observed when using a small fraction of fuel SRV—0.7–0.72 mm−1

and when keeping to the ratio of height to the diameter of the reduction zone H/D—0.5–0.6.
The maximum electric power for gasoline generators (nominal power—4 kW) when

using the gas received from the fast-growing willow biomass equaled 2.4 kW. This power
is 37.5% lower than when using gasoline and 7.4% lower than when using the gas received
from the hardwood biomass.

When using the gas that was received from the hardwood and the fast-growing wil-
low, the emissions of harmful gases by the gasoline generator engine into the atmosphere
were practically the same and equaled 0.12–0.14% CO and 24–27 ppm CxHy. The studies
testify to the expediency of energy conversion of the fast-growing willow biomass by
the gasification processes.
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