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Abstract: Using thin-section images to estimate core permeability is an economical and less time-
consuming method for reservoir evaluation, which is a goal that many petroleum developers aspire
to achieve. Although three-dimensional (3D) pore volumes have been successfully applied to train
permeability models, it is very expensive to carry out. In this regard, deriving permeability from
two-dimensional (2D) images presents a novel approach in which data are fitted directly on the basis
of pore-throat characteristics extracted from more cost-effective thin sections. This work proposes
a Fluid–MLP workflow for estimating 3D permeability models. We employed DIA technology com-
bined with artificial lithology and pore classification to calculate up to 110 characteristic parameters
of the pore-throat structure on the basis of 2D rock cast thin sections. The MLP network was adopted
to train the permeability prediction model, utilizing these 110 parameters as input. However, the
accuracy of the conventional MLP network only reached 90%. We propose data preprocessing using
fluid flow simulations to improve the training accuracy of the MLP network. The fluid flow simu-
lations involve generating a pore network model based on the 2D pore size distribution, followed
by employing the lattice Boltzmann method to estimate permeability. Subsequently, six key struc-
tural parameters, including permeability calculated by LBM, pore type, lithology, two-dimensional
porosity, average pore–throat ratio, and average throat diameter, were fed into the MLP network
for training to form a new Fluid–MLP workflow. Comparing the results predicted using this new
Fluid–MLP workflow with those of the original MLP network, we found that the Fluid–MLP network
exhibited superior predictive performance.

Keywords: pore network model; lattice Boltzmann; fluid simulation; pore throat characteristics;
MLP network

1. Introduction

Permeability, which serves as a key parameter reflecting the physical characteristics of
oil and gas reservoirs and plays a crucial role in evaluating reservoir quality and predicting
oil and gas production [1], is a fundamental property of rock that determines its ability to
allow fluid to flow under specific pressure differentials. However, accurately estimating
permeability at various scales during reservoir evaluation has long posed a challenge [2–4].
Traditionally, permeability has been obtained through core and well test analysis. On
one hand, core analysis provides permeability measurements at a centimeter scale, while
micron-scale samples represent an even smaller of observation, reflecting fluid conduction
at the micron level [5–7]. On the other hand, well test analysis provides permeability
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measurements at larger scales, typically encompassing production horizons [8]. However,
the vertical resolution of well test analysis is limited, making it inadequate for describing
the heterogeneity of permeability within single-layer sand bodies [6]. Currently, integrating
permeability acquisition methods across different scales remains a challenge. Thin-section
images offer direct insights into pore and throat characteristics, enabling a better under-
standing of homogeneous reservoirs [9–11]. By transforming pore-throat characteristics
extracted from a large number of thin slices within a single well into permeability informa-
tion, it becomes possible to extend the centimeter-scale observations from thin sections to
the meter-scale measurements obtained from well test analysis [12–14]. Consequently, the
estimation of permeability using thin-section images emerges as a promising approach to
establish multi-scale permeability information.

Digital image analysis (DIA) based on thin-section images has increasingly been ap-
plied to calculate pore throat structure, mineral particles, particle/grain size distribution,
and even wettability and dynamic saturation of multiphase flow, owing to the low cost
and wide applicability of casting thin slices [15–17]. Currently, there exist well-developed
semi-automatic or fully automatic digital imaging methods for capturing grain and pore
information [18–20]. Image thresholding and binary images are commonly utilized for
pore-throat and particle size analysis. Several companies in the oil and gas sector have
introduced more automated statistical tools with powerful selection capabilities into the
image processing process, aiming to broaden the application of thin section data in pore
throat analysis. Image segmentation plays a critical role in extracting pore geometry
parameters from thin-section images [21]. Various image segmentation methods are avail-
able, including threshold segmentation [22], region segmentation [23], clustering-based
segmentation [24], and so on. After comparing the segmentation results with methods
such as maximum between-class variance segmentation (Otsu) and maximum entropy
segmentation [25], we selected the hybrid segmentation method to automatically generate
pores [17,26]. Colored resin (typically blue or red) is infused into thin sections, allowing the
differentiation between pores and grains based on the different colors of the resin and rock
grains [27]. The border region often exhibits a mixture of resin and grain colors, and overall
changes may occur due to variations in lighting conditions during image capture. To
address this, a boundary judgment standard that can be dynamically adjusted according to
environmental changes is required. Once the boundaries have been determined, the image
is binarized into binary data, enabling further digital analysis to derive pore structure
parameters such as coordination number, main pore diameter, pore–throat ratio, and pore
size distribution [10].

In this study, we propose a new workflow, named the Fluid–MLP method, for ob-
taining permeability from cast thin sections of rock. Initially, we calculate 110 pore-throat
characteristic parameters from each 2D cast thin section using the DIA technique. Then,
a multi-layer perceptron (MLP) network is employed to construct the permeability model.
The MLP network offers several advantages: it serves as a general-purpose function ap-
proximator that is particularly effective for small numbers of samples; it can be trained
using a backpropagation algorithm and can be transformed into a complex convolutional
network structure; it also acts as a deep model with reusable features. Next, we train the
MLP network using these 110 parameters as input and investigate the factors influenc-
ing its prediction accuracy. To enhance the prediction accuracy, we optimize the input
parameter set based on the MLP network and propose the Fluid–MLP network as a new
approach for predicting permeability from thin slices. The Fluid–MLP workflow involves
the following steps: firstly, pore-throat characteristic parameters are extracted from the
thin slices, and a pore network model (PNM) is constructed to calculate the permeability
parameters using the lattice Boltzmann method (LBM) in a 3D simulation. Then, the re-
maining five key pore-throat structure parameters that significantly impact the simulated
permeability connectivity [28] are reintroduced into the MLP network as input. At present,
methods for obtaining permeability from thin section require 3D reconstruction. Common
reconstruction methods include simulated annealing, four-parameter stochastic growth,
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Markov-Chain Monte Carlo (MCMC), and depositional process methods. Our approach
reconstructs 3D digital cores using PNM, which faithfully represents the pore and throat
distribution of the original thin section, without introducing new random disturbances
during reconstruction. This leads to the development of a more robust Fluid–MLP network,
which substantially improves the prediction accuracy of permeability. The PNM is created
by randomly filling the pore spheres and cylinders, which correspond to lamellar pores
and pore throats, respectively. To verify the ability of the pore sphere filling operation to
generate a representative 3D model, we compare it with multipoint geo-statistics. In the
methodology section, a three-point geostatistical probability comparison is performed to
assess the similarity between the generated model and the original thin-section slices. We
can use NMR to verify the connectivity of pores and the distribution of throats. NMR exper-
iments can serve as important supplementary evidence of the validity of the method [29].
The research objectives of this study are as follows:

(i) To establish a PNM using two-dimensional thin-section slices.
(ii) To achieve fluid simulation using PNM and reduce the input dimensions of MLP with

simulation results.
(iii) To compare the predictive performance of the network after fluid calculation with

that of the original network.
(iv) To attempt to change the number of layers in the MLP to obtain the best prediction

results.

2. Methodology

All following thin-section image analysis data are based on digital image analysis of
porous media [30–32]. Generally speaking, the images obtained from SEM and Micro-CT
are grayscale only. In such cases, a complete and accurate pore space can be obtained by
using simple thresholding in an iterative method. However, thin-section images (Figure 1a)
contain the colors red, green and blue (RGB), resulting in images with complex color
particles for clay and cement, and strong color heterogeneity, with a blurry boundary.
Therefore, accurate results cannot be obtained using traditional methods to segment the
pore space in RGB images. We use an existing general algorithm to differentiate pores and
grains. Firstly, the image is converted into the RGB color space; then, a color is selected
to be extracted. In the RGB color space, the three primary colors are each represented by
255 levels. The next step is to traverse each nearby pixel, calculate the Euclidean distance
between it and the target color, and select the nearest color as the extraction result. The
color value of each pixel is replaced with the results obtained from the extracted image. It
should be noted that the extracted results obtained using this algorithm are influenced by
the chosen target color, so manual intervention is required for initial pore point selection.
By repeatedly clicking on the possible pore range, all pores are selected. Therefore, it is
necessary to make a selection based on the specific situation. In addition, after obtaining the
pores, the maximum inscribed circle method is used to fill the pores in order to determine
the average pore radius. Circles with continuously overlapping radii and smaller-than-
average pore radius are replaced with rectangles. These rectangles are considered throats.

All of the subsequent thin-section image analysis data are based on the DIA technique
for porous media [30–32]. Thin sections (Figure 1a) are color images in RGB format.
They consist of complex-colored particles, clay, and cement, and exhibit strong color
heterogeneity, resulting in blurred boundaries. Therefore, the methods traditionally used
for segmenting pore space in RGB images may not yield accurate results.

We employed an existing general algorithm for segmenting pores and grains in the
RGB images. Firstly, the image is converted into the RGB color space, and a specific color is
selected for extraction. In the RGB color space, the three primary colors are each represented
with 255 levels each. The next step involves traversing each nearby pixel, calculating the
Euclidean distance between the pixel and the target color, and selecting the closest color as
the extraction result. The color value of each pixel is replaced with the extraction result,
resulting in the extracted image. It should be noted that the extraction results of this
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algorithm are influenced by the selected target color, and choosing different target colors
may lead to variations in the extraction results. Therefore, the selection should be based on
the specific circumstances. Furthermore, after obtaining the pores, the maximum inscribed
circle method is applied to fill the pores and obtain the average pore radius. Circles with
continuously overlapping radii that are smaller than the average pore radius are replaced
with rectangles, and are considered throats.
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Figure 1. Thin-section color image (a) and pore acquisition (pores correspond to blue parts); (b) Binary
image (pores correspond to white parts).

In order to separate the coordinates of points with the same or similar color from the
total body of pixels, a standard is given based on Euclidean distance in Equation (1), which
is used to characterize the similarity between two points [33].

ED =
√
(R − Rxo ,yo )

2 + (G − Gxo ,yo )
2 + (B − Bxo ,yo )

2 (1)

where the R, G, B represent the values of the red, green, and blue channels, respectively.
x0 and y0 are the coordinates that have already been selected as pore pixel points. As
subscripts, they indicate the RGB value of any selected pore part point. R, G, and B without
subscripts represent the RGB color values of the point adjacent to x0 and y0. In Figure 1a,
sky blue is assigned as the color representing pores, and any color in its vicinity within
a Euclidean distance of 50 from sky blue is considered part of the pore. The method used
to generate the maximum inscribed circles involves randomly distributing seeds inside the
pores. Each seed generates a circle with a radius of 1 pixel. The radius of the circle is then
iteratively increased, but it must not exceed the pore boundary. The center of the circle
shifts as the radius increases. When none of the circles continue to change after iteration,
they are sorted based on their radius. Larger circles absorb smaller or equal-sized circles
that overlap with them by more than 80%.

The sample shown is a sandstone sample collected from a depth of over two thousand
meters in the western South China Sea, with a porosity of 20% and a permeability of 80 mD.
Figure 2b on the right shows circles representing the pores obtained using DIA software
for maximum sphere operation. As depicted in Figure 2b, we employ small overlapping
circles as the criterion for determining the presence of throats. Each circle corresponds to
a sphere, and the distribution of circles represents the pore distribution. The rectangles
cover relatively small and continuous circles, which are considered to be throats. The width
of the rectangle corresponds to the throat width. Small circles refer to circles with a radius
smaller than the mean radius. Throats are identified and marked with a blue rectangle,
and their width and quantity distribution are automatically calculated. Subsequently, the
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information regarding pores and throats is subjected to statistical analysis (Figure 2b). All
of the statistical information was gathered, and is presented in Table 1. In Table 1, the
designation of pore types and lithology is performed manually, encompassing all the pores
within the entire field of view.
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Table 1. The pore and throat parameters of the thin section obtained through the DIA.

Pore and Throat Parameter Include Data Content Number of
Parameters

Can be Used to
Reconstruct PNM

Pore type Pore type rank: 1~6 1 no
Lithology Lithology rank: 1~14 1 no

2D porosity Porosity % 1 yes
Average coordination number Decimal number 1 yes

Reservoir code Integer 1 no
Well number Well name code: 1~2000 1 no

Tortuosity Decimal number 1 yes
Pore shape factor distribution Range (0~1.0) 13 yes

Average pore–throat ratio Decimal number 1 yes
Max throat count Integer 1 no

Pore diameter distribution Range (2 µm~2000 µm) 40 yes
Throat diameter distribution Range (2 µm~2000 µm) 40 yes

Coordination number distribution frequency Range (0~8.0) 8 yes
Permeability The same depth core analysis permeability 1 no

We conducted thin-section image analysis on 40 core samples obtained from the
Ying ge hai Basin and Pearl River Estuary Basin. The data presented in Table 1 represent
the obtained results. We assigned codes from 1 to 6 to rank the pore types, including
dissolution pores, micropores, interstitial pores, dissolution cavities, intergranular pores,
and fissures. Similarly, we assigned codes to represent the lithology, following the sequence
of boulder, cobble, pebble, granule, very coarse sand, coarse sand, medium sand, fine sand,
very fine sand, coarse silt, medium silt, fine silt, very fine silt, and clay. The remaining
twelve parameters, such as average coordination number, were calculated and generated
by the image analysis software developed by Sichuan University, in accordance with the
Standard for Image Analysis Method SY-T 6103-2019. Based on the thin-section image data,
well test results, and laboratory core analysis results, we obtained 40 sets of thin-section
permeability samples. Of these, we randomly selected 30 sets for training purposes, while
the remaining 10 sets were used as test samples. Our initial attempt involved fitting the
permeability using the classic MLP network. Throughout this process, we kept the samples
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unchanged while constantly modifying the number of layers and hidden nodes in the
network, aiming to achieve a more stable network model. Detailed parameter information
is provided in the following.

2.1. Classic MLP Network Method

Firstly, we attempted to input the 110-dimensional input and 1-dimensional output
directly into the network as training samples without reducing the data dimensions. The
network structure consisted of three layers, with the input layer containing 110 neurons.
The data for the thin-section pore and throat characteristics were included in the output
layer, representing the one-dimensional permeability value for supervised training. The
number of neuron nodes in the hidden layer needed to be tested to determine the optimal
number for achieving the best fitting effect. We experimented with a single hidden layer in
the MLP network, ranging from 100 to 300 neurons, as shown in Figure 3. For each network
type, the training process always involved gradient descent, terminating when the overall
average relative error was less than 0.0000001 or after exceeding 1,000,000 iterations. We
extracted pore and throat information from 600 thin-section images and selected 400 of
them randomly as training samples. All data were normalized before being fed into the
MLP network. The normalization process involved finding the maximum and minimum
values of each parameter across all samples and then linearly mapping the parameter to
the range of [0, 1]. It was observed that whether the activation function was Sigmoid or
Tanh, similar training results were obtained.
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Figure 3. The original MLP network diagram for thin-section pore and throat characterics.

During each training iteration, the pore and throat features of the image are fed into
the input nodes, and forward propagation is performed. The weights are then updated
after each iteration. Each batch consists of only one sample, and a cycle is carried out every
10 iterations to reduce the relative error of the network on a single sample. The initial
learning rate is set to 0.001, and the learning rate is reduced by half at 20,000, 40,000, and
60,000 iterations. Upon completing the training process, the results are presented in Figure 4.
Figure 4 shows that increasing the number of neurons will not improve the convergence
of the relative error for training. In fact, even when the MLP network is expanded to
two hidden layers, the convergence trend worsens. Generally, when the number of neurons
in the hidden layer exceeds 100, the network tends to converge to an average relative error
of approximately 0.00001 for the training samples. However, when the trained network
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is used to predict samples that were not included in the training set, the network does
not exhibit satisfactory prediction performance. As training progresses, the percentage of
the predicted results that are within a 10% error range is approximately 90%. Based on
our existing data processing experience, it is likely that the sample data contain excessive
noise and invalid data, leading to overfitting. This is especially true for the data related
to pore and throat distribution, where a significant number of data points approach zero.
Additionally, the same lithology, pore type, and permeability values correspond to multiple
pore and throat distributions. Such sample data make it challenging to determine the key
parameters during training.
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We attempted to implement dropout during training to mitigate the issue of overfitting.
The process of dropout involves randomly excluding certain neurons during each iteration.
This operation allows the network layers to collaboratively adjust and rectify errors from
the preceding layer, thereby enhancing the model’s robustness. However, the dropout
technique did not yield the anticipated results. Although it expedited the training process,
it did not significantly improve the predictability of the model.

In porous media, the increase in permeability resulting from the dominant channels
is much more significant than the other parameters. This insight prompted us to explore
a more effective approach for handling the data: transforming the thin section data into
a representative 3D digital core and conducting fluid simulations to identify the crucial fluid
channels. Considering the underlying logic, solely altering the network outcomes may not
uncover the appropriate data relationships. While increasing the number of hidden layers
may decrease the overall data error, it does not enhance the model’s generalization ability.
Moreover, overfitting becomes a prominent issue during the dissemination process. In some
cases, the prediction of untrained samples may even yield a permeability of zero. Therefore,
it is necessary to incorporate fluid mechanics simulations to guide the training process.

2.2. Fluid–MLP Network Method

It is essential to establish a three-dimensional digital core in order to facilitate fluid
simulation and provide training data. The 3D digital core can be reconstructed using the
PNM (Pore Network Model), which involves excavating spherical holes and connecting
cylinders within the solid structure. The current prevalent method for constructing a pore
network model is the maxima-ball algorithm [33–35]. This algorithm not only improves
the speed of network extraction, but also ensures the accuracy of pore distribution and
connectivity features in 3D space. The maxima-ball method relies on 3D data obtained
from CT scanning. However, obtaining qualified CT scan samples is a complex process that
requires sufficient time to generate accurate scan data. Generating the pore network model
from the pore and throat data obtained from thin-section images instead could greatly
reduce the difficulty and preparation time inherent in acquiring the pore network model.

Currently, commonly used computer simulation algorithms for sphere stacking in-
clude the sequence addition algorithm and the set rearrangement algorithm. The sequence
addition algorithm fails to achieve a high stacking density and tends to create a more
densely stacked structure in one direction compared to others. On the other hand, the
set rearrangement algorithm overcomes the limitations of sequence addition, but results
in changes to the sphere sizes. Additionally, the algorithm allows for overlap between
spheres during the initial stages of stacking, which does not accurately represent real sphere
stacking scenarios. The key focus of the algorithm is on reducing the overlap between
spheres to within a specific range, generally leading to a high stacking density. We employ
a new stacking method called sequential stacking based on collision radius in order to more
effectively simulate the state of throat connections between porous spheres. In this method,
the collision radius of the sphere is greater than the actual pore radius, since throats are
necessary for connecting the spheres.

We reconstruct the Pore Network Model (PNM) from thin-section data by randomly
stacking pore balls within a 400 µm × 400 µm × 400 µm cube. To estimate the sphere
radius, we first generate a probability function based on the distribution of pore diameters.
The stacking process involves free-falling spheres under the influence of gravity. The kinetic
energy of each sphere is proportionally reduced during collision, leading to a stable state.
The algorithm principle shown as Figure 5a,b can be summarized as follows: (1) Randomly
construct an initial layer of stacked spheres at the bottom; (2) Create a new sphere P at
a random position at the top. The collision radius of P is obtained by multiplying a random
value R, generated by the aperture distribution function, by the tortuosity. Sphere P is then
stacked under the influence of gravity; (3) Detect the collision between sphere P and the
boundary or stacked spheres and bounce back with 50% energy reduction when this occurs.
Once the kinetic energy of sphere P decreases below the threshold K, fix its position, and
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mark it as a stacked sphere. It will no longer be affected by gravity or move; (4) When it is
not possible to generate a new sphere P in the entire space, use the throat radius distribution
function to generate the throat radius r. Create a throat by connecting adjacent spheres
with a cylinder of throat radius r, based on the coordination number. Dig out the spheres
and cylinders within the solid and calculate the solid porosity. If the porosity does not
meet the requirements, adjust it by using the throat length. If the porosity is lower than the
expected value, reduce all throat lengths to (existing porosity/expected porosity × throat
length) and return to step 1 to regenerate the model, and vice versa.
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Figure 5. 3D model reconstruction process from thin section pore and throat characteristics where the
sphere inside the red box represents the newly generated sphere. (a) Randomly generate balls and
let them fall to the position with the lowest potential energy; (b) Place the latest ball at the highest
position and slide under the action of gravity.

Once the 3D cube is reconstructed as shown in Figure 5, we employ the multi-point
geostatistics method to verify whether this 3D model exhibits the same properties as
the thin section [36,37]. We randomly select three points as a template and evaluate its
matching probability in both transverse and longitudinal sections of the 3D model [38]. If
the template’s matching probability follows the same distribution as the thin section in
different slice directions, this confirms that the 3D model and the 2D model share the same
attributes [39]. Figure 6 presents the specific template matching method. First, we generate
a template consisting of three points, as depicted in Figure 6a. We randomly examine the
entire slice and calculate the matching probability of the template distribution [40,41]. For
each template, we randomly select 100 points in transverse and longitudinal sections to
assess whether the points meet the template requirements. The final matching probability
of a randomly generated template is derived from the equation (probability = Matched
case/All case), as shown in Figure 6b,c. The probabilities presented in Figure 7 have been
normalized, and the sum of all probabilities amounts to 100%. If the average difference
in matching probability between the 3D and thin-section templates is less than 30%, we
consider the established 3D model capable of representing the original thin-section image.
If the overall does not match the templates, we randomly rebuild the entire stacking process
until it matches the templates. In Figure 7, we perform 100 checks per template [42–45].
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Figure 6. Multi-point geostatistical method for checking whether the 3D model and the thin-section
image match. (a) Randomly create template; (b) Matched template case in slice area; (c) Not matched
template case in slice area. Orange represents solid voxels generated, while blue represents fluid
voxels generated.

Energies 2023, 16, x FOR PEER REVIEW 10 of 17 
 

   

(a) (b)  (c)  

Figure 6. Multi-point geostatistical method for checking whether the 3D model and the thin-section 

image match. (a) Randomly create template; (b) Matched template case in slice area; (c) Not matched 

template case in slice area. Orange represents solid voxels generated, while blue represents fluid 

voxels generated. 

 

Figure 7. Comparison of reconstructed 3D model and thin-section image statistics. 

Finally, we generated two representatives of PNM as shown in Figure 8. Then, we 

used the lattice Boltzmann method (LBM) to simulate the permeability of this pore 

network model. In the LBM, the motion of fluid particles needs to be mapped onto the 

velocity space. In the D3Q19 model, each direction is assigned a specific discrete velocity, 

as in Equation (2): 

velocity

0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1



− − − − −


= − − − − −
 − − − − −  

(2) 

where each column of the formula matrix represents an independent velocity direction 

vector, which points to another grid site in the mesh [12,46–49]. 

Figure 7. Comparison of reconstructed 3D model and thin-section image statistics.

Finally, we generated two representatives of PNM as shown in Figure 8. Then, we
used the lattice Boltzmann method (LBM) to simulate the permeability of this pore network
model. In the LBM, the motion of fluid particles needs to be mapped onto the velocity
space. In the D3Q19 model, each direction is assigned a specific discrete velocity, as in
Equation (2):

ξvelocity =


0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1

(2)

where each column of the formula matrix represents an independent velocity direction
vector, which points to another grid site in the mesh [12,46–49].
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Figure 8. PNM generated using extracted pore and throat radius distribution. (a) Average pore
radius = 13.2 µm; (b) Average pore radius = 9.2 µm.

The evolution equation of the distribution function corresponding to each discrete
velocity is as follows:

f(x + ξvelocityδt, t + δt)− f(x, t) = − 1
τvelocity

( f(x, t)− f eq(x, t)) (3)

where the subscript “velocity” represents the fact that this evolution equation is only
for a propagator moving in the velocity field. ξ is the discrete velocity, x is the position
coordinates of each distribution function f. The f (x, t) signifies a particle density distribution
function over the space of microscopic particle velocities ξ. δt is the lattice unit time. The
τ velocity is the average collision time. For the same fluid, τ is a constant value, and
here τ = 1. The superscript “eq” is for the equilibrium distribution function. For each site,
propagator density and velocity can be obtained by:

ρpropagator =
18

∑
0
( f ) (4)

umacro = wa

18

∑
0
( f) (5)

where ρpropagator is the simulated density at a site, and umacro is the water velocity at a site
before collision. The value of weight wa is:

w0 = 1/3
w1...6 = 1/18
w7...18 = 1/36

(6)

When the macro velocity is not zero, the propagation density in each direction can be
calculated using the following equation:

f eq
a = waρ

(
1 +

ca · u
c2

s
+

(ca · u)2

2c4
s

+
u · u
2c2

s

)
(7)
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where wi is the weight coefficient in Equation (6). The c2 = 3cs
2, cs is the sound velocity of

the lattice. For the same fluid, cs is a constant value; here, we let 3cs
2 = 1. These coefficients

can be solved using the following restriction conditions:

18
∑
0

wa = 1

18
∑
0

waca = 0

18
∑
0

wacaαcaβ = Qc2δαβ

c = δx
δt

=
δy
δt

= δz
δt

(8)

where δt is the lattice unit of time, and δx, δy, and δz the lattice units of space in the X-,
Y-, and Z-axes. The correspondence we use is that one lattice length unit corresponds
to 1 µm in real life. According to the Chapman–Enskog expansion, the permeability of
the fluid is proportional to its velocity in a specific direction. For the same fluid, Q is
a constant value. Here, we let Q = 1. In the permeability simulation, the fluid’s movement
speed is slower, the streamlines are smoother, the fluid’s diffusivity is stronger, and the
turbulence phenomenon of the fluid is less. Additionally, the viscous force of the fluid
has a greater impact on the fluid, so the fluid’s movement state is more stable and the
fluid’s flow stability is higher. Therefore, we assume that the fluid exhibits a low Reynolds
number characteristic, and we can use the fluid-viscosity-related τ as an invariant for unit
conversion between the lattice unit system and the actual unit system in space and time.
This conversion allows us to obtain a simulated permeability that contains information in
110 + 1 (permeability) dimensions. The simulated permeability (Equation (9)) and the real
permeability have the same characteristics, that is, when the dominant channel is wider,
the permeability becomes greater, but due to differences in sampling methods, they are not
exactly equal.

permeability =

4003(lattice)

∑
i=0

uX

/
(

4003
)

(9)

Once the simulated permeability is obtained, it encompasses 112 dimensions of in-
formation. However, for sample training, we only utilize the following six dimensions
as input: pore type rank, lithology rank, average pore–throat ratio, 2D porosity, average
throat diameter, and simulated permeability. When we employ this six-dimensional input,
we refer to it as the Fluid–MLP network within the MLP network. The process of using
the LBM to simulate fluid in the generated porous network model is depicted in Figure 9.
In the simulation, a pressure difference of 4 MPa is applied at both ends of the rock core,
mimicking typical experiments for measuring rock permeability. This allows for the unidi-
rectional flow of a single fluid (i.e., water) through the network model. Each voxel of the
model has dimensions of µm × 1 µm × 1 µm, and the mean pore radius is 13 µm. The LBM
implementation employs the D3Q19 scheme with fully bounce-back boundary conditions.
By utilizing Shan-Chen force, a volume force is directly exerted on the fluid throughout the
core of the model. The acceleration of each grid is equal to the pressure gradient multiplied
by the cross-sectional area of each cell [50]. Due to this acceleration, the fluid initiates flow
until it reaches a stable flow rate, which occurs after approximately 100 steps. At this point,
we generate a streamline map of the velocity field, where the color represents the velocity
magnitude, and the direction of the streamlines indicates the velocity direction. We first
validated the LBM described in the paper “Microstructure-based modeling of permeability
of cementitious materials using multiple-relaxation-time lattice Boltzmann method”, and
then used conversion coefficients to convert the dimensionless velocity into meters per
second. The maximum flow velocity obtained was 0.03922932 m/s, as illustrated by the
red section in Figure 9b. According to the calculation, the permeability of the pore model
reached 21 millidarcies.
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Figure 9. The process of calculating permeability using the lattice Boltzmann method. (a) Streamlines
are obtained by tracing the velocity field; (b) The permeability is obtained by calculating the flow rate
passing through both ends.

3. Results and Discussion

Compared with the original MLP, the Fluid–MLP removes some input parameters that
are not directly or linearly related to the outputs. We performed a fluid simulation, and used
the permeability simulated using the 3D model as the input. The results demonstrate that
fluid simulation can indeed improve the stability of the prediction. Table 2 shows that the
Fluid–MLP network has obviously better prediction performance than the original network.

Table 2. Comparison of Fluid–MLP and the original MLP where CPU frequency is 5.2 GHz.

Network Structure Number of Hidden
Nodes

Training Average Relative Error
(after 1 × 107 iterations)

Proportion of Correct Predictions (Error
within ±10% Measured Permeability)

Original MLP 300 <1 × 10−5 89% (training time 671s)
Original MLP 300 + 300 <1 × 10−5 90% (training time 1950s)

Fluid–MLP 100 <1 × 10−6 93% (training time 101s)
Fluid–MLP 300 <1 × 10−6 93% (training time 324s)
Fluid–MLP 300 + 300 <1 × 10−6 94% (training time 1560s)

The Fluid–MLP workflow allows for the processing of various types of pore-throat
characteristic data and enables faster machine learning. To determine whether there are
reducible components among the remaining input parameters, we sequentially excluded
the inputs of pore type, lithology, 2D porosity, average pore–throat ratio, and average
throat diameter. We continued to use the aforementioned samples for testing, and the
results are presented in Table 3. Regardless of which input was excluded, the prediction
performance was significantly deteriorated. Manual calibration parameters, such as pore
type and lithology, play a crucial role in this context. It is likely that rock pores exhibit
different fluid characteristics even under the same maximum spherical distribution due
to the influence of the deposition environment and method. Additionally, the pores may
contain non-miscible fluids, which can also impact the overall permeability prediction.
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The pore network model, being a simplified approximation method for representing real
pore structures, overlooks certain details that are captured by the pore type and lithology
parameters. It is for this reason that the remaining five parameters in Table 3 cannot be
further reduced.

Table 3. Comparison of prediction performance when dropping one input parameter.

Dropped Parameter
Proportion of Correct

Predictions with All 110 and
with 6 Parameters

Proportion of Correct
Predictions after Dropping

1 Parameter
Difference with 6 Parameters

Pore type rank 89%, 93% 70% 23%
Lithology rank 89%, 93% 56% 37%

2D porosity 89%, 93% 84% 9%
Average pore–throat ratio 89%, 93% 70% 24%
Average throat diameter 89%, 93% 78% 15%

After fixing the network model’s input to six parameters, we conducted a more
extensive comparison of prediction performance. We used the data from 1000 thin sections
from eight wells in two basins as training samples to predict the permeability of another
800 thin sections from the same wells. The measured permeability, obtained from core
analysis and well testing, represents different scales and may not correspond exactly in
terms of depth. Therefore, we relaxed the comparison criteria. Any predicted permeability
within a 10% absolute difference from the measured permeability was considered correct.
The results in Table 4 and Figure 10 indicate that the model demonstrates consistent
prediction ability following training with both large and small samples. However, due
to the inclusion of reservoir and well differentiation, the model still relies on geological
knowledge. It is essential to introduce new regional samples when the model is applied to
new regions.

Table 4. Large sample training and prediction results.

Well Number Basin Number Number of Samples Proportion of
Correct Predictions

1–2 1 287 92%
3–4 1 210 92%
5–6 2 181 90%
7–8 2 322 94%
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4. Conclusions

This paper presents the Fluid–MLP method, which is a new technical workflow for
estimating 3D permeability from 2D thin-section images. We extracted 110 pore-throat
characteristic parameters from 2D thin slices and constructed a pore network model using
the pore size parameters to simulate permeability. By training the Fluid–MLP model using
the simulated permeability as the input, we made several attempts to change the network
structure and obtained the following main conclusions:

1. It is proposed that the characteristic parameters obtained from two-dimensional
reservoir rock thin-section images can be used to construct an equivalent PNM.

2. A drop-out input experiment was conducted using the Fluid–MLP network model,
in which the input dimensions were reduced from 112 to 6. The average accuracy
of permeability prediction on the training samples was around 92%. The reduced
number of input dimensions and hidden layer neurons significantly improved training
time efficiency, with a slight improvement in accuracy.

3. Compared to the original MLP network, the Fluid–MLP network achieved an average
improvement in prediction accuracy of approximately 4%. We also compared different
training sample sizes and found that the Fluid–MLP network outperformed the
original MLP network by over 1% in terms of prediction accuracy.

4. Our comparison with the results obtained when adding hidden layers showed that
the addition of hidden layers did not effectively improve the original MLP network
or the prediction accuracy of the Fluid–MLP network.

Because the results described above only cover a small fraction of the different rock
types, and it is still necessary to retrain in different regions; therefore, this method still leaves
a lot of room for improvement. One direction for the future would be to use autoencoder
networks to automatically extract key information, avoiding the interference of different
regions on the results.
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