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Abstract: In the last decade, many artificial intelligence (AI) techniques have been used to solve
various problems in sustainable energy (SE). Consequently, an increasing volume of research has
been devoted to this topic, making it difficult for researchers to keep abreast of its developments. This
paper analyzes 18,715 articles—about AI techniques used for SE—indexed in Scopus and published
from 2013 to 2022, which were retrieved and selected following a novel iterative methodology. Besides
calculating basic bibliometric indicators, we used clustering techniques and a co-occurrence analysis
of author keywords to discover and characterize dominant themes in the literature. As a result, we
found eight dominant themes in SE (solar energy, smart grids and microgrids, fuel cells, hydrogen,
electric vehicles, biofuels, wind energy, and energy planning) and nine dominant techniques in AI
(genetic algorithms, support vector machines, particle swarm optimization, differential evolution,
classical neural networks, fuzzy logic controllers, reinforcement learning, deep learning, and multi-
objective optimization). Each dominant theme is discussed in detail, highlighting the most relevant
work and contributions. Finally, we identified the AI techniques most widely used in each SE area to
solve its specific problems.

Keywords: sustainability; renewable energy; tech mining; artificial intelligence; bibliometric analysis;
machine learning

1. Introduction

The transition from conventional fossil-fuel-based energy sources to renewable alterna-
tives, characterized by a low environmental impact and diminished carbon emissions, has
emerged as a relevant topic in the last decade [1,2]. This is a clear trend that has emerged
since the 1990s, in line with the development of sustainability. Notably, various national
governments have achieved significant advances in the integration of sustainable energy
(SE) sources into their energy portfolios [3], but the challenges and problems related to their
adequate use and popularization have grown as well [4]. On a macro level, incorporating
renewable energies into planning the operation and expansion of existing electrical power
systems poses essential challenges due to the inherent variability of renewable resources [5],
the difficulty of forecasting [6], and their proximity to end-users. On a micro level, the
adequate and optimal use of each distinct renewable technology implies solving complex
technical problems associated with generic optimization, control, and forecasting issues.
For example, forecasting the wind speed and subsequent energy output of wind farms
is challenging due to the inherent stochastic and intermittent nature of wind velocity [2].
Similarly, forecasting the performance of fuel cells has significant complexity due to their
inherent multivariate and non-linear nature [7]. This article will discuss many other similar
cases in depth.

In response to this prevailing worldwide context, both practitioners and researchers
have identified a suite of methodologies and tools amenable to tackling the challenges
inherent to sustainable energy (SE) within the domain of artificial intelligence (AI) [8–10].
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These AI approaches offer avenues for addressing extant issues and refining pre-existing
solutions hitherto adapted from diverse disciplines. Notably, the past decade has been
characterized by the popularization of AI techniques, which has been boosted by successful
advances in methodologies such as deep learning [11,12] and the augmentation of comput-
ing capacity. Consequently, the use of AI in SE has attracted significant interest, which can
be observed from the annual increase in research publications.

However, it should be noted that the domains of sustainable energy (SE) and artificial
intelligence (AI) are vast fields in scope, and it is not easy to define their intersections and
joint evolution to determine their history and more relevant trends over time. Considering
this complexity, it is significant to profile the existing research publications using literature-
based discovery techniques to identify dominant themes and development patterns in the
last decade. Thus, the objective of this study is to identify, classify, and hierarchize the
dominant areas using the existent literature as evidence. Previous works are focused only on
subareas and do not present a comprehensive approach to this area. A small-scale attempt
is presented in [13], where bibliometric methods are employed to analyze 469 documents
obtained from the Web of Science. These documents were published between 1985 and
2022. The main limitation of the study presented in [13] was its search string, as it restricts
the obtained documents to those having both “Artificial Intelligence” and “Renewable
Energy” terms in their titles. This leads to considerable amounts of the literature being
overlooked, as will be demonstrated later in this document. Another highly significant
limitation of the study is that the authors do not provide details about the review and
cleaning process of the keywords used in the co-word analysis. This aspect is crucial since
synonyms and the duplication of terms due to the inclusion of singular and plural forms
(treated as distinct text strings) can significantly impact the results, potentially leading to
erroneous conclusions.

This investigative effort is thus dedicated to profiling the available data regarding
the basic “4W” questions: Who? Where? When? What? To profile the research literature,
we blend bibliometric and text-mining methods to map the leading players and their
interconnections and discover dominant themes.

A comprehensive assembly and subsequent scrutiny of a database encompassing
18,715 scholarly articles have been undertaken to accomplish this objective. These articles
collectively address the application of AI techniques in resolving the principal quandaries
discerned by researchers and practitioners who are deeply engaged in the study and
practice of SE.

The rest of this article is organized as follows. Section 2 presents a literature review.
Section 3 describes the methodology adopted in this study and the data collection and clean-
ing processes employed. Section 4 presents an analysis of the results. Afterward, Section 5
details the dominant themes in the database. Finally, Section 6 draws the main conclusions.

2. Literature Review
2.1. Applications of Artificial Intelligence on Sustainable Energy

The widespread adoption of artificial intelligence has significantly impacted sus-
tainable development, particularly in solving various issues that affect renewable energy
sources. Clearly, AI is a powerful enabler of sustainable development goals, but it can also
have negative impacts due to its rapid advancement without proper regulatory insight and
oversight [14]. Over the last decade, AI has been applied to address various challenges in
sustainable energy, and there is a significant body of literature dedicated to reviewing the
progress achieved in specific and focused aspects of the application field. The published
analyses are often focused on identifying and classifying the most suitable AI methods for
a particular energy issue [15,16] or on examining the potential of a new AI paradigm for
application to one or more energy-related problems, e.g., [17,18]. While conducting this
research, a total of 378 literature reviews published between 2013 and 2022 were found.
Without time restrictions in the search string, 539 review documents were obtained, cover-
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ing the period between 1989 and 23 August 2023. The ten most cited reviews are listed in
Table 1.

Table 1. Most cited reviews.

Authors Year Citations Title

Voyant et al. [15] 2017 1034 Machine learning methods for solar radiation forecasting: A review

Vinuesa et al. [14] 2020 631 The role of artificial intelligence in achieving the Sustainable
Development Goals

Raza and Khosravi [19] 2015 612 A review on artificial intelligence-based load demand forecasting
techniques for smart grid and buildings

Wang et al. [18] 2019 496 A review of deep learning for renewable energy forecasting

Yadav and Chandel [20] 2014 494 Solar radiation prediction using Artificial Neural Network
techniques: A review

Stetco et al. [16] 2019 460 Machine learning methods for wind turbine condition monitoring:
A review

Suganthi et al. [21] 2015 387 Applications of fuzzy logic in renewable energy systems—A review
Vasquez-Cantely

and Nagy [17] 2019 381 Reinforcement learning for demand response: A review of
algorithms and modeling techniques

Elsheikh et al. [22] 2019 379 Modeling of solar energy systems using artificial neural network:
A comprehensive review

Yarlagadda et al. [23] 2018 337 Boosting Fuel Cell Performance with Accessible Carbon Mesopores

The dataset covering the period 1989–2023 presents an annual growth rate of 19.69%.
The average age of documents is 2.82 years, with an average of 51.59 citations per document.
Authors work collaboratively with an average of 4.68 authors per document; international
co-authorship is at 39.96%. There are 2330 unique authors, with 21 producing single-
authored documents. The dataset involves 1039 organizations and 74 countries. Keywords
are abundant, with 1484 author keywords and 3872 index keywords.

To analyze the published reviews between 1989 and 2023, co-word analysis was ap-
plied to all keywords (author keywords plus index keywords) to identify existing dominant
thematic clusters. This type of analysis unveils the big picture of the documents, showing
major emphasis areas. Only keywords appearing in five or more documents were consid-
ered for the co-word analysis. With this threshold, a coverage of 95.2% of the reviews was
achieved, corresponding to 513 documents. The keywords underwent the same cleaning
and standardization process used for the database analyzed in this document. This process
will be discussed in more detail later.

Figure 1 presents the co-occurrence network obtained for keywords appearing in at
least 15 documents. The size of text and nodes is proportional to the frequency of the key-
word. The color and width of the links are proportional to the similarity measure between
nodes. In this way, thicker and darker links indicate that the words in the associated nodes
tend to appear together more frequently, e.g., MPPT and PHOTO_VOLTAIC_SYSTEMS,
in the upper part of the network diagram. The figure shows a clear dominance of terms
associated with deep learning and artificial neural networks in the reviews.

The results of the co-word analysis indicate that the published reviews can be grouped
into five clusters. The first cluster discusses the use of AI in optimizing and enhancing
the performance of solar and wind energy systems. Machine learning and AI techniques
are used to improve the efficiency and reliability of these types of renewable energy
systems. In this cluster, topics include the application of AI-enhanced Maximum Power
Point Tracking (MPPT) controllers for photovoltaic (PV) systems. These controllers are
essential for optimizing power extraction from solar panels, especially under fluctuating
environmental scenarios such as partial shade, as addressed previously. AI and machine
learning are also employed in forecasting and predicting wind and solar power, which is
crucial for grid stability and efficient energy distribution.
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Figure 1. Keyword co-occurrence network constructed for terms with a minimum threshold of 15,
considering only the literature reviews published between 1989 and 2023. The numbers following the
term indicate appearances and citations, respectively. The size of the nodes is proportional to the
number of appearances of the keyword. The width and darkness of links show similarity between
terms, e.g., the terms tend to appear together in the documents.

The second cluster addresses the application of AI in solving different problems
in smart grids and microgrids, which include aspects such as energy efficiency, energy
utilization, and energy management. This cluster emerges because smart grids represent a
transformative shift in electric power transmission networks, evolving as a direct response
to the growing intricacies and demands of contemporary energy needs. Smart grids aim to
elevate energy efficiency and optimize energy utilization substantially, converging these
efforts towards the overarching goal of adept energy management [24]. As indicated in the
analyzed reviews, AI plays a prominent role in diverse aspects of the operation of energy
systems [25,26].

The third cluster addresses the application of traditional models of neural networks,
support vector machines, and genetic algorithms to different problems in renewable energy.
Artificial neural networks (ANNs) emulate the human brain’s structure and function to
process data, making them adept at modeling complex systems with non-linear relation-
ships. This adaptability has rendered ANNs invaluable in renewable energy research.
The reviews indicated that ANNs have shown proficiency in solving tasks of modeling,
forecasting, and optimizing. In addition, there is a synergistic integration of ANNs with
genetic algorithms (GAs). These techniques have been applied to improve the efficiency of
biodiesel production [27], to forecast energy for renewable sources including solar, wind,
and hydro [28], to develop novel renewable energy materials [29], and to augment the
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heat transfer efficiency in nanofluid systems [30]. Support vector machines (SVMs) are
another technique commonly used in energy systems; SVM has been used, for example, to
identify prime locations for electric vehicle charging stations [31] and to architect energy
distribution frameworks [32].

The fourth cluster discusses the application of diverse deep learning models in sustain-
able energy. The reviews mainly focus on solving problems related to electric and hybrid
vehicles and different aspects of batteries, such as estimating the state of charge and remain-
ing useful life. This emphasis in the most relevant literature is because of the rising use of
lithium-ion batteries in applications such as portable electronics and electric vehicles, and
there is an increasing interest in optimizing their performance and predicting their state [33].
Lithium-ion batteries are categorized as secondary batteries and are fundamental to energy
storage systems, particularly for powering electric and hybrid vehicles due to their high
energy densities [34]. Ensuring the consistent and reliable performance of these batteries
is paramount. As vehicles transition to being powered by these batteries, predicting their
lifespan and the remaining energy they can offer has become crucial [35]. Deep learning’s
capacity for nonlinear modeling, a skill highlighted by its ability to handle complex tasks
and historical data, provides a robust tool for accurately estimating the State of Charge
(SOC) of batteries, a crucial factor for their health [36]. This accurate SOC estimation is in-
dispensable for creating advanced battery management systems and formulating effective
charging strategies [37]. Similarly, the global tilt towards electric and hybrid vehicles is also
driven by environmental imperatives. The transportation sector substantially contributes
to greenhouse gas emissions and consumes a significant portion of global energy [35]. With
the pressing need to curtail greenhouse gases due to their role in climate change, electric
and hybrid vehicles have emerged as potential game-changers. They substantially reduce
dependency on fossil fuels, decreasing greenhouse gas emissions [38]. Advanced battery
management systems, enhanced by deep learning capabilities, play a critical role in this
transition. By boosting vehicle reliability, these systems facilitate the broader adoption of
electric and hybrid vehicles, underscoring our commitment to a sustainable future [38].

Finally, the fifth cluster groups reviews discussing the use of AI in proton exchange
membrane fuel cells and other devices for energy storage and conversion like rechargeable
electric batteries. This cluster also includes works related to hydrogen production. Fuel
cells, particularly proton exchange membrane fuel cells (PEMFCs), are electrochemical
devices that convert chemical energy directly into electrical energy using specific chemical
reactions [39]. PEMFCs have become increasingly prominent in the energy domain owing
to their versatile properties, such as high power density and quick startup. They can
achieve notable conversion efficiencies, with some models reaching up to 65% [40,41]. The
scope of energy storage and conversion extends beyond just fuel cells. It encapsulates
devices such as rechargeable electric batteries. With the advent of artificial intelligence and
machine learning, there has been a rapid advancement in the design and development of
essential battery materials, especially electrode materials and solid electrolytes [42]. Ma-
chine learning stands out as a transformative tool in this domain, unveiling and predicting
novel battery systems, thus propelling the evolution of battery research [43,44]. Moreover,
combining imaging techniques with machine learning has enriched our understanding of
battery materials. This synergistic approach has revealed intricate details about electrode
microstructures and their consequential influence on overall battery performance [45].

To analyze the evolution of the topics addressed by the literature reviews, the dominant
clusters were analyzed for each year in the period 2011–2023. With the clusters of each year,
a Sankey diagram was prepared that shows the migration of keywords from one cluster to
another. This diagram is presented in Figure 2.
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In the oldest review found, Nilsson, in 1989, analyzes the application of expert systems
in utility electrical power plant systems [46]. In 1998, Li et al. [47] presented a comparative
analysis of regression and ANNs for the prediction of wind turbine power. Next, in 2000,
Kalogirou [48] reviewed the application of ANNs in renewable energy systems. In 2008,
Mellit and Kalogirou [49] analyzed the application of AI in photovoltaic systems. In 2009,
Mellit et al. [50] discussed using AI for sizing photovoltaic systems. Starting in 2011,
literature reviews on the topic of study began to be consistently produced.

As seen in Figure 2, between 2011 and 2014, reviews focused on the applications of
ANN, PSO, and GA in solar and wind energy. For 2015, the reviews on smart grids, energy
efficiency, and the use of fuzzy logic in MPPT, are consolidated. For 2016, reviews on energy
storage take a central role. For 2017, hybrid and electric vehicles and microgrids stand out
as new focuses of interest. In 2018, the use of big data appears as one of the central themes.
Subsequently, in 2019, a significant number of reviews on deep learning were published.
In 2020, topics related to lithium batteries, charging strategies, electric vehicles, and deep
learning occupy the attention of reviews. These topics continue to be valid during the years
2021 and 2022. Finally, for 2023, hydrogen stands out as one of the most relevant topics.

2.2. Dominant Theme Identification and Co-Word Analysis

Profiling large volumes of the literature is a challenge that needs to be addressed using
bibliometric and text mining methods [51–53]. Bibliometrics involves applying quantitative
techniques to bibliographic databases to determine performance indicators for authors,
institutions, countries, and sources [54]. It also aims to elucidate the analyzed field’s
social, intellectual, and conceptual structure [55]. However, the techniques vary based
on the quantity of documents to be analyzed and the available software. Specifically, for
large volumes of information, it is necessary to employ text mining techniques that enable
preprocessing and highlighting of the most essential information before analyzing the
available data.

The identification of relevant themes in a body of literature is primarily based on
the analysis of keywords or noun phrases extracted from the text of the documents. Key-
word analysis is commonly used to uncover the intellectual structure (major dominant
themes), while noun phrases are used to discover emerging topics. Particularly in the latter
case, there is a significant effort to develop methodologies that enable the detection of
technological emergence through the analysis of the scientific literature and patents [56].

Determining thematic areas using co-word analysis is based on clustering techniques
on the matrix or network of keyword co-occurrences. This technique is well known and
widely used in the most relevant literature. For example, in [57], co-word analysis is used to
obtain the research clusters to analyze business models in green buildings. Chen et al. [58]
deduced the characteristics of an energy policy in China using this technique.

3. Materials and Methods
3.1. Workflow Overview

This study followed the standard workflow proposed in [54,55], which includes the
following stages:

1. Study design.
2. Data collection and preparation.
3. Data analysis.
4. Data visualization.
5. Interpretation.

3.2. Study Design

The parameters of the study are presented in Table 2. The study was restricted to the
last ten complete years to discover the recent evolution of the field.
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Table 2. Parameters of the study.

Parameter Value

Database Scopus
Years of Analysis From 2013 to 2022

Data Retrieval 23 August 2023

Search String It is derived using an iterative construction method, which
will be elaborated upon in the subsequent section.

Inclusion Criteria Articles published in peer-reviewed journals and conference
proceedings, specifically those in English.

Exclusion Criteria None

To define the analysis period, the articles retrieved by the search string designed in
this research were analyzed without considering any time restrictions. The analysis of the
keywords (not discussed here) shows that the research published during the period 1979–
2012 is concentrated on the use of classic ANN models (back-propagation feed-forward
networks, radial basis function networks, SVM), GA, PSO, expert systems, and fuzzy
systems to solve problems related to solar and wind energy and batteries. During that
period, there was not a variety of techniques and issues in the area similar to those that
have arisen in recent years, as seen in Figure 2. In this way, it was decided to use the last
ten years in this analysis to capture the temporal evolution of the different thematic focuses
that have been presented. In addition, Ref. [13] covers the initial period.

Constructing the search string posed a substantial challenge in the context of this
research. Designing search strings to collect publications in a field of knowledge is a central
activity in bibliometric analysis, meta-analysis, and systematic literature reviews. One of
the main functions of search strings is identifying relevant documents in a specific area
while discarding non-relevant content. Nevertheless, the wider the field of knowledge, the
more challenging the identification of keywords. Such is the case for AI and SE.

Figure 3 details the methodology adopted in this study to design the search string
and retrieve the publications. Note that some stages could be similar to those in other
methodologies to select publications in literature reviews, e.g., PRISMA [59]. However, the
methodology implemented here was different because its goal was to develop an adequate
search string by tracking keywords instead of filtering the results retrieved by a search
string that was established a priori.
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3.3. Design of the Search String

The search string was designed in late 2022 during the preliminary formulation of the
research project. The design process is discussed in the following sections.

3.3.1. Data Collection

The objective of the first step was to find the keywords associated with the categories
of sustainable energy (SE) and artificial intelligence (AI). To do this, all Q1 and Q2 journals
belonging to these categories were identified in Scimago Journal and Country Rank. A
total of 103 journals were found in the SE category and 100 in the IA category. Then, the
author’s keywords were downloaded for each journal article from 2013 to 2022. For this
period, 274,764 articles and 334,527 keywords were found in the SE category, and 123,362
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articles and 203,443 keywords in the AI category. This equates to a total of 398,126 articles
and 516,244 author keywords. Table 3 summarizes these figures.

Table 3. Collected keywords to design the search string.

Sustainable
Energy (SE)

Artificial
Intelligence (AI) Total

Journals classified in quartiles Q1 and Q2. 103 100 203
Publications between 2013 and 2022 274,764 123,362 398,126

Keywords 334,527 203,443 516,244

Of the total keywords, 191,662 author keywords in AI and 158,849 author keywords
in SE appear in six or fewer documents. These could be considered rare terms. On the
other hand, if basic text mining techniques were used to homogenize the text, such as
unifying plurals and singulars, it was found that of the totals of 334,527 and 203,443, there
are 311,316 and 247,848 different keywords.

3.3.2. Data Selection

A manual analysis was conducted to identify the most significant keywords within
each field (i.e., SE and AI). For this purpose, the terms that ranked among the top 1000
most frequently used keywords each year and had a minimum frequency of eight were
subject to manual examination. The resulting keywords obtained from this process were
incorporated into the initial search string.

3.3.3. Initial Design

The keywords selected in the preceding phase were employed in formulating an initial
search query within the Scopus database. That preliminary string specified that the title
of the documents should include at least one relevant SE keyword and one relevant AI
keyword. No restrictions were imposed concerning the field of knowledge or publication
year. This initial query retrieved a total of 12,428 documents.

3.3.4. Exclusion

The titles of the top 2000 most cited publications obtained through the initial search
query were subject to manual review to identify those that did not align with the objectives
of this study. These words were deleted from the search string. This review led to identify-
ing keywords that, owing to their general nature, failed to retrieve pertinent documents for
this investigation.

3.3.5. Final Design

As a result of the previous step, the final search string included only keywords that
allow the target documents to be retrieved for analysis. The final search string is detailed
in Appendix A.

3.4. Data Collection and Preparation

All information from the documents retrieved by the search string was extracted from
the Scopus database. The downloaded fields encompassed article title, authors’ names,
authors’ Scopus identifiers, source title, citation count, references, abstract content, author
keywords, and index keywords. All this information was downloaded in CSV format to
facilitate subsequent processing.

Multiple procedures were employed to extract, clean, and consolidate the data in
the dataset. These procedures encompass a combination of computational operations
complemented by manual refinements. The comprehensive process involved:

• Removing accents to normalize textual representation.
• Standardizing the formatting of author names.
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• Disambiguating author names based on Scopus Author ID.
• Removing parts of titles in languages other than English.
• Extracting and refining geographic regions and affiliations from the affiliation field.
• Applying text string transformations such as case conversion, whitespace removal,

concatenation, and character substitution as required.
• Eliminating occurrences of <NA>, substituting where applicable.
• Homogenizing author and index keywords. Within this phase, a thesaurus was sys-

tematically constructed through an iterative approach. Initially, text mining techniques
were used to group terms differing in spelling (American and British) or plural and sin-
gular forms. After this, a manual computer-assisted validation process was undertaken.
The primary objective of this manual verification was to establish uniformity among
synonyms and textual variations not encompassed within the preliminary phase.

3.5. Data Analysis, Visualization, and Interpretation

This study used several performance metrics to characterize the contributions of
journals, authors, organizations, and countries in the field. The performance metrics for
productivity and impact include the number of publications and citations per year, and
citations per year and document.

Co-word analysis was used to examine the content of the documents. In this case,
it was assumed that words frequently appear together and have a thematic relationship.
In this research, the relationships between terms are represented using a co-occurrence
network, where the nodes represent the terms and the links represent co-occurrence. The
number of co-occurrences between the words in the corresponding nodes weights the links.

The co-occurrence network derived from the author’s keywords was clustered to
identify the dominant themes, applying community detection algorithms. Each resulting
cluster corresponds to one dominant theme. Documents with one or more author keywords
belonging to the cluster were examined to analyze each dominant theme.

4. Results
4.1. Performance Metrics
4.1.1. General Performance Metrics

The employed dataset encompasses documents published from 2013 to 2022, com-
prising 18,715 documents. This yields an annual growth rate of 41.71%, with an average
document age of 3.63 years and 19.56 citations per document. Notably, each document
receives an approximate annual citation count of 1.96. The dataset involves contributions
from 4467 distinct source titles, with an average of 4.19 documents per source. The dataset
contains 11,614 articles, 7100 conference papers, and 1 retracted document (which was
ignored in the analysis). The 54,884 authors collectively yield an average of 4.14 authors
per document, alongside an average of 4.24 co-authors. Around 23.81% of authors partake
in international co-authorship, contributing to 77,571 author appearances. Furthermore,
the dataset encompasses 13,450 organizations across 138 countries. There are 28,487 author
keywords and 46,920 index keywords.

4.1.2. Performance Trend Metrics

Figure 4 depicts the annual publication count, while Table 4 outlines the primary yearly
performance metrics. The plotted curve shows a distinct upward trajectory, reflecting an
increasing interest in the research domain. However, it is noteworthy that the average
citations per document and the mean citations per document per year reveal a consistent
downward pattern, as can be seen in Table 4. This trend can be attributed to the tendency
for older documents to accumulate more citations. Particularly interesting is the anomaly in
2018; despite a surge in publication volume, there was an abrupt drop in both the average
citations per document and the mean citations per document per year.
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Table 4. Annual performance metrics.

Year Documents Citations Average Citations
per Document

Average Citations per
Document per Year

2013 573 19,178 33.47 3.35
2014 723 23,612 32.66 3.63
2015 734 24,725 33.69 4.21
2016 977 30,949 31.68 4.53
2017 1111 33,917 30.53 5.09
2018 1523 46,053 30.24 6.05
2019 2256 56,201 24.91 6.23
2020 2678 57,903 21.62 7.21
2021 3448 45,925 13.32 6.66
2022 4692 27,518 5.86 5.86

4.1.3. Authors’ Performance Metrics

There are 54,884 authors and 242 authors with ten or more publications. Table 5 details
the performance indicators, ordered by the number of documents, for the top 20 authors
with more documents or more total citations (GCS). Seven authors belong in both groups.
Javaid N. ranks first with 50 publications, while Xiong R. is the most cited author. In
addition, the number of local citations (citations among the documents in the database or
local citation score (LCS)) was calculated; this value was used to compute the h-, g-, and
m-index presented in the table. As a result, Mekhilef S., with an h-index of 21, is the most
relevant author considering local citations and the number of published documents.

Table 5. Performance metrics for the top 20 most productive and top 20 most cited authors.

Author Rank
OCC

Rank
GCS OCC GCS LCS H-Index G-Index M-Index

Javaid N * 1 18 50 1290 129 18 7 2.25
Vale Z 2 82 37 690 38 14 5 1.4

Mekhilef S * 3 5 32 1673 283 21 8 2.1
Hannan MA * 4 17 30 1263 227 19 7 2.11

Ismail B/1 5 1807 30 174 25 7 3 0.7
Chen Z/26 * 6 9 25 1395 182 17 7 1.7
Blaabjerg F 7 30 24 1048 99 16 7 3.2
Lipu MSH 8 33 23 977 192 13 7 2.17

HongWen H * 9 4 22 1701 376 14 7 2.33
Wang J/107 * 10 12 22 1381 205 15 7 1.67

Rezk H 11 64 22 755 95 13 6 2.17
Dash PK 12 73 22 718 106 12 6 1.71

Catalao JPS 13 78 22 695 120 12 5 1.5
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Table 5. Cont.

Author Rank
OCC

Rank
GCS OCC GCS LCS H-Index G-Index M-Index

Chen Z/72 14 124 22 602 71 11 5 1.1
Yang Q/20 15 376 22 400 64 10 4 1.67
Hu X/8 * 16 10 21 1393 208 16 7 1.78
Khatib T 17 67 21 746 113 13 6 1.44

Wang F/30 18 34 20 969 200 11 7 1.38
Hussain A/3 19 44 20 870 165 13 6 2.17

Salcedo-Sanz S 20 57 20 812 12 16 6 1.5
Xiong R 24 1 19 2280 335 17 8 1.89

Liu H/60 25 2 19 2036 467 15 9 1.88
He H/6 34 6 17 1628 155 13 7 1.3

Shamshirband S/1 42 8 16 1475 226 15 8 1.67
Wang Z/45 43 20 16 1238 223 12 7 1.33

Liu T/2 56 15 15 1354 287 13 8 1.62
Li Y-F/2 113 3 12 1823 424 11 9 1.38
Dong ZY 114 11 12 1388 216 12 7 1.33
Wang HZ 175 7 10 1588 350 9 6 1.29

Chen Z/55 243 19 9 1241 184 8 6 1
Mi X-W 410 16 7 1272 300 7 7 1.17
Peng JC 598 13 6 1378 299 6 6 0.86
Liu YT 872 14 5 1366 299 5 5 0.71

OCC: occurrences; GCS: global citation score; LCS: local citation score. * Authors simultaneously belong to the top
20 most frequent and top 20 most cited authors.

A correlation map for exploring the co-authorship relationships among the authors in
Table 5 is presented in Figure 5. The size of the nodes is proportional to the number of documents
of the author, whereas the width of the links is proportional to the number of co-authored
publications. The figure shows six clusters of authors and nine isolated authors.
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4.1.4. Organizations’ Performance Metrics

Table 6 presents the performance metrics for the authors’ institutions of affiliation.
Notable trends include the dominance of Chinese institutions such as North China Elec-
tric Power University, Tsinghua University, and Huazhong University of Science and
Technology, indicating China’s robust contribution to the research landscape. However,
organizations like Islamic Azad University, the University of Tehran in Iran, and the Na-
tional Institutes of Technology in India demonstrate a significant impact despite lower
publication counts. A prominent outlier is the University of California (USA), with a high
global citation count but a relatively lower number of documents published, underscoring
its research quality.

Table 6. Performance metrics for the top 20 most productive and top 20 most cited affiliations.

Affiliation Rank
OCC

Rank
GCS OCC GCS LCS H Index G Index M Index

North China Electric Power Univ (CHN) * 1 2 296 7904 1064 44 11 4.4
Islamic Azad Univ (IRN) * 2 3 206 6613 370 43 11 4.3

Tsinghua Univ (CHN) * 3 4 203 6582 649 42 11 4.2
Min of Education (CHN) * 4 6 187 5760 548 41 10 4.1

Huazhong Univ of Sci and Technol (CHN) * 5 5 176 6216 707 47 11 4.7
Beijing Inst of Tech (CHN) * 6 1 162 7200 1180 45 11 4.5

N Inst of Technol (IND) * 7 15 156 2895 285 29 8 2.9
Zhejiang Univ (CHN) * 8 16 147 2875 229 30 8 3.

Chongqing Univ (CHN) * 9 9 130 4812 595 42 10 4.2
Southeast Univ (CHN) 10 32 111 2116 247 25 8 2.5

Shanghai Jiao Tong Univ (CHN) * 11 17 106 2837 196 31 8 3.
Univ of Chinese Acad of Sciences (CHN) * 12 13 105 3052 229 27 9 3.38

Aalborg Univ (DNK) * 13 18 104 2778 206 28 9 2.8
Shandong Univ (CHN) 14 96 99 1160 81 20 6 2.

Wuhan Univ of Technol (CHN) 15 36 98 2028 137 28 7 3.11
Tianjin Univ (CHN) * 16 20 96 2558 305 25 8 2.5

Univ of Tehran (IRN) * 17 11 95 3701 254 35 9 3.5
Univ of California (USA) 18 23 94 2424 210 25 8 2.5

Nanyang Technological Univ (SGP) * 19 10 93 4098 352 34 11 3.4
N Univ of Singapore (SGP) * 20 12 86 3146 394 27 9 2.7

Univ of Malaya (MYS) 22 8 84 4873 598 40 11 4.
Univ of Sci and Technol of China (CHN) 23 7 83 5330 310 34 11 4.25

City Univ of Hong Kong (HKG) 31 14 72 2972 534 28 10 2.8
Shenzhen Univ (CHN) 65 19 49 2571 453 21 8 3.

OCC: occurrences; GCS: global citation score; LCS: local citation score. * Affiliations simultaneously belonging to
the groups of top 20 most frequent affiliations and top 20 most cited affiliations.

4.1.5. Countries’ Performance Metrics

Table 7 provides insights into performance indicators for the countries of affiliation
of the authors, sorted by the number of documents. China holds a prominent position,
with the highest number of documents and total citations, indicating a dominant research
output. Significantly, it should be emphasized that China’s production is 2.5 times that of
the country ranking second in the list. India and the United States follow with substantial
publication counts and citations. Despite fewer published documents, Iran showcases a
relatively high global citation count, underscoring impactful research. The United Kingdom,
South Korea, and other countries also demonstrate substantial contributions. Notably,
Singapore and Hong Kong stand out with a high global citation count compared to their
scientific production, reflecting their research excellence.

Figure 6 presents the auto-correlation map for the countries appearing in Table 7.
There are no strong links between countries, and this figure shows a moderate level of
collaboration among countries. There are no strong links, and notably, there are no isolated
nodes.
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Table 7. Performance metrics for the top 20 most productive and top 20 most cited countries.

Country Rank
OCC

Rank
GCS OCC GCS LCS H Index G Index M Index

China* 1 1 6221 144,197 18,238 149 18 14.9
India* 2 3 2488 31,678 2595 75 12 7.5

United States* 3 2 1805 50,078 5329 105 16 10.5
Iran* 4 4 847 23,672 1787 77 13 7.7

United Kingdom* 5 5 803 21,037 2037 73 13 7.3
South Korea* 6 6 723 18,017 1871 63 13 6.3

Malaysia* 7 9 582 14,828 1603 63 12 6.3
Canada* 8 8 557 15,984 1772 63 13 6.3

Australia* 9 7 498 17,394 1673 65 13 6.5
Saudi Arabia* 10 12 485 10,112 748 49 11 4.9

Spain* 11 10 481 12,598 867 58 12 5.8
Turkey* 12 19 468 8159 909 45 9 4.5
Taiwan* 13 13 440 9351 1028 48 10 4.8

Italy* 14 11 437 11,022 1175 55 12 5.5
Egypt* 15 18 424 8566 616 47 10 4.7

Germany* 16 15 418 8945 749 47 12 4.7
France* 17 14 399 9146 902 49 13 4.9
Algeria* 18 20 380 7660 930 44 11 4.4
Morocco 19 29 378 3475 382 27 7 2.7

Indonesia 20 30 330 3009 281 23 7 2.3
Singapore 24 17 235 8761 897 51 12 5.1

Hong Kong 25 16 210 8800 1057 52 11 5.2

OCC: occurrences; GCS: global citation score; LCS: local citation score. * Countries simultaneously belonging to
the groups of top 20 most frequent countries and top 20 most cited countries.
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4.1.6. Sources’ Performance Metrics

Table 8 presents the performance indicators for the top 20 most frequent and the top 20
most cited publication sources in the analyzed dataset, sorted by the number of occurrences
(OCC). Of the 26 publications sources in the table, 14 belong simultaneously to the two
groups, indicating high quality and productivity. Prominent sources like Energies and
Energy demonstrate high frequency and global citations, indicating influential platforms.
Journals like Applied energy (APPL ENERGY) and Energy Conversion and Management (EN-
ERGY CONVERS MANAGE) also display high global citations, highlighting their impact.
Notably, some sources exhibit high local citations relative to global citations, suggesting a
concentrated impact within the field; this is the case of ACS Applied Materials & Interfaces
(ACS APPL MATER INTERFACES), with a local citation score (LCS) of 3493, appearing
in the 25th position in the frequency ranking. Regarding the impact and frequency, the
most important source is Applied Energy, with an h-index of 83. However, Applied Energy
is the most influential document source within the field of applications of AI in SE, with
an h-index of 87. Additionally, specific sources like the Journal of Physics: Conference Sseries
(J PHYS CONF SER) have a lower global impact despite the higher number of publica-
tions. All the journals listed in the table fall within the energy domain, except for Applied
Soft Computing Journal (APPL SOFT COMPUT J), which pertains to the field of artificial
intelligence.

Table 8. Performance metrics for the top 20 most frequent and top 20 most cited sources.

Affiliation Rank
OCC

Rank
GCS OCC GCS LCS H Index G Index M Index

ENERGIES * 1 5 713 15,379 1748 57 11 5.7
ENERGY * 2 2 408 22,846 2672 83 13 8.3

IEEE ACCESS * 3 6 404 11,586 1621 54 11 9
APPL ENERGY * 4 1 332 23,675 3354 87 15 8.7

RENEW ENERGY * 5 4 266 16,080 2195 74 13 7.4
J PHYS CONF SER 6 118 248 406 42 7 3 0.78

ENERGY CONVERS MANAGE * 7 3 222 16,997 2665 81 14 8.1
ENERGY REP 8 34 163 1853 130 21 6 5.25

APPL SCI * 9 20 162 2848 395 25 7 3.12
INT J HYDROGEN ENERGY * 10 14 147 4643 427 39 9 3.9

J ENERGY STORAGE * 11 18 129 3151 456 27 8 3.86
IOP CONF SER EARTH ENVIRON SC 12 145 126 307 53 8 3 0.8

J CLEAN PROD * 13 10 117 5530 639 45 10 5.62
INT J ENERGY RES 14 41 113 1545 171 23 7 2.3

SOL ENERGY * 15 7 110 6230 725 47 11 4.7
INT J ELECTR POWER ENERGY SYS * 16 11 107 5410 517 44 10 4.4

J POWER SOURCES * 17 9 105 5899 749 42 12 4.2
J MATER CHEM A * 18 17 90 3190 26 34 9 3.78

J RENEWABLE SUSTAINABLE ENERG 19 47 88 1313 214 21 6 2.1
IEEE POWER ENERGY SOC GEN MEE 20 81 88 667 97 15 5 1.5

IEEE TRANS SMART GRID 30 8 72 5939 601 42 12 4.2
ENERGY BUILD 31 12 72 5178 454 41 11 4.1

IEEE TRANS IND INF 37 15 66 4087 368 33 10 3.3
APPL SOFT COMPUT J 52 19 47 2991 333 30 9 3

IEEE TRANS IND ELECTRON 58 13 43 4883 514 30 11 3
IEEE TRANS SUSTAINABLE ENERGY 61 16 43 3511 365 26 11 2.89

OCC: occurrences; GCS: global citation score; LCS: local citation score. * Affiliations simultaneously belonging to
the groups of top 20 most frequent affiliations and top 20 most cited affiliations.

4.2. Determination of the Dominant Themes Using Co-Word Analysis

This section discusses the process for obtaining the dominant themes using the Author
keywords (AKs). For this research, the author keywords were selected. AKs refer to a
set of words or phrases that authors themselves choose to represent the primary themes,
concepts, and topics addressed in their research article. These keywords aim to reflect the
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content and focus of the research paper accurately. Authors often select keywords that
are not only relevant to their work but also are words that potential readers might use
when searching for related articles. Author keywords provide direct insight into the subject
matter of the research article. In contrast, index keywords (IK) come from a standardized
list or taxonomy maintained by the database or indexing service. Consequently, AKs are
more precise than IKs to capture the essence of the documents.

4.2.1. Keywords Preparation

Keywords were prepared by building a thesaurus constructed using the following
steps:

• A table was constructed with two columns: the “original (raw) keyword” and the
“modified keyword”. In this step, the two columns contain the same text. The “modi-
fied keyword” column corresponds to the cleaned author keyword used in the analysis.
The following steps were applied only to the “modified keyword” column.

• British English words were rewritten in American English.
• Abbreviations were eliminated from the terms; for instance, “electric vehicles (EV)”

was converted to “electric vehicles”.
• Text collision techniques were employed to standardize terms that might differ in

word order or usage of plurals and singulars. For instance, these techniques group
phrases like “analysis of data” and “data analysis”, as well as “electric vehicle” and
“electric vehicles”.

• Lastly, a computer-assisted review was performed. In this step, for example, the uses
of common synonyms such as “forecast” and “predict”, or “lithium” and “li-ion” are
reviewed.

The obtained table is used to clean and standardize the AKs. Simultaneously, a
compilation of stop words was generated as part of this procedure. The list encompasses
terms that will be ignored during the analysis. The list includes vague terms without utility
in the analysis, country names, and overly broad terms such as “sustainable energy” or
“machine learning”.

4.2.2. Selection of the Minimum Number of Keyword Occurrences

Due to the extensive volume of processed articles and the duration of the time span,
the analysis was performed for each year within the analysis period. During this phase, it
is necessary to select the minimum number of appearances that a keyword must have to be
considered in the analysis. Setting this threshold too low would result in the inclusion of
infrequent keywords that pertain to particular topics beyond the scope of this research. Table 8
shows the number of documents per year, the number of documents without AKs (column
“Documents with N/A”), and the number of usable documents. The threshold of the minimum
number of occurrences was determined as the maximum number of occurrences ensuring
coverage across at least 90% of the usable documents. The calculated values appear in Table 9.

Table 9. Dataset coverage.

Year Documents Documents
with N/A

Usable
Documents

Selected
Threshold Coverage Used

Documents

2013 573 116 457 3 90.8% 415
2014 723 130 593 5 90.2% 535
2015 734 95 639 4 90.6% 579
2016 977 134 843 5 90.4% 762
2017 1111 166 945 4 91.0% 860
2018 1523 227 1296 4 91.4% 1185
2019 2256 293 1963 6 90.1% 1768
2020 2678 359 2319 4 91.3% 2116
2021 3448 434 3014 5 91.0% 2742
2022 4692 531 4161 5 90.9% 3784
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4.2.3. Clusters of Author Keywords Obtained for Each Year

A co-occurrence network of author keywords was constructed for every year within
the analysis period. This network uses the cleaned author keywords, as discussed previ-
ously. Subsequently, the Louvain community detection algorithm was employed to extract
keyword clusters representing the prevailing subject areas. Table 10 presents the results that
were obtained. For each year, the obtained clusters are accompanied by the corresponding
count of author keywords and the four most frequent terms. Clusters are arranged based on
their cluster size, determined by the number of keywords they encompass. This sequence
can be interpreted as a ranking that reflects the significance of the subjects throughout
each year.

Table 10. Clusters obtained for each year of the period of analysis.

Year Cluster Number of
Keywords Percentage Main Keywords

2013

1 27 29.3%

GENETIC_ALGORITHMS;
PARTICLE_SWARM_OPTIMIZATION;
DISTRIBUTED_GENERATION; WIND_ENERGY;
DATA_MINING

2 23 25.0%
ARTIFICIAL_NEURAL_NETWORKS;
RADIAL_BASIS_FUNCTION_NETWORK; WIND_SPEED;
BIODIESEL; PEMFC

3 18 19.6% MPPT; FUZZY_LOGIC_CONTROL; PHOTO_VOLTAIC;
FUZZY_LOGIC; PHOTO_VOLTAIC_SYSTEM

4 17 18.5%
ELECTRIC_AND_HYBRID_VEHICLES;
SUPPORT_VECTOR_MACHINES; SMART_GRID;
MICRO_GRID; ENERGY_MANAGEMENT

5 7 7.6%
WIND_TURBINES; DIFFERENTIAL_EVOLUTION;
EVOLUTIONARY_ALGORITHMS;
PARAMETER_PREDICTION; SOLAR_CELLS

2014

1 22 33.8%
ARTIFICIAL_NEURAL_NETWORKS;
GENETIC_ALGORITHMS; WIND_ENERGY;
SUPPORT_VECTOR_MACHINES; WIND_TURBINES

2 16 24.6%
DISTRIBUTED_GENERATION; SMART_GRID; MICRO_GRID;
ENERGY_EFFICIENCY;
ADAPTIVE_NEURO_FUZZY_INFERENCE_SYSTEM

3 15 23.1%

PARTICLE_SWARM_OPTIMIZATION;
ELECTRIC_AND_HYBRID_VEHICLES;
ENERGY_MANAGEMENT; LITHIUM_BATTERIES;
STATE_OF_CHARGE

4 12 18.5% MPPT; FUZZY_LOGIC; FUZZY_LOGIC_CONTROL;
PHOTO_VOLTAIC_SYSTEM; PHOTO_VOLTAIC

2015

1 26 31.7% GENETIC_ALGORITHMS; FUZZY_LOGIC; SMART_GRID;
MICRO_GRID; DISTRIBUTED_GENERATION

2 21 25.6%
ARTIFICIAL_NEURAL_NETWORKS; WIND_TURBINES;
WIND_ENERGY; WIND_SPEED_FORECASTING;
SOLAR_RADIATION

3 15 18.3%
ELECTRIC_AND_HYBRID_VEHICLES;
SUPPORT_VECTOR_MACHINES; ENERGY_MANAGEMENT;
CHARGING_STRATEGIES; Q_LEARNING

4 14 17.1%
PARTICLE_SWARM_OPTIMIZATION;
FUZZY_LOGIC_CONTROL; MPPT; PHOTO_VOLTAIC;
DIFFERENTIAL_EVOLUTION

5 6 7.3%
PHOTO_VOLTAIC_SYSTEM; PI_CONTROL;
FIREFLY_ALGORITHMS; ANT_COLONY_OPTIMIZATION;
INTELLIGENT_CONTROL
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Table 10. Cont.

Year Cluster Number of
Keywords Percentage Main Keywords

2016

1 30 32.6%
ARTIFICIAL_NEURAL_NETWORKS;
SUPPORT_VECTOR_MACHINES; WIND_TURBINES;
WIND_SPEED_FORECASTING; SOLAR_RADIATION

2 24 26.1%
PARTICLE_SWARM_OPTIMIZATION; MICRO_GRID;
SMART_GRID; ELECTRIC_AND_HYBRID_VEHICLES;
ENERGY_MANAGEMENT

3 19 20.7% FUZZY_LOGIC_CONTROL; MPPT; PHOTO_VOLTAIC;
FUZZY_LOGIC; DISTRIBUTED_GENERATION

4 12 13.0%
GENETIC_ALGORITHMS; DIFFERENTIAL_EVOLUTION;
ENERGY_EFFICIENCY; MULTI_OBJECTIVE_OPTIMIZATION;
ARTIFICIAL_BEE_COLONY

5 7 7.6%
WIND_ENERGY; EVOLUTIONARY_ALGORITHMS;
PROBABILISTIC_FORECASTING; WIND_FARM;
UNCERTAINTY

2017

1 43 30.1%
ARTIFICIAL_NEURAL_NETWORKS;
SUPPORT_VECTOR_MACHINES; LITHIUM_BATTERIES;
EXTREME_LEARNING_MACHINE; SOLAR_RADIATION

2 33 23.1%
PARTICLE_SWARM_OPTIMIZATION; MICRO_GRID;
ELECTRIC_AND_HYBRID_VEHICLES; SMART_GRID;
ENERGY_MANAGEMENT

3 28 19.6% MPPT; FUZZY_LOGIC_CONTROL; FUZZY_LOGIC;
PHOTO_VOLTAIC; PHOTO_VOLTAIC_SYSTEM

4 18 12.6% WIND_ENERGY; ENERGY_EFFICIENCY; DATA_MINING;
DEEP_LEARNING; CLUSTERING_ALGORITHMS

5 14 9.8% GENETIC_ALGORITHMS; WIND_TURBINES;
DISTRIBUTED_GENERATION; WIND_FARM; ENERGY

6 7 4.9%

ARTIFICIAL_BEE_COLONY; SOLAR_CELLS;
META_HEURISTIC_ALGORITHM;
GRAVITATIONAL_SEARCH_ALGORITHM;
PARAMETER_PREDICTION

2018

1 59 29.4%

ARTIFICIAL_NEURAL_NETWORKS;
SUPPORT_VECTOR_MACHINES; DEEP_LEARNING;
ADAPTIVE_NEURO_FUZZY_INFERENCE_SYSTEM;
WIND_SPEED_FORECASTING

2 39 19.4%
PARTICLE_SWARM_OPTIMIZATION; MPPT;
FUZZY_LOGIC_CONTROL; PHOTO_VOLTAIC;
FUZZY_LOGIC

3 36 17.9%
GENETIC_ALGORITHMS; SMART_GRID;
ENERGY_EFFICIENCY; ENERGY_CONSUMPTION;
DATA_MINING

4 30 14.9%

MICRO_GRID; ENERGY_MANAGEMENT;
REINFORCEMENT_LEARNING;
DISTRIBUTED_GENERATION;
MULTI_OBJECTIVE_OPTIMIZATION

5 24 11.9%
ELECTRIC_AND_HYBRID_VEHICLES;
LITHIUM_BATTERIES; STATE_OF_CHARGE;
ENERGY_STORAGE; STATE_OF_HEALTH

6 13 6.5% WIND_TURBINES; FAULT_DIAGNOSIS; ENERGY;
FEATURE_EXTRACTION; CONDITION_MONITORING
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Table 10. Cont.

Year Cluster Number of
Keywords Percentage Main Keywords

2019

1 56 30.3%
SMART_GRID; GENETIC_ALGORITHMS;
ELECTRIC_AND_HYBRID_VEHICLES; MICRO_GRID;
ENERGY_MANAGEMENT

2 52 28.1%

DEEP_LEARNING;
LONG_SHORT_TERM_MEMORY_NETWORK;
SUPPORT_VECTOR_MACHINES;
CONVOLUTIONAL_NEURAL_NETWORK;
LITHIUM_BATTERIES

3 39 21.1%
ARTIFICIAL_NEURAL_NETWORKS; WIND_TURBINES;
WIND_ENERGY; ENERGY_EFFICIENCY;
ENERGY_CONSUMPTION

4 38 20.5% MPPT; PARTICLE_SWARM_OPTIMIZATION;
FUZZY_LOGIC_CONTROL; PHOTO_VOLTAIC; FUZZY_LOGIC

2020

1 76 23.0%
ELECTRIC_AND_HYBRID_VEHICLES;
GENETIC_ALGORITHMS; SMART_GRID; MICRO_GRID;
REINFORCEMENT_LEARNING

2 72 21.8%

DEEP_LEARNING;
LONG_SHORT_TERM_MEMORY_NETWORK;
CONVOLUTIONAL_NEURAL_NETWORK; WIND_ENERGY;
SOLAR_RADIATION

3 69 20.8%
PARTICLE_SWARM_OPTIMIZATION; MPPT;
PHOTO_VOLTAIC; FUZZY_LOGIC_CONTROL;
PHOTO_VOLTAIC_SYSTEM

4 64 19.3%
ARTIFICIAL_NEURAL_NETWORKS; LITHIUM_BATTERIES;
SUPPORT_VECTOR_MACHINES; STATE_OF_CHARGE;
ENERGY_CONSUMPTION

5 21 6.3%
MULTI_OBJECTIVE_OPTIMIZATION; SOLAR_CELLS;
ARTIFICIAL_BEE_COLONY;
INTEGRATED_ENERGY_SYSTEMS; SENSITIVITY_ANALYSIS

6 20 6.0%
WIND_TURBINES; FAULT_DETECTION;
DOUBLY_FED_INDUCTION_GENERATOR;
CONDITION_MONITORING; ANOMALY_DETECTION

7 9 2.7%

OXYGEN_EVOLUTION_REACTION; ELECTROCATALYSTS;
METAL_ORGANIC_FRAMEWORKS;
HYDROGEN_EVOLUTION_REACTION;
DENSITY_FUNCTIONAL_THEORY

2021

1 95 27.6%
ELECTRIC_AND_HYBRID_VEHICLES; MICRO_GRID;
REINFORCEMENT_LEARNING; SMART_GRID;
ENERGY_MANAGEMENT

2 94 27.3%
ARTIFICIAL_NEURAL_NETWORKS; GENETIC_ALGORITHMS;
PARTICLE_SWARM_OPTIMIZATION; PHOTO_VOLTAIC;
MPPT

3 86 25.0%

DEEP_LEARNING;
LONG_SHORT_TERM_MEMORY_NETWORK;
LITHIUM_BATTERIES;
CONVOLUTIONAL_NEURAL_NETWORK;
RECURRENT_NEURAL_NETWORKS

4 42 12.2% WIND_TURBINES; SUPPORT_VECTOR_MACHINES;
FAULT_DIAGNOSIS; FAULT_DETECTION; RANDOM_FOREST

5 23 6.7%

OXYGEN_EVOLUTION_REACTION; ELECTROCATALYSTS;
OXYGEN_REDUCTION_REACTION;
HYDROGEN_EVOLUTION_REACTION;
PEROVSKITE_SOLAR_CELLS

6 4 1.2% MULTI_OBJECTIVE_OPTIMIZATION; NSGA_II;
BUILDING_ENERGY_CONSUMPTION; THERMAL_COMFORT
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Table 10. Cont.

2022

1 132 27.9%
ELECTRIC_AND_HYBRID_VEHICLES;
ENERGY_MANAGEMENT; GENETIC_ALGORITHMS;
MICRO_GRID; SMART_GRID

2 102 21.6%

DEEP_LEARNING;
LONG_SHORT_TERM_MEMORY_NETWORK;
CONVOLUTIONAL_NEURAL_NETWORK; WIND_TURBINES;
WIND_ENERGY

3 85 18.0%
PARTICLE_SWARM_OPTIMIZATION; MPPT;
PHOTO_VOLTAIC; FUZZY_LOGIC_CONTROL;
PHOTO_VOLTAIC_SYSTEM

4 78 16.5%
ARTIFICIAL_NEURAL_NETWORKS;
SUPPORT_VECTOR_MACHINES; PEMFC; RANDOM_FOREST;
EXTREME_GRADIENT_BOOSTING

5 50 10.6%
LITHIUM_BATTERIES; STATE_OF_CHARGE;
STATE_OF_HEALTH; TRANSFER_LEARNING;
REMAINING_USEFUL_LIFE

6 26 5.5%

OXYGEN_EVOLUTION_REACTION;
HYDROGEN_EVOLUTION_REACTION;
OXYGEN_REDUCTION_REACTION;
PEROVSKITE_SOLAR_CELLS; OXYGEN_VACANCIES

Figure 7 displays a Sankey diagram, wherein the clusters are organized by year,
following the order indicated in Table 10. This diagram facilitates the observation of
keyword transitions across clusters, illustrating the shifts in research focus across different
years. Several patterns emerge when analyzing the evolution of clusters and the movements
of keywords between clusters year by year.

• The use of fuzzy controllers for tracking the maximum power point in photovoltaic
systems is a topic that has remained relevant during the last decade.

• Research on electric vehicles has been a dominant area in all years, particularly con-
cerning topics related to their impact on the electrical grid, the corresponding energy
source management, and subjects related to electric batteries. In 2019, batteries became
a central research topic with their own cluster in the diagram.

• The use of deep learning techniques has been a dominant topic since 2019, and with
these techniques, various issues related to wind and solar energy, as well as electric
batteries, have been addressed.

• The utilization of heuristic optimization techniques, such as genetic algorithms, par-
ticle swarm optimization, and ant colony optimization, has been a prevalent theme
throughout the decade. These techniques have been applied to optimization problems
in energy, such as distribution planning and issues related to other artificial intelligence
models when used in renewable energy contexts. An example of this is parameter
identification in models.

• Artificial neural networks, support vector machines, and neuro-fuzzy systems have
been applied to a wide range of problems and have served as benchmarks for evaluat-
ing newer models like deep learning.
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Figures 2 and 8 can be compared to establish a parallel with previous works. As
shown year-by-year, Figure 8 captures many details about the research emphasis in
each year. For example, DEEP_LEARNING appears in Figure 2 in the year 2019, and
this term is associated with the keywords DECISION_MAKING, SMART_GRID, and
ELECTRIC_AND_HYBRID_VEHICLES; however, Figure 8 shows the same keyword
(DEEP_LEARNING) in the years 2017 and 2018 associated with WIND_ENERGY. On
the other hand, the works discussed in Section 2 are focused on narrow themes; in this
sense, they are not comparable with our research.
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Figure 8 presents the trending words per year. In the figure, the width of the lines
is proportional to the total number of occurrences of the corresponding keyword. The
analysis of the graph enables the identification of the most important words per year.
Complementing the previous figure, it also helps establish the relevance of the themes. For
example, deep learning is the most significant topic for 2020, 2021, and 2022. It is crucial to
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note at this point that Figure 7 presents clusters ordered by the number of keywords they
contain, not by the total occurrences of the keywords.

5. Discussion

A detailed analysis of the underlying themes was conducted for each cluster obtained
each year. This process is necessary because, by definition, clusters are derived from co-
word analysis group keywords that frequently appear together in documents. However,
each cluster can encompass more than one dominant area. For instance, if support vector
machines and artificial neural networks are employed to predict a battery’s charge state
and the wind turbine’s output power, the clustering algorithm tends to create a cluster
containing the keywords related to these topics. This situation can go unnoticed when
individual keywords are analyzed in isolation using numerical techniques without attempt-
ing to interpret their interrelationship within a cluster. This is a well-known situation in
practice (for example, in customer analytics). As a result, there is a desire for clusters to be
interpretable or explainable based on expert knowledge in the field.

This work conducted a computer-assisted manual analysis of each cluster’s 50 most
cited articles annually. This analysis was supported by using text-mining techniques to
uncover the underlying structure of the clusters. This analysis allowed for the discovery
of the underlying dominant thematic areas. These areas can be categorized as belonging
to artificial intelligence or sustainable energy. Addressing both classifications can lead to
redundancies, so it was decided to conduct the analysis using a classification based on
dominant themes in sustainable energy. This section discusses the emerging areas identified
as dominant in detail.

5.1. Analysis of Dominant Themes

This section details the dominant themes that were found in the database. As this
analysis was classified by SE theme, the following subsections briefly describe the problems
found in diverse SE subfields and how they have been addressed using AI.

5.1.1. Solar Energy

Photovoltaic (PV) generation systems are particularly attractive renewable energy
sources because they do not entail fuel costs and require minimum maintenance [60].
Nevertheless, they pose complex problems, which have been addressed using several
AI techniques:

• Maximum Power Point Tracking (MPPT) in solar power systems under variable
conditions of solar radiation, shading, and ambient temperature [61]. This kind of
tracking is challenging in extreme environments [62] due to the problems of traditional
control techniques (in terms of accuracy, flexibility, and efficiency), as well as the
presence of multiple local maxima in the power–voltage curve [63] when PV systems
are partially shaded. MPPT has been implemented using traditional control systems,
e.g., perturb-and-observe [64], fuzzy logic [65], and neuro-fuzzy systems [66]. Other
heuristic mechanisms have been incorporated to optimize control systems: ant colony
optimization [61,67–69], artificial bee colony optimization [69–71], particle swarm
optimization or PSO [72,73], and differential evolution and genetic algorithms [74].
Likewise, adaptive mechanisms have been used in controllers [75], e.g., based on
Hopfield networks [76,77].

• Modelling and forecasting solar radiation at different scales: monthly [78,79], daily [80,81],
and hourly [82]. One of the biggest problems of this type of SE is that solar radiation
depends on climatic factors that are difficult to forecast accurately, such as temperature,
humidity, wind speed, and daylight duration [83]. In addition, there is a lack of accu-
rate data about climatic variables [80]. The literature has reported experiences of solar
radiation forecasting using multi-layer perceptrons [78–80], radial basis function net-
works [79–81], fuzzy linear regression [84], SVMs [84], and hybrid models [82]. Some
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studies have proposed training neural network models using evolutionary algorithms,
such as PSO [78].

• Identifying solar photovoltaic (PV) system parameters is challenging due to their non-
linear, multimodal, and multivariate characteristics. The efficiency of converting solar
energy into electricity largely hinges on the precision of these parameters. Traditional
methods often grapple with issues such as immature convergence and falling into
local optima, as they cannot effectively navigate the complex landscape of PV system
models [85]. Diverse techniques have been used for parameter identification, includ-
ing genetic algorithms (GAs) and other metaheuristic techniques, such as PSO [86],
the Firefly algorithm [87], and differential evolution [88,89].

5.1.2. Smart Grids and Microgrids

Smart grids and microgrids are essential for managing power transmission systems
efficiently and safely [90]. However, designing and operating them pose significant chal-
lenges, i.e., the decentralized control of these distributed sources, real-time electricity
pricing, price sensitivity, using Energy Storage Systems (ESSs), and incorporating variable-
operation renewable sources [91,92]. The following are some of the problems of these types
of grids and the solutions that have been proposed:

• Operation planning, efficient management, and determining optimal policies. Solving
these problems is more complicated due to variable renewable sources. Some authors
have proposed using multi-agent systems to manage microgrids [92,93] and smart
grids [91]. For instance, Cha et al. [93] used smart agents to improve the management
of microgrids, which are subjected to variable loads (i.e., refrigerated containers,
electric vehicles, and loading stations for ships) and meet their own demand using
wind power. Kuznetsova et al. [94] used reinforcement learning to plan the use of
a battery in a system composed of a microgrid, a consumer, a renewable source,
and a storage battery. The same methodology was adopted by Mbuwir et al. [95]
to find optimal policies that can maximize solar self-consumption in microgrids.
Intelligent agents have been employed to operate grids optimally using a decentralized
management scheme [93,96].

• Estimating electricity prices. Forecasting electricity prices in deregulated markets
presents significant challenges due to the inherent volatility and dynamic interaction
between consumers and real-time prices within smart grid systems. The unpredictable
nature of these interactions can lead to deviations from initial forecasts, underscor-
ing the importance of accurate prediction tools [97]. In response to these complexi-
ties, sophisticated artificial intelligence methodologies have been developed. These
methodologies include fuzzy systems such as ANFIS [98], SVR [98,99], reinforcement
learning [100], recurrent neural networks [101], and deep learning models [102] such
as LSTM [103] and GRU [104].

• Determining the optimal size and location of energy storage systems. Kerdphol
et al. [105] and Baghaee, Mirsalim, and Gharehpetian et al. [106] proposed the use of
radial basis function networks to determine (1) the optimal size and location of energy
storage systems using batteries in microgrids and (2) the electricity that distributed
sources should supply to the transmission network.

• Expansion planning. One of the main challenges in the planning and operation
of the modern transmission infrastructure (smart grids and microgrids) is locating
and sizing sustainable generation sources [107,108]. This is because it is necessary to
simultaneously optimize multiple objectives, which involves minimizing system losses
and voltage deviations and maximizing voltage stability indices [109–112]. In addition,
this kind of optimization should consider different technical and economic constraints,
such as fluctuations in sustainable generation and demand [113]. This is a complex
optimization problem that, in radial basis function networks, is usually addressed
using modified versions of GAs [109,114,115], such as self-adaptive algorithms [113],
those based on chaos or quantic computing [108], and their hybrids with techniques
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such as PSO [107]. However, to a lesser extent, other heuristic algorithms have been
implemented for this purpose in the literature, such as the bat algorithm [112] and
PSO [111,116–118].

• Detecting malicious attacks in smart grids. Integrating advanced information and com-
munication technologies (ICTs) in developing smart grids has undeniably amplified
the efficiency and resilience of power distribution and management [119]. However, as
the smart grid architecture becomes more centralized and reliant on software-defined
networking (SDN) that captures data in real time, it also ushers in new vulnerabili-
ties [120]. A significant concern is the susceptibility of smart grids to false data injection
attacks. Such attacks cunningly sidestep conventional bad data detection systems
within energy management systems, leading to distorted state estimations. The reper-
cussions can vary from minor operational mishaps to large-scale blackouts [121,122].
To counteract these cyber threats, diverse artificial intelligence techniques have been
used. Machine learning models, including those employing support vector machines
(SVMs) and hybrid models integrating SVMs with random forest (RF), have displayed
promising outcomes in recognizing various cyber threats [120]. Deep learning, too,
has shown commendable progress in this arena. LSTM autoencoders are employed
to discern false data injection attacks by extracting spatial and spectral features from
state estimations, showcasing significant simulation accuracy [123]. Concurrently,
convolutional neural network (CNN)-based strategies offer continuous recognition
of areas affected by such attacks, integrating well with existing frameworks and pro-
viding rapid detection even on standard computing platforms [124]. Distinct research
introduced an anomaly detection technique using CNNs to identify denial of charge
(DoC) attacks on electric vehicle charging stations, leveraging the station’s energy
demand patterns [125]. Additionally, wavelet convolutional neural networks have
been highlighted as especially proficient at pinpointing distributed denial of service
(DDoS) attacks in smart grid systems, combining high detection rates with minimal
false alarms [126]. Deep convolutional neural networks (DCNNs) push the bound-
aries further in curtailing false data injection attack effects, surpassing traditional
techniques [127,128].

• Islanding detection in microgrids. For several reasons, islanding detection in grid-
linked photovoltaic-based distributed power generation (PVDPG) systems is critical.
This includes ensuring the safety of line workers and the general public, protecting
consumer and utility equipment, preventing malfunctions of power system protective
equipment, maintaining power quality, and strengthening the overarching security
of the power system [129,130]. A significant challenge in devising reliable detection
mechanisms lies in the inconsistent power output often associated with renewable
energy sources like PVDPG, which can lead to voltage disturbances and unforeseen
blackouts [131]. Recent innovations merging the Internet of Things (IoT) with cloud
computing and machine learning have paved the way for enhanced microgrid con-
trols [132]. IoT devices are pivotal in this technological nexus, providing superior
measurement and control functionalities, vital for the microgrid environment. More-
over, cloud-based artificial neural networks (ANNs) have proven effective in islanding
detection, especially when utilizing data from islanding simulations [132]. Numer-
ous AI methodologies exhibit promise in islanding detection. For instance, ANFIS
is an advanced technique for islanding detection, capitalizing on passive detection
parameters such as voltage, frequency rate changes, and power variations [129,133].
Additionally, the synergy of LSTM networks with the empirical wavelet transform
boosts the reliability of smart islanding detection [134]. Finally, Kermany et al. [135]
used fuzzy neural networks for this purpose.
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5.1.3. Fuel Cells

Fuel cells continuously convert chemical energy from fuel into electricity. Accurately
predicting different variables associated with these devices (e.g., service life) is essential to
reduce costs and improve durability [136]. AI applications for fuel cells include:

• Estimating optimal operating parameters. One of the fundamental problems that
should be solved to improve the performance of these systems is modeling and pre-
cisely identifying the parameters that characterize the cells. However, to do that,
complex nonlinear multimodal functions should be solved so that optimization algo-
rithms are not trapped in local optima. This problem has been addressed using GAs
and their variants [137–139], Elman networks [140,141], and metaheuristic techniques
such as the artificial bee colony algorithm [142].

• Performance prediction. Predicting the performance of fuel cells is essential for im-
proving their operational parameters and ensuring accurate long-term projections,
especially given the challenges presented by factors such as degradation mechanisms
and aging processes [143,144]. Various artificial intelligence (AI) techniques have been
employed to tackle these complexities. The neural network autoregressive with exter-
nal input (NNARX) method was utilized to forecast the performance of solid oxide fuel
cells (SOFCs) [144]. In contrast, deep belief networks (DBN) offer heightened accuracy
in the realm of proton exchange membrane fuel cells (PEMFCs) [145]. Echo-state neu-
ral networks have also emerged as an effective tool for predicting degradation [143].
Specialized neural network models, such as the wavelet transform combined with
long short-term memory (LSTM) and gradient boosting decision tree (GBDT), have
achieved exceptional results in various facets of fuel cell prediction [146–148]. Tech-
niques like merging convolutional neural networks (CNNs) with random forest feature
selection and spatiotemporal vision-based deep neural networks with 3D inception
LSTM have shown significant advances in fuel cell vehicle speed predictions [145,149].
LSTMs, especially when combined with techniques like electrochemical impedance
spectroscopy and Savitzky Golay filters, have displayed superiority in forecasting fuel
cell degradation and performance [150–152].

• Failure diagnosis. Proton exchange membrane (PEM) fuel cells are garnering attention
due to their potential in sectors like fuel cell vehicles [153,154]. However, the complex-
ity of PEM fuel cells and the variety of potential faults they can exhibit make their
reliability and durability a concern, highlighting the significance of fault diagnosis.
Various artificial intelligence (AI) techniques have been developed to address these
challenges. Fuzzy logic has been instrumental in diagnosing common PEM fuel cell
issues such as flooding and dehydration [154]. Another method merges a probabilistic
neural network with a differential evolution algorithm designed for impedance identi-
fication [155]. Siamese artificial neural networks, tailored to PEM fuel cells, distinguish
features from impedance spectra [156]. Additionally, support vector machines com-
bined with binary trees have been utilized to hasten fault categorization [153], and
a novel deep learning approach marries a backpropagation neural network with an
inception-based convolutional network, targeting fault identification in fuel cell tram
systems [157]. In recent advancements, long short-term memory (LSTM) networks,
acclaimed for processing time series data, have been pivotal for diagnosing issues like
flooding in vehicle-based systems [158]. This proficiency was augmented by integrat-
ing LSTM networks with empirical mode decomposition (EMD), achieving high levels
of fault classification accuracy [159]. Other approaches include using ensembles of
neural network models [160].

• Optimizing the micro-structure design [161,162]. The intricate dynamics of fuel cells,
governed by numerous factors, emphasize the essential nature of their design. One of
the primary design challenges revolves around the cathode, where tweaking channel
structures, such as integrating blocks in the cathode flow fields, can enhance oxygen
delivery to the catalyst layer, subsequently optimizing fuel cell efficiency [163]. Solid
oxide fuel cells come with challenges driven by inherent nonlinearities, delays in
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operation, and unique operational boundaries [164]. Innovatively, designs inspired
by natural patterns, like the wave-like structures reminiscent of cuttlefish fins, exhibit
promising performance enhancement advancements [162]. Artificial intelligence (AI)
is a formidable ally when navigating this intricate landscape. For instance, genetic
algorithms have proven instrumental in refining fuel cell channel designs [162] and
conceptualizing bio-inspired structures [162]. In fuel cell electric vehicles, AI, armed
with advanced optimization techniques such as the elephant herding optimization
algorithm, has made noteworthy progress [165]. This showcases AI’s vast potential
in conceptualizing sophisticated hybrid systems [166]. Extending its role further, AI
employs innovative algorithms like the modified NSGA II to fine-tune aerodynamic
attributes of fuel cell parts for peak performance [167]. Augmenting this, the fusion
of machine learning and traditional techniques, especially in solid oxide fuel cell
systems, signifies a transformative pathway to a greener and more efficient energy
horizon [168].

5.1.4. Hydrogen

Clean renewable hydrogen (produced from different domestic resources) is used in
energy storage, energy generation, fuel mixtures, and industrial processes. In this context,
AI techniques have been used for several purposes:

• Managing islanded energy systems (with clean, renewable energy sources) that use
hydrogen to store energy. García et al. [169] and Zahedi and Ardehali [170] investigated
the use of fuzzy control systems to satisfy the energy demand in these systems. Chen
et al. [171] used a predictive control model for the optimal dispatch of a system
composed of a wind farm, a hydrogen/oxygen storage system, and several fuel cells.

• Modelling and forecasting hydrogen production. Nasr et al. [172] used models of artifi-
cial neural networks to estimate the hydrogen production profile based on biomass and
considering variables such as temperature, time, and pH. Ozbas et al. [173] used dif-
ferent machine learning algorithms to predict hydrogen production based on biomass
gasification. Nasrudin et al. [174] investigated the effect of different algorithms (used
to train neural networks) on the accuracy of the models in terms of their hydrogen
and biochar production predictions.

• Analyzing the behavior of fuel cells. Bicer, Dincer, and Aydin [175] developed a model
that represents the behavior of a fuel cell connected to a smart cell, which is used to
forecast the parameters of the actual cell.

This cluster includes other studies on synthesizing gas (or syngas) production. Similar
to the case of hydrogen, the most relevant research in this area is about predicting syngas
production [176], simulating the syngas production process [177], and predicting syngas
composition (Shenbagaraj et al. [178] and Li et al. [179] used artificial neural networks for
this purpose).

5.1.5. Electric Vehicles

The search for sustainable, low-carbon footprint transportation has found a promising
solution in plug-in hybrid and all-electric vehicles due to their low fuel consumption and
reduced emissions [180]. Nevertheless, their use and operation inside electricity generation
and transmission systems pose important challenges:

• Developing and operating a power supply infrastructure for EVs. Optimizing the
charging state of EVs is a complex nonlinear problem because it should consider net-
work conditions, charging time, and battery capacity [180], as well as the intermittent
and disorganized nature of the demand [181]. In this case, the goals are to minimize
the total operating cost of the vehicle, which is the sum of the fuel and electricity
costs [182], provide optimal scheduling [181], and establish the optimal location and
size of renewable energy sources and charging stations [183–186]. In general, these
goals have been addressed using adaptations of heuristic algorithms, such as particle
swarms [180–182] and artificial immune algorithms [187]. Additionally, some studies
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have used PSO algorithms to determine the charging and discharging patterns of
systems that integrate (simultaneously) charging stations for EVs, solar PV micro-
generation, and energy storage batteries. Intelligent agents have been used for this
purpose as well [188].

• Estimating and forecasting different characteristics of batteries—such as their optimal
parameters [180], charging state, remaining service life, or degradation—under multi-
ple temperature and voltage conditions to maximize their service life [189–195]. Differ-
ent types of neural networks have been used for this purpose: RBF networks [196,197],
SVMs [198–200], Elman networks [201], and time-delay neural networks [202]. Re-
cently, deep learning techniques have also been applied to this end, e.g., LSTM net-
works [203–207], GRU networks [208], ensembles [209], and autoencoders [210].

• Optimizing EV operation. To improve fuel consumption, Qu et al. [211] used reinforce-
ment learning to minimize automatic plug-in EVs’ start and stop cycles.

• Managing the power in the electric system and electricity storage cells of EVs. This
challenge has been addressed using metaheuristic techniques [212] and fuzzy logic.

5.1.6. Biofuels

Several studies have applied AI techniques to biodiesel, an organic, renewable syn-
thetic fuel obtained from vegetal oils and animal fat. Biodiesel can be used in internal
combustion engines to replace the fuel obtained from petroleum. The following are some
of the main problems in this field that have been addressed using AI:

• Determining the optimal parameters for biofuel production. Multiple studies have
compared neural networks with response surface methodology for modeling and opti-
mizing biofuel production under different conditions [213–216]. Other articles have
compared fuzzy logic models [217], neuro-fuzzy interference models, and response
surface methodology [218].

• Estimating the cetane number of biodiesel as an indicator of its quality. Piloto-
Rodríguez et al. [219,220] concluded that, for this purpose, neural networks were
more accurate than linear regression. Miraboutalebi, Kazemi, and Bahrami [221]
compared neural networks and random forests.

• Modeling and optimizing biodiesel engines. Wong et al. [222] used cuckoo search and
extreme learning machines (ELMs) to reduce emissions and fuel costs and improve
engine performance.

• Determining the performance of diesel engines when they use biodiesel [223,224].
• Determining the amount of biodiesel in mixtures with diesel [225] or their compo-

nents [226].
• Forecasting biofuel properties [227]. Biodiesel’s importance as an environmentally

friendly alternative to conventional fuels cannot be overstated. Its fatty acid composi-
tion profoundly influences its physicochemical attributes. These attributes, including
kinematic viscosity, flash point, cloud point, pour point, and many more, profoundly
determine its performance when used in engines [227]. Yet, predicting these properties
from their fatty acid constituents remains a formidable challenge. In efforts to sur-
mount this hurdle, advanced artificial intelligence methodologies have been leveraged.
Gene expression programming (GEP) is one such technique. For example, it has been
effectively employed in modeling the performance and emission characteristics of
engines running on biodiesel blends like linseed oil methyl ester [228]. Compared to
traditional multiple linear regression (MLR) approaches, GEP offers superior accu-
racy in predicting biodiesel properties [227]. Furthermore, artificial neural networks
(ANNs) and their hybrids, like the adaptive neuro-fuzzy inference system (ANFIS)
combined with genetic algorithms (GA), have shown promising results in predicting
biodiesel engine characteristics [229].
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5.1.7. Wind Power

In the last decade, wind farms have been integrated into interconnected electricity
generation systems and global electricity markets [230]. In this subfield, AI has been mainly
used for:

• Wind speed forecasting. Accurate wind speed forecasting is essential for managing
wind systems regarding safety, stability, and quality [231]. Nevertheless, this task
is hard due to turbine operation [232] and the effect of weather conditions [230]. It
is even more complex because wind series present wide fluctuations, autocorrela-
tion, and stochastic volatility [191]. Therefore, efforts have been made to develop
AI-based methodologies to forecast wind speeds. In many relevant studies, decom-
position techniques have been used to extract significant information from wind
data [233,234] and later feed that information to forecasting models. Other stud-
ies have combined traditional time series model forecasts with machine learning
techniques such as ELMs and SVMs [2]. Different kinds of SVMs, Elman neural net-
works [235], neuro-fuzzy systems, and ELMs have been used to forecast wind speed
as the output variable [230,234,236–238], or as part of systems that combine forecasts.
For example, Wang and Hu [2] analyzed a combined forecast system that predicts
wind speed in the short term. Their system combines individual forecasts obtained by
an ARIMA model, ELMs, and two different types of SVM. In most articles reviewed
here, the parameters of the SVMs were estimated using several techniques, includ-
ing variants of the PSO algorithm [236,239], evolutionary algorithms [240], cuckoo
search [241], and differential evolution [242].

• Optimal selection and location of generators for wind farms. Most of the time, this
problem has been solved using PSO [243–245], neural networks [246], and different
evolutionary algorithms such as the firefly algorithm [247].

• Maximum Power Point Tracking (MPPT). This type of tracking has been performed
using fuzzy logic [248] and other AI techniques [249], which include PSO [250].

• Power output forecasting. This challenge has been addressed using neural net-
works [251], neuro-fuzzy systems [252], and machine learning algorithms [253].

• Failure diagnosis. This area has been investigated using ELMs [254] and SVMs [255,256].
• Turbine angle control. Fuzzy logic has been implemented to investigate this topic [257–259].
• Optimal dispatch. Usually, the goal is reducing CO2 emissions [260].
• Locating capacitors in wind power systems [261].

5.1.8. Management, Planning, and Operation of Energy Systems

This cluster covers other energy system management, planning, and operation themes.
The following are the main topics discussed in this cluster:

• Integrating the energy consumption of buildings. As Naji et al. [262] claim, build-
ings’ electricity consumption represents a significant percentage of the total electricity
consumption. Therefore, maximizing their energy efficiency is an essential task in
terms of sustainability. Ferreira et al. [263] and Yu et al. [264] used a multi-objective
genetic algorithm to minimize the energy consumption of buildings while maintaining
thermal comfort for their occupants. Similarly, Yang et al. [265] employed nondomi-
nated sorting genetic algorithms to optimally locate renewable sources on the roofs
of buildings at a university campus. Taking another approach to this problem, Naji
et al. [262] implemented ELMs to optimize the building materials of construction
projects to minimize their electricity demand.

• Predicting energy consumption. T.-Y. Kim and Cho [100] implemented the CNN-LSTM
model to capture the space and time characteristics of the time series of residential
electricity consumption to produce better forecasts. Other authors have used SVMs to
forecast the electricity consumption of buildings [266,267].
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• Forecasting demand response to save energy. Demand response has been simulated
using intelligent agents [268]. Wen, O’Neill, and Maei [269] investigated using rein-
forcement learning to provide an optimal demand response.

• Solving multi-objective problems. Heuristic optimization techniques, such as GAs,
have been employed to solve multi-objective problems in combined heat and power
systems commonly used in buildings [270]. In this case, the goal is to minimize the
production costs while meeting heating and electricity requirements [271]. As in the
case of multi-objective optimization of distributed generation, most of the time, these
problems have been successfully solved using variants of GAs [270–274].

5.2. Current Dominant Themes

The analysis presented represents the dominant thematic areas over the past decade.
However, this analysis does not necessarily reflect the most relevant topics currently. To
uncover the currently relevant topics of interest, a co-occurrence analysis of keywords was
conducted under the following parameters:

• The analysis period was restricted to 2020, 2021, and 2022. For this period, there are
9494 documents with author keywords.

• Keywords that appear in at least five documents were considered. Additionally, only
keywords that appear twice as many times in the period 2020–2022 compared to the
base period of 2013–2019 were considered. In other words, if a keyword appears
100 times in the base period, it must appear 200 times in the period 2020–2022 to be
considered. This restriction ensures its novelty.

The obtained results reveal the following themes of interest.

• The application of deep learning techniques, such as LSTM networks, convolutional
networks, and recurrent networks, for time series forecasting in wind energy and
electricity consumption.

• The use of reinforcement learning techniques and Q-learning addresses various issues
related to integrated energy systems, virtual power plants, and power regulation.

• The use of various AI techniques in problems related to hydrogen, cells, and biochar.
• The estimation of the state of charge, remaining useful life, and health status in

lithium batteries.
• The use of metaheuristics like Gray Wolf Optimization in power systems.

6. Conclusions, Limitations, and Future Work
6.1. Conclusions

This article analyzed the evolution of the most relevant themes in publications on AI
applications for SE, which were represented using keyword clusters. The methodology
adopted here employed text mining techniques, co-occurrence analysis, and clustering
to determine the clusters of keywords that appeared together most often. In addition, it
implemented a novel technique to construct the search string, which can be helpful in
exploring the literature in various fields of knowledge. Data cleaning, homogenization, and
text mining were used to transform the keywords, identify and cluster terms with the same
meaning, and disambiguate them by analyzing the context where they appeared. Likewise,
text analysis techniques and expert opinion were utilized to interpret each identified cluster.

This analysis established eight dominant themes in the literature about SE: (1) solar
energy; (2) smart grids and microgrids; (3) fuel cells; (4) hydrogen; (5) electric vehicles;
(6) biofuels; (7) wind power; and (8) management, planning, and operation of energy
systems. The analysis also revealed eight AI techniques that have been predominantly used
to solve SE problems: (1) genetic algorithms, (2) support vector machines, (3) particle swarm
optimization, (4) differential evolution, (5) backpropagation neural networks, (6) fuzzy
logic controllers, (7) reinforcement learning, and (8) deep learning.

It was found that although some AI techniques (e.g., SVMs, genetic algorithms, and
PSO) are widely used for multiple SE topics, not all techniques are suitable to solve all the
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major problems in SE. A vast collection of AI tools has been used in some SE subfields (e.g.,
solar energy or electric vehicles). In contrast, research has focused on a single AI tool in
some others (e.g., fuel cells or hydrogen).

The results presented the evolution of international authors’ interests in different
AI and SE topics over the period examined here. In addition, a thematic evolution can
be observed regarding the popularization of different AI techniques and advances in
SE. This analysis determined the most important SE clusters in recent years (2020–2021):
(1) energy consumption, (2) smart grids, (3) wind turbines, (4) solar irradiance, and (5) wind
power. It also revealed the most commonly used AI techniques in the same subperiod:
(1) swarm optimization, (2) genetic algorithms, (3) long short-term memory, (4) support
vector machines, (5) back propagation, (6) neural networks, and (7) differential evolution
algorithms.

6.2. Limitations

There are several limitations to this study. First, there may be new dominant areas
emerging today. As of this document’s review date, more than 3900 documents have already
been published for the year 2023. Given the high volume of new documents, reviewing
the progress made during this year is important. On the other hand, only Scopus has been
considered as the source of information. In this sense, including other documentary bases,
such as Dimensions, could be interesting.

Another aspect concerns the kind of keywords chosen and their refinement process.
In this study, only the author’s keywords were considered. However, it is essential to
investigate whether adding or using index keywords or nominal phrases extracted from
the document titles and abstracts could help identify other issues or methodologies that
the field’s community should consider.

Other limitations are related to the use of a co-word analysis. This technique is
based on the principle that the co-occurrence of two terms in a set of documents reflects a
meaningful relationship. However, co-occurrence does not always mean a substantive or
causal relationship. Additionally, the strength of connections based on frequency might
overlook less frequent but significant relationships. Other techniques, such as document
classification, topic modeling, or emergency indicators, could provide new insights.

6.3. Future Work

Looking back at the work, we can identify several potential directions for future research:

• Crafting specialized techniques to automate the cleanup of keywords and noun
phrases extracted from documents. This facet is vital for any subsequent analysis.

• Formulating or employing methodologies that identify the emergence of new themes
and convergence in methodological approaches.

• It is essential to contrast outcomes between various methodologies that depict the
field’s progression, such as topic modeling or document classification.

• Detailed examination of the primary dominant areas discovered.
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ENERGY BUILD Energy and Buildings
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IEEE TRANS SMART GRID IEEE Transactions on Smart Grid
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INT J HYDROGEN ENERGY International Journal of Hydrogen Energy
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J MATER CHEM A Journal of Materials Chemistry A
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Appendix A

The subsequent text represents the search string employed for document retrieval.
(
TITLE( {adabost} OR {adaptive fuzzy control} OR {adaptive learning} OR {adaptive system} OR
{adaptive systems} OR {adversarial learning} OR {adversarial machine learning} OR {adversarial
training} OR {ant colony optimization} OR {artificial bee colony} OR {artificial bee colony
algorithm} OR {artificial intelligence} OR {artificial neural network} OR {artificial neural networks}
OR {associative memory} OR {autoencoder} OR {autoencoders} OR {automl} OR {bat algorithm}
OR {bayesian network} OR {bayesian networks} OR {bayesian neural networks} OR {big data
analytics} OR {boosting} OR {bp neural network} )
) OR (
TITLE( {cellular automata} OR {cellular neural networks} OR {collaborative filtering} OR
{collaborative learning} OR {computational intelligence} OR {convolution neural network} OR
{convolutional neural network} OR {convolutional neural networks} OR {data mining} OR {deep
belief network} OR {deep belief networks} OR {deep convolutional network} OR {deep
convolutional neural networks} OR {deep generative models} OR {deep learning} OR {deep
learning method} OR {deep learning methods} OR {deep neural network} OR {deep neural
networks} OR {deep reinforcement learning} OR {differential evolution} OR {differential evolution
algorithm} OR {distributed learning} OR {encoder-decoder} OR {ensemble classifier} )
) OR (
TITLE( {ensemble learning} OR {ensemble methods} OR {evolutionary algorithm} OR
{evolutionary algorithms} OR {evolutionary computation} OR {evolutionary computing} OR
{expert system} OR {expert systems} OR {explainable ai} OR {explainable artificial intelligence} OR
{extreme gradient boosting} OR {extreme learning machine} OR {extreme learning machines} OR
{feature learning} OR {firefly algorithm} OR {fully convolutional network} OR {fully convolutional
networks} OR {fuzzy c-means} OR {fuzzy clustering} OR {fuzzy inference system} OR {fuzzy logic}
OR {fuzzy logic controller} OR {fuzzy logic systems} OR {fuzzy neural network} OR {fuzzy neural
networks} )
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) OR (
TITLE( {fuzzy rough set} OR {fuzzy set theory} OR {fuzzy system} OR {fuzzy systems} OR
{generative adversarial network} OR {generative adversarial networks} OR {genetic algorithm} OR
{genetic algorithms} OR {genetic programming} OR {graph convolutional network} OR {graph
convolutional networks} OR {graph learning} OR {graph mining} OR {graph neural network} OR
{graph neural networks} OR {gravitational search algorithm} OR {heuristic algorithm} OR
{heuristic algorithms} OR {imitation learning} OR {inertial neural networks} OR {intelligent agents}
OR {intelligent system} OR {intelligent systems} OR {k-means} OR {k-means clustering} )
) OR (
TITLE( {k-nearest neighbor} OR {k-nearest neighbors} OR {knowledge-based system} OR {latent
dirichlet allocation} OR {learning system} OR {learning systems} OR {long short term memory}
OR {long short-term memory} OR {long short-term memory network} OR {lstm} OR {machine
learning} OR {machine learning algorithms} OR {machine translation} OR {machine-learning} OR
{memetic algorithm} OR {memristive neural networks} OR {memristor-based neural networks} OR
{meta learning} OR {meta-heuristic} OR {meta-heuristic algorithm} OR {meta-heuristics} OR
{meta-learning} OR {metaheuristic} OR {metaheuristic algorithm} OR {metaheuristic algorithms} )
) OR (
TITLE( {metaheuristics} OR {metalearning} OR {metric learning} OR {multi-agent reinforcement
learning} OR {multi-agent system} OR {multi-agent systems} OR {multiagent system} OR
{multiagent systems} OR {multilayer perceptron} OR {natural language generation} OR {natural
language processing} OR {neural architecture search} OR {neural machine translation} OR {neural
network} OR {neural networks} OR {nsga-ii} OR {particle size distribution} OR {particle swarm
optimization} OR {pattern mining} OR {q-learning} OR {recommendation system} OR
{recommendation systems} OR {recommender system} OR {recommender systems} OR {recurrent
neural network} )
) OR (
TITLE( {recurrent neural networks} OR {reinforcement learning} OR {representation learning} OR
{restricted boltzmann machine} OR {restricted boltzmann machines} OR {ridge regression} OR
{rough set} OR {rough sets} OR {self-organizing map} OR {self-organizing maps} OR
{self-supervised learning} OR {semi-supervised learning} OR {semisupervised learning} OR {social
robotics} OR {spiking neural network} OR {statistical learning} OR {supervised learning} OR
{support vector machine} OR {support vector machines} OR {support vector regression} OR
{swarm intelligence} OR {t-s fuzzy model} OR {t-s fuzzy systems} OR {tabu search} OR
{takagi-sugeno model} )
) OR (
TITLE( {text classification} OR {text mining} OR {transfer learning} OR {twin support vector
machine} OR {unsupervised learning} OR {variational autoencoder} )
)
AND
(
TITLE( {alkaline fuel cell} OR {all-solid-state batteries} OR {all-solid-state battery} OR {alternative
energy source} OR {alternative energy sources} OR {batteries} OR {battery} OR {battery energy
storage} OR {battery energy storage system} OR {battery energy storage systems} OR {battery
management system} OR {battery storage} OR {bio-char} OR {bio-ethanol} OR {bio-hydrogen} OR
{bio-oil} OR {biochar} OR {biodiesel} OR {biodiesel production} OR {bioeconomy} OR
{bioelectricity} OR {bioenergy} OR {bioethanol} OR {bioethanol production} OR {biofuel} )
) OR (
TITLE( {biofuels} OR {biogas} OR {biogas production} OR {biohydrogen} OR {biological hydrogen
production} OR {biomass energy} OR {biomass gasification} OR {biorefinery} OR {bipv} OR
{carbon capture} OR {carbon capture and storage} OR {carbon sequestration} OR {circular
bioeconomy} OR {clean energy} OR {co 2 capture} OR {co 2 reduction} OR {co 2 reductions} OR
{co-2 reduction} OR {co-2 reductions} OR {co2 capture} OR {co2 reduction} OR {co2 reductions} OR
{co2 sequestration} OR {co2capture} OR {co2reduction} )
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) OR (
TITLE( {cogeneration} OR {combined heat and power} OR {community energy} OR {compressed
air energy storage} OR {concentrated solar energy} OR {concentrated solar power} OR
{concentrating solar power} OR {decarbonization} OR {demand response} OR {demand side
management} OR {demand-side management} OR {direct borohydride fuel cell} OR {direct carbon
fuel cell} OR {direct ethanol fuel celldirect methanol fuel cell} OR {direct methanol fuel cells} OR
{distributed energy resources} OR {distributed generation} OR {distributed power generation} OR
{dye sensitized solar cell} OR {dye sensitized solar cells} OR {dye-sensitized solar cell} OR
{dye-sensitized solar cells} OR {electric vehicle} OR {electric vehicles} OR {electrical efficiency} )
) OR (
TITLE( {electrification} OR {electrolysis} OR {electrolyzer} OR {energy access} OR {energy
conservation} OR {energy consumption} OR {energy conversion} OR {energy conversion
efficiency} OR {energy crop} OR {energy crops} OR {energy density} OR {energy efficiency} OR
{energy from biomass} OR {energy harvesting} OR {energy intensity} OR {energy justice} OR
{energy management} OR {energy management strategy} OR {energy management system} OR
{energy management systems} OR {energy performance} OR {energy poverty} OR {energy
recovery} OR {energy saving} OR {energy savings} )
) OR (
TITLE( {energy security} OR {energy storage} OR {energy storage system} OR {energy storage
systems} OR {energy transition} OR {energy transitions} OR {enhanced geothermal system} OR
{enhanced geothermal systems} OR {environmental sustainability} OR {ethanol} OR {ethanol
production} OR {feed-in tariff} OR {fuel cell} OR {fuel cells} OR {gasification} OR {geothermal
energy} OR {global solar radiation} OR {green energy} OR {green hydrogen} OR {homer} OR
{horizontal axis wind turbine} OR {hybrid electric vehicle} OR {hybrid electric vehicles} OR
{hybrid energy storage system} OR {hybrid energy storage systems} )
) OR (
TITLE( {hybrid energy system} OR {hybrid energy systems} OR {hybrid power system} OR
{hybrid renewable energy system} OR {hybrid renewable energy systems} OR {hydrogen
evolution reaction} OR {hydrogen storage} OR {hydropower} OR {integrated energy system} OR
{inverted polymer solar cells} OR {lcoe} OR {levelized cost of electricity} OR {levelized cost of
energy} OR {li metal batteries} OR {li metal battery} OR {li-air battery} OR {li-ion batteries} OR
{li-ion battery} OR {li-ion cell} OR {li-metal batteries} OR {li-metal battery} OR {li-s batteries} OR
{li-s battery} OR {liquid air energy storage} OR {lithium batteries} )
) OR (
TITLE( {lithium battery} OR {lithium ion batteries} OR {lithium ion battery} OR {lithium metal
batteries} OR {lithium metal battery} OR {lithium sulfur batteries} OR {lithium sulfur battery} OR
{lithium-air batteries} OR {lithium-air battery} OR {lithium-ion batteries} OR {lithium-ion battery}
OR {lithium-metal batteries} OR {lithium-metal battery} OR {lithium-sulfur batteries} OR
{lithium-sulfur battery} OR {lithium–sulfur batteries} OR {lithium–sulfur battery} OR {marine
renewable energy} OR {maximum power point tracking} OR {micro grid} OR {micro grids} OR
{micro-gridmicro-grid} OR {micro-gridsmicrobial electrolysis cell} OR {microbial electrolysis cells}
OR {microbial fuel cell} )
) OR (
TITLE( {microbial fuel cells} OR {microgrid} OR {microgrids} OR {molten carbonate fuel cell} OR
{na-ion batteries} OR {na-ion battery} OR {ocean energy} OR {off-grid} OR {offshore wind} OR
{offshore wind energy} OR {offshore wind farm} OR {offshore wind turbine} OR {organic
photovoltaic} OR {organic photovoltaics} OR {organic solar cell} OR {organic solar cells} OR
{oxygen evolution reaction} OR {oxygen reduction reaction} OR {peak shaving} OR {pem fuel cell}
OR {pem fuel cells} OR {perovskite solar cell} OR {perovskite solar cells} OR {photovoltaic} OR
{photovoltaic cell} )
) OR (
TITLE( {photovoltaic cells} OR {photovoltaic devices} OR {photovoltaic energy} OR {photovoltaic
module} OR {photovoltaic panel} OR {photovoltaic performance} OR {photovoltaic system} OR
{photovoltaic systems} OR {photovoltaics} OR {plug-in hybrid electric vehicles} OR {polymer
electrolyte fuel cell} OR {polymer electrolyte membrane fuel cell} OR {polymer electrolyte
membrane fuel cells} OR {polymer solar cell} OR {polymer solar cells} OR {potassium ion
batteries} OR {potassium ion battery} OR {potassium-ion batteries} OR {potassium-ion battery}
OR {power conversion efficiency} OR {power density} OR {power to gas} OR {power-to-gas} OR
{proton exchange membrane fuel cell} OR {proton exchange membrane fuel cells} )
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) OR (
TITLE( {pv} OR {pv module} OR {pv system} OR {pv systems} OR {redox flow batteries} OR
{redox flow battery} OR {renewable electricity} OR {renewable energies} OR {renewable energy}
OR {renewable energy consumption} OR {renewable energy policy} OR {renewable energy
resource} OR {renewable energy resources} OR {renewable energy source} OR {renewable energy
sources} OR {renewable resources} OR {rural electrification} OR {silicon solar cell} OR {silicon
solar cells} OR {smart grid} OR {smart grids} OR {smart-grid} OR {smart-grids} OR {smartgrid} OR
{smartgrids} )
) OR (
TITLE( {sodium ion batteries} OR {sodium ion battery} OR {sodium-ion batteries} OR {sodium-ion
battery} OR {solar air heater} OR {solar cell} OR {solar cells} OR {solar collector} OR {solar
collectors} OR {solar cooling} OR {solar energy} OR {solar forecasting} OR {solar hydrogen} OR
{solar irradiance} OR {solar irradiation} OR {solar photovoltaic} OR {solar photovoltaics} OR {solar
pond} OR {solar power} OR {solar pv} OR {solar radiation} OR {solar thermal} OR {solar thermal
energy} OR {solar water heater} OR {solid oxide electrolysis cells} )
) OR (
TITLE( {solid oxide fuel cell} OR {solid oxide fuel cells} OR {solid state batteries} OR {solid state
battery} OR {solid-state batteries} OR {solid-state battery} OR {sustainability assessment} OR
{sustainability transition} OR {sustainability transitions} OR {sustainable development goals} OR
{sustainable energy} OR {syngas} OR {thermal efficiency} OR {thermal energy storage} OR
{thermal storage} OR {thermochemical energy storage} OR {thin film solar cell} OR {thin film solar
cells} OR {vanadium redox flow batteries} OR {vanadium redox flow battery} OR {variable
renewable energy} OR {vehicle-to-grid} OR {vertical axis wind turbine} OR {virtual power plant}
OR {waste heat recovery} )
) OR (
TITLE( {waste to energy} OR {waste-to-energy} OR {water electrolysis} OR {water splitting} OR
{wave energy} OR {wave energy converter} OR {wave energy converters} OR {wave power} OR
{wind energy} OR {wind farm} OR {wind farms} OR {wind power} OR {wind power forecasting}
OR {wind power generation} OR {wind power prediction} OR {wind resource assessment} OR
{wind speed forecasting} OR {wind speed prediction} OR {wind turbine} OR {wind turbine blade}
OR {wind turbines} OR {woody biomass} OR {zn air batteries} OR {zn air battery} OR {zn-air
batteries} )
) OR (
TITLE( {zn-air battery} )
)
AND
(LIMIT-TO ( LANGUAGE,”English” ) )
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30. Sharma, P.; Said, Z.; Kumar, A.; Nižetić, S.; Pandey, A.; Hoang, A.T.; Huang, Z.; Afzal, A.; Li, C.; Le, A.T.; et al. Recent Advances
in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy Fuels 2022, 36, 6626–6658.
[CrossRef]

31. Hosseini, S.; Sarder, M.D. Development of a Bayesian network model for optimal site selection of electric vehicle charging station.
Int. J. Electr. Power Energy Syst. 2019, 105, 110–122. [CrossRef]

32. Laghari, J.A.; Mokhlis, H.; Karimi, M.; Bakar, A.H.A.; Mohamad, H. Computational Intelligence based techniques for islanding
detection of distributed generation in distribution network: A review. Energy Convers. Manag. 2014, 88, 139–152. [CrossRef]

33. Mao, J.; Miao, J.; Lu, Y.; Tong, Z. Machine learning of materials design and state prediction for lithium ion batteries. Chin. J. Chem.
Eng. 2021, 37, 1–11. [CrossRef]

34. Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on
neural network. Int. J. Energy Res. 2022, 46, 5423–5440. [CrossRef]

35. Sharma, P.; Bora, B.J. A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion
Batteries. Batteries 2022, 9, 13. [CrossRef]

https://doi.org/10.1016/j.rser.2016.06.053
https://doi.org/10.1016/j.enconman.2020.112909
https://doi.org/10.3390/en15145053
https://doi.org/10.1016/j.dsm.2022.05.002
https://doi.org/10.1016/j.egyr.2022.10.347
https://doi.org/10.1038/s41467-019-14108-y
https://www.ncbi.nlm.nih.gov/pubmed/31932590
https://doi.org/10.1016/j.renene.2016.12.095
https://doi.org/10.1016/j.renene.2018.10.047
https://doi.org/10.1016/j.apenergy.2018.11.002
https://doi.org/10.1016/j.enconman.2019.111799
https://doi.org/10.1016/j.rser.2015.04.065
https://doi.org/10.1016/j.rser.2013.08.055
https://doi.org/10.1016/j.rser.2015.04.037
https://doi.org/10.1016/j.solener.2019.01.037
https://doi.org/10.1021/acsenergylett.8b00186
https://doi.org/10.1109/ACCESS.2019.2894819
https://doi.org/10.1186/s40327-018-0064-7
https://doi.org/10.1016/j.jclepro.2021.125834
https://doi.org/10.1016/j.renene.2014.11.049
https://doi.org/10.3390/app9091844
https://doi.org/10.1016/j.pecs.2021.100904
https://doi.org/10.1021/acs.energyfuels.2c01006
https://doi.org/10.1016/j.ijepes.2018.08.011
https://doi.org/10.1016/j.enconman.2014.08.024
https://doi.org/10.1016/j.cjche.2021.04.009
https://doi.org/10.1002/er.7545
https://doi.org/10.3390/batteries9010013


Energies 2023, 16, 6974 37 of 45

36. Zhang, Y.; Li, Y.-F. Prognostics and health management of Lithium-ion battery using deep learning methods: A review. Renew.
Sustain. Energy Rev. 2022, 161, 112282. [CrossRef]

37. Cui, Z.; Dai, J.; Sun, J.; Li, D.; Wang, L.; Wang, K. Hybrid Methods Using Neural Network and Kalman Filter for the State of
Charge Estimation of Lithium-Ion Battery. Math. Probl. Eng. 2022, 2022, 9616124. [CrossRef]

38. Ahmed, M.; Zheng, Y.; Amine, A.; Fathiannasab, H.; Chen, Z. The role of artificial intelligence in the mass adoption of electric
vehicles. Joule 2021, 5, 2296–2322. [CrossRef]

39. Ming, W.; Sun, P.; Zhang, Z.; Qiu, W.; Du, J.; Li, X.; Zhang, Y.; Zhang, G.; Liu, K.; Wang, Y.; et al. A systematic review of machine
learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring. Int. J.
Hydrogen Energy 2023, 48, 5197–5228. [CrossRef]

40. Wang, Y.; Seo, B.; Wang, B.; Zamel, N.; Jiao, K.; Adroher, X.C. Fundamentals, materials, and machine learning of polymer
electrolyte membrane fuel cell technology. Energy AI 2020, 1, 100014. [CrossRef]

41. Feng, Z.; Huang, J.; Jin, S.; Wang, G.; Chen, Y. Artificial intelligence-based multi-objective optimisation for proton exchange
membrane fuel cell: A literature review. J. Power Sources 2022, 520, 230808. [CrossRef]

42. Guo, H.; Wang, Q.; Stuke, A.; Urban, A.; Artrith, N. Accelerated Atomistic Modeling of Solid-State Battery Materials with Machine
Learning. Front. Energy Res. 2021, 9, 695902. [CrossRef]

43. Gao, T.; Lu, W. Machine learning toward advanced energy storage devices and systems. iScience 2021, 24, 101936. [CrossRef]
[PubMed]

44. Lv, C.; Zhou, X.; Zhong, L.; Yan, C.; Srinivasan, M.; Seh, Z.W.; Liu, C.; Pan, H.; Li, S.; Wen, Y.; et al. Machine Learning: An
Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2101474.
[CrossRef]

45. Scharf, J.; Chouchane, M.; Finegan, D.P.; Lu, B.; Redquest, C.; Kim, M.-C.; Yao, W.; Franco, A.A.; Gostovic, D.; Liu, Z.; et al.
Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 2022,
17, 446–459. [CrossRef]

46. Nilsson, N. Application of computer artificial intelligence techniques to analyzing the status of typical utility electrical power
plant systems. IEEE Trans. Energy Convers. 1989, 4, 1–8. [CrossRef]

47. Li, S.; O’Hair, E.; Giesselmann, M.G.; Wunsch, D.C. Comparative analysis of regression and neural network models for wind
power. Intell. Eng. Syst. Artif. Neural Netw. 1998, 1998, 675–681.

48. Kalogirou, S.A. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 2001,
5, 373–401. [CrossRef]

49. Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci.
2008, 34, 574–632. [CrossRef]

50. Mellit, A.; Kalogirou, S.A.; Hontoria, L.; Shaari, S. Artificial intelligence techniques for sizing photovoltaic systems: A review.
Renew. Sustain. Energy Rev. 2009, 13, 406–419. [CrossRef]

51. Porter, A.L.; Kongthon, A.; Lu, J.-C. Research profiling: Improving the literature review. Scientometrics 2002, 53, 351–370.
[CrossRef]

52. De Bellis, N. Bibliometrics and Citation Analysis: From the Science Citation Index to Cybermetrics; Scarecrow Press: Lanham, MD,
USA, 2009.

53. Porter, A.L.; Cunningham, S.W. Tech Mining: Exploiting New Technologies for Competitive Advantage; John Wiley & Sons: Hoboken,
NJ, USA, 2004.

54. Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and
guidelines. J. Bus. Res. 2021, 133, 285–296. [CrossRef]

55. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975.
[CrossRef]

56. Porter, A.L.; Garner, J.; Carley, S.F.; Newman, N.C. Emergence scoring to identify frontier R&D topics and key players. Technol.
Forecast. Soc. Change 2019, 146, 628–643.

57. Zhao, X.; Pan, W. The characteristics and evolution of business model for green buildings: A bibliometric approach. Eng. Constr.
Archit. Manag. 2022, 29, 4241–4266. [CrossRef]

58. Chen, W.; Xiang, Y.; Peng, G.; Wang, S.; Guo, Y.; Liu, J. Co-word based energy policy analysis for power system evolution and
investment. Energy Rep. 2022, 8, 167–174. [CrossRef]

59. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]

60. Liu, Y.-H.; Huang, S.-C.; Huang, J.-W.; Liang, W.-C. A particle swarm optimization-based maximum power point tracking
algorithm for PV systems operating under partially shaded conditions. IEEE Trans. Energy Convers. 2012, 27, 1027–1035.
[CrossRef]

61. Sridhar, R.; Vishnuram, P.; Bindu, D.H.; Divya, A. Ant Colony optimization based Maximum Power Point Tracking (MPPT) for
Partially shaded standalone PV System. Int. J. Control Theory Appl. 2016, 9, 8125–8133.

62. Ishaque, K.; Salam, Z.; Mekhilef, S.; Shamsudin, A. Parameter extraction of solar photovoltaic modules using penalty-based
differential evolution. Appl. Energy 2012, 99, 297–308. [CrossRef]

https://doi.org/10.1016/j.rser.2022.112282
https://doi.org/10.1155/2022/9616124
https://doi.org/10.1016/j.joule.2021.07.012
https://doi.org/10.1016/j.ijhydene.2022.10.261
https://doi.org/10.1016/j.egyai.2020.100014
https://doi.org/10.1016/j.jpowsour.2021.230808
https://doi.org/10.3389/fenrg.2021.695902
https://doi.org/10.1016/j.isci.2020.101936
https://www.ncbi.nlm.nih.gov/pubmed/33458608
https://doi.org/10.1002/adma.202101474
https://doi.org/10.1038/s41565-022-01081-9
https://doi.org/10.1109/60.23142
https://doi.org/10.1016/S1364-0321(01)00006-5
https://doi.org/10.1016/j.pecs.2008.01.001
https://doi.org/10.1016/j.rser.2008.01.006
https://doi.org/10.1023/A:1014873029258
https://doi.org/10.1016/j.jbusres.2021.04.070
https://doi.org/10.1016/j.joi.2017.08.007
https://doi.org/10.1108/ECAM-08-2020-0657
https://doi.org/10.1016/j.egyr.2022.08.028
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1109/TEC.2012.2219533
https://doi.org/10.1016/j.apenergy.2012.05.017


Energies 2023, 16, 6974 38 of 45

63. Ramasamy, S.; Jeevananthan, S.; Dash, S.S.; Selvan, T. An intelligent differential evolution based maximum power point tracking
(MPPT) technique for partially shaded photo voltaic (PV) array. Int. J. Adv. Soft Comput. Its Appl. 2014, 6, 1–16.

64. Lian, K.L.; Jhang, J.H.; Tian, I.S. A maximum power point tracking method based on perturb-and-observe combined with particle
swarm optimization. IEEE J. Photovolt. 2014, 4, 626–633. [CrossRef]

65. Farhat, M.; Barambones, O.; Sbita, L. Efficiency optimization of a DSP-based standalone PV system using a stable single input
fuzzy logic controller. Renew. Sustain. Energy Rev. 2015, 49, 907–920. [CrossRef]

66. El-Zoghby, H.M.; Bendary, A.F. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing
of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS). Int. J. Emerg. Electr. Power Syst. 2016, 17, 547–554.
[CrossRef]

67. Titri, S.; Larbes, C.; Toumi, K.Y.; Benatchba, K. A new MPPT controller based on the Ant colony optimization algorithm for
Photovoltaic systems under partial shading conditions. Appl. Soft Comput. J. 2017, 58, 465–479. [CrossRef]

68. Jiang, L.L.; Maskell, D.L.; Patra, J.C. A novel ant colony optimization-based maximum power point tracking for photovoltaic
systems under partially shaded conditions. Energy Build. 2013, 58, 227–236. [CrossRef]

69. Oshaba, A.S.; Ali, E.S.; Abd Elazim, S.M. Speed control of Switched Reluctance Motor fed by PV system using Ant Colony
Optimization Algorithm. WSEAS Trans. Power Syst. 2014, 9, 376–387.

70. Sundareswaran, K.; Sankar, P.; Nayak, P.S.R.; Simon, S.P.; Palani, S. Enhanced energy output from a PV system under partial
shaded conditions through artificial bee colony. IEEE Trans. Sustain. Energy 2015, 6, 198–209. [CrossRef]

71. Benyoucef, A.S.; Chouder, A.; Kara, K.; Silvestre, S.; Sahed, O.A. Artificial bee colony based algorithm for maximum power point
tracking (MPPT) for PV systems operating under partial shaded conditions. Appl. Soft Comput. J. 2015, 32, 38–48. [CrossRef]

72. Díaz Martínez, D.; Trujillo Codorniu, R.; Giral, R.; Vázquez Seisdedos, L. Evaluation of particle swarm optimization techniques
applied to maximum power point tracking in photovoltaic systems. Int. J. Circuit Theory Appl. 2021, 49, 1849–1867. [CrossRef]

73. Sheikh Ahmadi, S.H.; Karami, M.; Gholami, M.; Mirzaei, R. Improving MPPT Performance in PV Systems Based on Integrating
the Incremental Conductance and Particle Swarm Optimization Methods. Iran. J. Sci. Technol. Trans. Electr. Eng. 2021, 46, 27–39.
[CrossRef]

74. Daraban, S.; Petreus, D.; Morel, C. A novel MPPT (maximum power point tracking) algorithm based on a modified genetic
algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. Energy
2014, 74, 374–388. [CrossRef]

75. Gheibi, A.; Mohammadi, S.M.A.; Maghfoori Farsangi, M. A proposed maximum power point tracking by using adaptive fuzzy
logic controller for photovoltaic systems. Sci. Iran. 2016, 23, 1272–1281. [CrossRef]

76. Subiyanto, S.; Mohamed, A.; Hannan, M.A. Intelligent maximum power point tracking for PV system using Hopfield neural
network optimized fuzzy logic controller. Energy Build. 2012, 51, 29–38. [CrossRef]

77. Subiyanto; Mohamed, A.; Shareef, H. Hopfield neural network optimized fuzzy logic controller for maximum power point
tracking in a photovoltaic system. Int. J. Photoenergy 2012, 2012, 798361. [CrossRef]

78. Mohandes, M.A. Modeling global solar radiation using Particle Swarm Optimization (PSO). Sol. Energy 2012, 86, 3137–3145.
[CrossRef]

79. Al-Shamisi, M.H.; Assi, A.H.; Hejase, H.A.N. Artificial neural networks for predicting global solar radiation in Al Ain City—UAE.
Int. J. Green Energy 2013, 10, 443–456. [CrossRef]

80. Guermoui, M.; Rabehi, A.; Benkaciali, S.; Djafer, D. Daily global solar radiation modelling using multi-layer perceptron neural
networks in semi-arid region. Leonardo Electron. J. Pract. Technol. 2016, 15, 35–46.

81. Abdelaziz, R.; Mawloud, G.; Djelloul, D.; Mohamed, Z. Radial basis function neural networks model to estimate global solar
radiation in semi-arid area. Leonardo Electron. J. Pract. Technol. 2015, 14, 177–184.

82. Azimi, R.; Ghayekhloo, M.; Ghofrani, M. A hybrid method based on a new clustering technique and multilayer perceptron neural
networks for hourly solar radiation forecasting. Energy Convers. Manag. 2016, 118, 331–344. [CrossRef]

83. Díaz-Gómez, J.; Parrales, A.; Álvarez, A.; Silva-Martínez, S.; Colorado, D.; Hernández, J.A. Prediction of global solar radiation by
artificial neural network based on a meteorological environmental data. Desalination Water Treat. 2015, 55, 3210–3217. [CrossRef]

84. Ramedani, Z.; Omid, M.; Keyhani, A.; Khoshnevisan, B.; Saboohi, H. A comparative study between fuzzy linear regression and
support vector regression for global solar radiation prediction in Iran. Sol. Energy 2014, 109, 135–143. [CrossRef]

85. Fan, Y.; Wang, P.; Heidari, A.A.; Chen, H.; Mafarja, M. Random reselection particle swarm optimization for optimal design of
solar photovoltaic modules. Energy 2022, 239, 121865. [CrossRef]

86. Li, Y.; Yu, K.; Liang, J.; Yue, C.; Qiao, K. A landscape-aware particle swarm optimization for parameter identification of
photovoltaic models. Appl. Soft Comput. 2022, 131, 109793. [CrossRef]

87. Farayola, A.M.; Sun, Y.; Ali, A. Global maximum power point tracking and cell parameter extraction in Photovoltaic systems
using improved firefly algorithm. Energy Rep. 2022, 8, 162–186. [CrossRef]

88. Ishaque, K.; Salam, Z.; Shamsudin, A.; Amjad, M. A direct control based maximum power point tracking method for photovoltaic
system under partial shading conditions using particle swarm optimization algorithm. Appl. Energy 2012, 99, 414–422. [CrossRef]

89. Bechouat, M.; Younsi, A.; Sedraoui, M.; Soufi, Y.; Yousfi, L.; Tabet, I.; Touafek, K. Parameters identification of a photovoltaic
module in a thermal system using meta-heuristic optimization methods. Int. J. Energy Environ. Eng. 2017, 8, 331–341. [CrossRef]

https://doi.org/10.1109/JPHOTOV.2013.2297513
https://doi.org/10.1016/j.rser.2015.04.123
https://doi.org/10.1515/ijeeps-2016-0049
https://doi.org/10.1016/j.asoc.2017.05.017
https://doi.org/10.1016/j.enbuild.2012.12.001
https://doi.org/10.1109/TSTE.2014.2363521
https://doi.org/10.1016/j.asoc.2015.03.047
https://doi.org/10.1002/cta.2978
https://doi.org/10.1007/s40998-021-00459-0
https://doi.org/10.1016/j.energy.2014.07.001
https://doi.org/10.24200/sci.2016.3895
https://doi.org/10.1016/j.enbuild.2012.04.012
https://doi.org/10.1155/2012/798361
https://doi.org/10.1016/j.solener.2012.08.005
https://doi.org/10.1080/15435075.2011.641187
https://doi.org/10.1016/j.enconman.2016.04.009
https://doi.org/10.1080/19443994.2014.939861
https://doi.org/10.1016/j.solener.2014.08.023
https://doi.org/10.1016/j.energy.2021.121865
https://doi.org/10.1016/j.asoc.2022.109793
https://doi.org/10.1016/j.egyr.2022.09.130
https://doi.org/10.1016/j.apenergy.2012.05.026
https://doi.org/10.1007/s40095-017-0252-6


Energies 2023, 16, 6974 39 of 45

90. Marzband, M.; Ghadimi, M.; Sumper, A.; Domínguez-García, J.L. Experimental validation of a real-time energy management
system using multi-period gravitational search algorithm for microgrids in islanded mode. Appl. Energy 2014, 128, 164–174.
[CrossRef]

91. Radhakrishnan, B.M.; Srinivasan, D.; Mehta, R. Fuzzy-Based Multi-Agent System for Distributed Energy Management in Smart
Grids. Int. J. Uncertain. Fuzziness Knowlege-Based Syst. 2016, 24, 781–803. [CrossRef]

92. Eddy, Y.S.F.; Gooi, H.B.; Chen, S.X. Multi-agent system for distributed management of microgrids. IEEE Trans. Power Syst. 2015,
30, 24–34. [CrossRef]

93. Cha, H.-J.; Won, D.-J.; Kim, S.-H.; Chung, I.-Y.; Han, B.-M. Multi-agent system-based microgrid operation strategy for demand
response. Energies 2015, 8, 14272–14286. [CrossRef]

94. Kuznetsova, E.; Li, Y.-F.; Ruiz, C.; Zio, E.; Ault, G.; Bell, K. Reinforcement learning for microgrid energy management. Energy
2013, 59, 133–146. [CrossRef]

95. Mbuwir, B.V.; Ruelens, F.; Spiessens, F.; Deconinck, G. Battery energy management in a microgrid using batch reinforcement
learning. Energies 2017, 10, 1846. [CrossRef]

96. Kuo, M.-T.; Lu, S.-D. Design and implementation of real-time intelligent control and structure based on multi-agent systems in
microgrids. Energies 2013, 6, 6045–6059. [CrossRef]

97. Khalid, R.; Javaid, N.; Al-zahrani, F.A.; Aurangzeb, K.; Qazi, E.-U.-H.; Ashfaq, T. Electricity load and price forecasting using
jaya-long short term memory (JLSTM) in smart grids. Entropy 2020, 22, 10. [CrossRef]

98. Yousaf, A.; Asif, R.M.; Shakir, M.; Rehman, A.U.; Alassery, F.; Hamam, H.; Cheikhrouhou, O. A novel machine learning-based
price forecasting for energy management systems. Sustainability 2021, 13, 12693. [CrossRef]

99. Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A.Y. Robust Big Data Analytics for Electricity Price Forecasting in the Smart Grid.
IEEE Trans. Big Data 2019, 5, 34–45. [CrossRef]

100. Kim, T.-Y.; Cho, S.-B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81.
[CrossRef]

101. Usman, M.; Ali Khan, Z.; Khan, I.U.; Javaid, S.; Javaid, N. Data Analytics for Short Term Price and Load Forecasting in Smart
Grids using Enhanced Recurrent Neural Network. In Proceedings of the 2019 Sixth HCT Information Technology Trends (ITT),
Ras Al Khaimah, United Arab Emirates, 20–21 November 2019; pp. 84–88.

102. Atef, S.; Eltawil, A.B. A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting
in Smart Grids. In Proceedings of the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA),
Tokyo, Japan, 12–15 April 2019; pp. 603–607.

103. Fatema, I.; Kong, X.; Fang, G. Electricity demand and price forecasting model for sustainable smart grid using comprehensive
long short term memory. Int. J. Sustain. Eng. 2021, 14, 1714–1732. [CrossRef]

104. Yang, H.; Schell, K.R. Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid
datasets. Appl. Energy 2021, 299, 117242. [CrossRef]

105. Kerdphol, T.; Qudaih, Y.S.; Hongesombut, K.; Watanabe, M.; Mitani, Y. Intelligent determination of a battery energy storage
system size and location based on RBF neural networks for microgrids. Int. Rev. Electr. Eng. 2016, 11, 78–87. [CrossRef]

106. Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B. Power Calculation Using RBF Neural Networks to Improve Power Sharing of
Hierarchical Control Scheme in Multi-DER Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1217–1225. [CrossRef]

107. Moradi, M.H.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal distributed
generation location and sizing in distribution systems with fuzzy optimal theory. Int. J. Green Energy 2012, 9, 641–660. [CrossRef]

108. Liao, G.-C. Solve environmental economic dispatch of Smart MicroGrid containing distributed generation system—Using chaotic
quantum genetic algorithm. Int. J. Electr. Power Energy Syst. 2012, 43, 779–787. [CrossRef]

109. Sheng, W.; Liu, K.-Y.; Liu, Y.; Meng, X.; Li, Y. Optimal Placement and Sizing of Distributed Generation via an Improved
Nondominated Sorting Genetic Algorithm II. IEEE Trans. Power Deliv. 2015, 30, 569–578. [CrossRef]

110. Aryani, N.K.; Syai’in, M.; Soeprijanto, A.; Made Yulistya Negara, I. Optimal placement and sizing of distributed generation for
minimize losses in unbalance radial distribution systems using quantum genetic algorithm. Int. Rev. Electr. Eng. 2014, 9, 157–164.
[CrossRef]

111. Ramya, S.; Rajesh, N.B.; Viswanathan, B.; Karthika Vigneswari, B. Particle swarm optimization (PSO) based optimum distributed
generation (DG) location and sizing for voltage stability and loadability enhancement in radial distribution system. Int. Rev.
Autom. Control 2014, 7, 288–293.

112. Remha, S.; Chettih, S.; Arif, S. A novel multi-objective bat algorithm for optimal placement and sizing of distributed generation in
radial distributed systems. Adv. Electr. Electron. Eng. 2017, 15, 736–746. [CrossRef]

113. Xie, S.; Zhai, R.; Liu, X.; Li, B.; Long, K.; Ai, Q. Research article self-adaptive genetic algorithm and fuzzy decision based
multiobjective optimization in microgrid with DGs. Open Electr. Electron. Eng. J. 2016, 10, 46–57. [CrossRef]

114. Javidtash, N.; Jabbari, M.; Niknam, T.; Nafar, M. A novel mixture of non-dominated sorting genetic algorithm and fuzzy method
to multi-objective placement of distributed generations in Microgrids. J. Intell. Fuzzy Syst. 2017, 33, 2577–2584. [CrossRef]

115. López-Lezama, J.M.; Contreras, J.; Padilha-Feltrin, A. Location and contract pricing of distributed generation using a genetic
algorithm. Int. J. Electr. Power Energy Syst. 2012, 36, 117–126. [CrossRef]

116. MacIel, R.S.; Rosa, M.; Miranda, V.; Padilha-Feltrin, A. Multi-objective evolutionary particle swarm optimization in the assessment
of the impact of distributed generation. Electr. Power Syst. Res. 2012, 89, 100–108. [CrossRef]

https://doi.org/10.1016/j.apenergy.2014.04.056
https://doi.org/10.1142/S0218488516500355
https://doi.org/10.1109/TPWRS.2014.2322622
https://doi.org/10.3390/en81212430
https://doi.org/10.1016/j.energy.2013.05.060
https://doi.org/10.3390/en10111846
https://doi.org/10.3390/en6116045
https://doi.org/10.3390/e22010010
https://doi.org/10.3390/su132212693
https://doi.org/10.1109/TBDATA.2017.2723563
https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/10.1080/19397038.2021.1951882
https://doi.org/10.1016/j.apenergy.2021.117242
https://doi.org/10.15866/iree.v11i1.7718
https://doi.org/10.1109/JESTPE.2016.2581762
https://doi.org/10.1080/15435075.2011.625590
https://doi.org/10.1016/j.ijepes.2012.06.040
https://doi.org/10.1109/TPWRD.2014.2325938
https://doi.org/10.15866/iree.v9i1.193
https://doi.org/10.15598/aeee.v15i5.2417
https://doi.org/10.2174/1874129001610010046
https://doi.org/10.3233/JIFS-15934
https://doi.org/10.1016/j.ijepes.2011.10.032
https://doi.org/10.1016/j.epsr.2012.02.018


Energies 2023, 16, 6974 40 of 45

117. Cheng, S.; Chen, M.-Y.; Wai, R.-J.; Wang, F.-Z. Optimal placement of distributed generation units in distribution systems via an
enhanced multi-objective particle swarm optimization algorithm. J. Zhejiang Univ. Sci. C 2014, 15, 300–311. [CrossRef]

118. Farhadi, P.; Ghadimi, N.; Sojoudi, T. Distributed generation allocation in radial distribution systems using various particle swarm
optimization techniques. Prz. Elektrotechniczny 2013, 89, 261–265.

119. Qi, R.; Rasband, C.; Zheng, J.; Longoria, R. Detecting cyber attacks in smart grids using semi-supervised anomaly detection and
deep representation learning. Information 2021, 12, 328. [CrossRef]

120. Aribisala, A.; Khan, M.S.; Husari, G. Machine learning algorithms and their applications in classifying cyber-attacks on a smart
grid network. In Proceedings of the 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), Vancouver, BC, Canada, 27–30 October 2021; pp. 63–69.

121. Zhao, Y.; Jia, X.; An, D.; Yang, Q. LSTM-Based false data injection attack detection in smart grids. In Proceedings of the 2020
35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Zhanjiang, China, 16–18 October 2020;
pp. 638–644.

122. Ashrafuzzaman, M.; Das, S.; Chakhchoukh, Y.; Shiva, S.; Sheldon, F.T. Detecting stealthy false data injection attacks in the smart
grid using ensemble-based machine learning. Comput. Secur. 2020, 97, 101994. [CrossRef]

123. Yang, L.; Zhai, Y.; Li, Z. Deep learning for online AC False Data Injection Attack detection in smart grids: An approach using
LSTM-Autoencoder. J. Netw. Comput. Appl. 2021, 193, 103178. [CrossRef]

124. Prasanna Srinivasan, V.; Balasubadra, K.; Saravanan, K.; Arjun, V.S.; Malarkodi, S. Multi label deep learning classification
approach for false data injection attacks in smart grid. KSII Trans. Internet Inf. Syst. 2021, 15, 2168–2187. [CrossRef]

125. Shafee, A.; Nabil, M.; Mahmoud, M.; Alasmary, W.; Amsaad, F. Detection of Denial of Charge (DoC) Attacks in Smart Grid
Using Convolutional Neural Networks. In Proceedings of the 2021 International Symposium on Networks, Computers and
Communications (ISNCC), Dubai, United Arab Emirates, 31 October–2 November 2021.

126. Monday, H.N.; Li, J.P.; Nneji, G.U.; Yutra, A.Z.; Lemessa, B.D.; Nahar, S.; James, E.C.; Haq, A.U. The Capability of Wavelet
Convolutional Neural Network for Detecting Cyber Attack of Distributed Denial of Service in Smart Grid. In Proceedings of the
2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP),
Chengdu, China, 17–19 December 2021; pp. 413–418.

127. Wang, Z.; Cheng, W.; Li, C. DoS attack detection model of smart grid based on machine learning method. In Proceedings of the
2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020;
pp. 735–738.

128. He, Y.; Mendis, G.J.; Wei, J. Real-Time Detection of False Data Injection Attacks in Smart Grid: A Deep Learning-Based Intelligent
Mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [CrossRef]

129. Kazeem, B.; Eneh, I.I.; Igweh, K. Islanding detection for grid integrated distributed generation using adaptive neuro-fuzzy
inference system. In Proceedings of the IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 23–27 August 2021.

130. Ananda Kumar, S.; Subathra, M.S.P.; Kumar, N.M.; Malvoni, M.; Sairamya, N.J.; Thomas George, S.; Suviseshamuthu, E.S.;
Chopra, S.S. A novel islanding detection technique for a resilient photovoltaic-based distributed power generation system using
a tunable-Q wavelet transform and an artificial neural network. Energies 2020, 13, 4238. [CrossRef]

131. Mogaka, L.O.; Nyakoe, G.N.; Saulo, M.J. Islanding detection in a ress supplied microgrid using pmu-fuzzy logic algorithm. Int. J.
Sci. Technol. Res. 2020, 9, 233–238.

132. Ali, W.; Ulasyar, A.; Mehmood, M.U.; Khattak, A.; Imran, K.; Zad, H.S.; Nisar, S. Hierarchical Control of Microgrid Using IoT and
Machine Learning Based Islanding Detection. IEEE Access 2021, 9, 103019–103031. [CrossRef]

133. Kong, X.; Xu, X.; Yan, Z.; Chen, S.; Yang, H.; Han, D. Deep learning hybrid method for islanding detection in distributed
generation. Appl. Energy 2018, 210, 776–785. [CrossRef]

134. Bukhari, S.B.A.; Mehmood, K.K.; Wadood, A.; Park, H. Intelligent islanding detection of microgrids using long short-term
memory networks. Energies 2021, 14, 5762. [CrossRef]

135. Kermany, S.D.; Joorabian, M.; Deilami, S.; Masoum, M.A.S. Hybrid Islanding Detection in Microgrid with Multiple Connection
Points to Smart Grids Using Fuzzy-Neural Network. IEEE Trans. Power Syst. 2017, 32, 2640–2651. [CrossRef]

136. Chen, K.; Laghrouche, S.; Djerdir, A. Remaining Useful Life Prediction for Fuel Cell Based on Support Vector Regression and
Grey Wolf Optimizer Algorithm. IEEE Trans. Energy Convers. 2021, 37, 778–787. [CrossRef]

137. Raajiv Menon, R.; Vijay Kumar, R.; Pandey, J.K. Realisation of optimal parameters of PEM fuel cell using simple genetic algorithm
(SGA) and simulink modeling. Int. J. Eng. Adv. Technol. 2019, 8, 1542–1548. [CrossRef]

138. Abdi, H.; Messaoudene, N.A.; Kolsi, L.; Belazzoug, M. Multi-Objective Optimization of Operating Parameters of A PEM fuel
cell under flooding conditions using the non-dominated sorting genetic algorithm (NSGA-II). Therm. Sci. 2018, 2018, 3525–3537.
[CrossRef]

139. Erlin, T.; Ebadi, A.G.; Mavaluru, D.; Alshehri, M.; Mohamed, A.A.-B.; Sobhani, B. Parameter derivation of a proton exchange
membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm. Comput. Intell. 2019, 35, 1022–1042. [CrossRef]

140. Yu, J.J.Q.; Hou, Y.; Lam, A.Y.S.; Li, V.O.K. Intelligent fault detection scheme for microgrids with wavelet-based deep neural
networks. IEEE Trans. Smart Grid 2019, 10, 1694–1703. [CrossRef]

141. Guo, C.; Lu, J.; Tian, Z.; Guo, W.; Darvishan, A. Optimization of critical parameters of PEM fuel cell using TLBO-DE based on
Elman neural network. Energy Convers. Manag. 2019, 183, 149–158. [CrossRef]

https://doi.org/10.1631/jzus.C1300250
https://doi.org/10.3390/info12080328
https://doi.org/10.1016/j.cose.2020.101994
https://doi.org/10.1016/j.jnca.2021.103178
https://doi.org/10.3837/tiis.2021.06.013
https://doi.org/10.1109/TSG.2017.2703842
https://doi.org/10.3390/en13164238
https://doi.org/10.1109/ACCESS.2021.3098163
https://doi.org/10.1016/j.apenergy.2017.08.014
https://doi.org/10.3390/en14185762
https://doi.org/10.1109/TPWRS.2016.2617344
https://doi.org/10.1109/TEC.2021.3121650
https://doi.org/10.35940/ijeat.F8157.088619
https://doi.org/10.2298/TSCI180211144A
https://doi.org/10.1111/coin.12230
https://doi.org/10.1109/TSG.2017.2776310
https://doi.org/10.1016/j.enconman.2018.12.088


Energies 2023, 16, 6974 41 of 45

142. Zhang, W.; Wang, N.; Yang, S. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel
cell. Int. J. Hydrog. Energy 2013, 38, 5796–5806. [CrossRef]

143. Vichard, L.; Harel, F.; Ravey, A.; Venet, P.; Hissel, D. Degradation prediction of PEM fuel cell based on artificial intelligence. Int. J.
Hydrog. Energy 2020, 45, 14953–14963. [CrossRef]

144. Cheng, S.-J.; Lin, J.-K. Performance prediction model of solid oxide fuel cell system based on neural network autoregressive with
external input method. Processes 2020, 8, 828. [CrossRef]

145. Li, H.-W.; Xu, B.-S.; Du, C.-H.; Yang, Y. Performance prediction and power density maximization of a proton exchange membrane
fuel cell based on deep belief network. J. Power Sources 2020, 461, 228154. [CrossRef]

146. Chen, H.; Shan, W.; Liao, H.; He, Y.; Zhang, T.; Pei, P.; Deng, C.; Chen, J. Online voltage consistency prediction of proton exchange
membrane fuel cells using a machine learning method. Int. J. Hydrog. Energy 2021, 46, 34399–34412. [CrossRef]

147. Yuan, P.; Liu, S.-F. Transient analysis of a solid oxide fuel cell unit with reforming and water-shift reaction and the building
of neural network model for rapid prediction in electrical and thermal performance. Int. J. Hydrog. Energy 2020, 45, 924–936.
[CrossRef]

148. Wang, X. Remaining Useful Life Prediction of Proton Exchange Membrane Fuel Cell Based on Deep Learning. In Proceedings of
the 2022 IEEE 5th International Conference on Electronics Technology (ICET), Chengdu, China, 13–16 May 2022; pp. 290–296.

149. Zhang, Y.; Huang, Z.; Zhang, C.; Lv, C.; Deng, C.; Hao, D.; Chen, J.; Ran, H. Improved Short-Term Speed Prediction Using
Spatiotemporal-Vision-Based Deep Neural Network for Intelligent Fuel Cell Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 6004–6013.
[CrossRef]

150. Zuo, B.; Cheng, J.; Zhang, Z. Degradation prediction model for proton exchange membrane fuel cells based on long short-term
memory neural network and Savitzky-Golay filter. Int. J. Hydrog. Energy 2021, 46, 15928–15937. [CrossRef]

151. Caponetto, R.; Guarnera, N.; Matera, F.; Privitera, E.; Xibilia, M.G. Application of electrochemical impedance spectroscopy for
prediction of fuel cell degradation by LSTM neural networks. In Proceedings of the 2021 29th Mediterranean Conference on
Control and Automation (MED), Puglia, Italy, 22–25 June 2021; pp. 1064–1069.

152. Zheng, L.; Hou, Y.; Zhang, T.; Pan, X. Performance prediction of fuel cells using long short-term memory recurrent neural
network. Int. J. Energy Res. 2021, 45, 9141–9161. [CrossRef]

153. Xie, J.; Wang, C.; Zhu, W.; Yuan, H. A multi-stage fault diagnosis method for proton exchange membrane fuel cell based on
support vector machine with binary tree. Energies 2021, 14, 6526. [CrossRef]

154. Pei, M.; Zhang, C.; Hu, M.; Jackson, L.; Mao, L. A Fuzzy Logic-based Method for Proton Exchange Membrane Fuel Cell Fault
Diagnosis. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial
Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 1–6.

155. Du, R.; Wei, X.; Wang, X.; Chen, S.; Yuan, H.; Dai, H.; Ming, P. A fault diagnosis model for proton exchange membrane fuel cell
based on impedance identification with differential evolution algorithm. Int. J. Hydrog. Energy 2021, 46, 38795–38808. [CrossRef]

156. Guarino, A.; Spagnuolo, G. Automatic features extraction of faults in PEM fuel cells by a siamese artificial neural network. Int. J.
Hydrog. Energy 2021, 46, 34854–34866. [CrossRef]

157. Zhang, X.; Guo, X. Fault diagnosis of proton exchange membrane fuel cell system of tram based on information fusion and deep
learning. Int. J. Hydrog. Energy 2021, 46, 30828–30840. [CrossRef]

158. Gu, X.; Hou, Z.; Cai, J. Data-based flooding fault diagnosis of proton exchange membrane fuel cell systems using LSTM networks.
Energy AI 2021, 4, 100056. [CrossRef]

159. Gou, Y.; Yang, K.; Xu, W. A Fault diagnosis method of environment-friendly proton exchange membrane fuel cell for vehicles
using deep learning. Fresenius Environ. Bull. 2021, 30, 2931–2942.

160. Shao, M.; Zhu, X.-J.; Cao, H.-F.; Shen, H.-F. An artificial neural network ensemble method for fault diagnosis of proton exchange
membrane fuel cell system. Energy 2014, 67, 268–275. [CrossRef]

161. Yang, W.-J.; Wang, H.-Y.; Lee, D.-H.; Kim, Y.-B. Channel geometry optimization of a polymer electrolyte membrane fuel cell using
genetic algorithm. Appl. Energy 2015, 146, 1–10. [CrossRef]

162. Cai, G.; Liang, Y.; Liu, Z.; Liu, W. Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic
algorithm. Energy 2020, 192, 116670. [CrossRef]

163. Li, W.-Z.; Yang, W.-W.; Wang, N.; Jiao, Y.-H.; Yang, Y.; Qu, Z.-G. Optimization of blocked channel design for a proton exchange
membrane fuel cell by coupled genetic algorithm and three-dimensional CFD modeling. Int. J. Hydrog. Energy 2020, 45,
17759–17770. [CrossRef]

164. Darjat; Sulistyo; Triwiyatno, A.; Sudjadi; Kurniahadi, A. Designing hydrogen and oxygen flow rate control on a solid oxide fuel
cell simulator using the fuzzy logic control method. Processes 2020, 8, 154. [CrossRef]

165. Kang, Y.-R.; Son, J.-C.; Lim, D.-K. Optimal Design of IPMSM for Fuel Cell Electric Vehicles Using Autotuning Elliptical Niching
Genetic Algorithm. IEEE Access 2020, 8, 117405–117412. [CrossRef]

166. Cao, Y.; Yao, H.; Wang, Z.; Jermsittiparsert, K.; Yousefi, N. Optimal Designing and Synthesis of a Hybrid PV/Fuel cell/Wind
System using Meta-heuristics. Energy Rep. 2020, 6, 1353–1362. [CrossRef]

167. Liu, J.; Li, W.; Liu, M.; He, K.; Wang, Y.; Fang, P. Multi-objective aerodynamic design optimisation method of fuel cell centrifugal
impeller using modified NSGA-II algorithm. Appl. Sci. 2021, 11, 7659. [CrossRef]

168. Wang, D.; Bao, J.; Xu, Z.; Koeppel, B.; Marina, O.A.; Noring, A.; Zamarripa-Perez, M.; Iyengar, A.; Eggleton, E.; Schwartz, D.T.;
et al. Machine learning tools set for natural gas fuel cell system design. ECS Trans. 2021, 103, 2283–2292. [CrossRef]

https://doi.org/10.1016/j.ijhydene.2013.01.058
https://doi.org/10.1016/j.ijhydene.2020.03.209
https://doi.org/10.3390/pr8070828
https://doi.org/10.1016/j.jpowsour.2020.228154
https://doi.org/10.1016/j.ijhydene.2021.08.003
https://doi.org/10.1016/j.ijhydene.2019.10.165
https://doi.org/10.1109/TII.2020.3033980
https://doi.org/10.1016/j.ijhydene.2021.02.069
https://doi.org/10.1002/er.6443
https://doi.org/10.3390/en14206526
https://doi.org/10.1016/j.ijhydene.2021.09.126
https://doi.org/10.1016/j.ijhydene.2021.08.024
https://doi.org/10.1016/j.ijhydene.2021.05.137
https://doi.org/10.1016/j.egyai.2021.100056
https://doi.org/10.1016/j.energy.2014.01.079
https://doi.org/10.1016/j.apenergy.2015.01.130
https://doi.org/10.1016/j.energy.2019.116670
https://doi.org/10.1016/j.ijhydene.2020.04.166
https://doi.org/10.3390/pr8020154
https://doi.org/10.1109/ACCESS.2020.3004722
https://doi.org/10.1016/j.egyr.2020.05.017
https://doi.org/10.3390/app11167659
https://doi.org/10.1149/10301.2283ecst


Energies 2023, 16, 6974 42 of 45

169. García, P.; Torreglosa, J.P.; Fernández, L.M.; Jurado, F. Optimal energy management system for stand-alone wind tur-
bine/photovoltaic/ hydrogen/battery hybrid system with supervisory control based on fuzzy logic. Int. J. Hydrog. Energy 2013,
38, 14146–14158. [CrossRef]

170. Zahedi, R.; Ardehali, M.M. Power management for storage mechanisms including battery, supercapacitor, and hydrogen of
autonomous hybrid green power system utilizing multiple optimally-designed fuzzy logic controllers. Energy 2020, 204, 117935.
[CrossRef]

171. Chen, X.; Cao, W.; Zhang, Q.; Hu, S.; Zhang, J. Artificial Intelligence-Aided Model Predictive Control for a Grid-Tied Wind-
Hydrogen-Fuel Cell System. IEEE Access 2020, 8, 92418–92430. [CrossRef]

172. Nasr, N.; Hafez, H.; El Naggar, M.H.; Nakhla, G. Application of artificial neural networks for modeling of biohydrogen production.
Int. J. Hydrogen Energy 2013, 38, 3189–3195. [CrossRef]

173. Ozbas, E.E.; Aksu, D.; Ongen, A.; Aydin, M.A.; Ozcan, H.K. Hydrogen production via biomass gasification, and modeling by
supervised machine learning algorithms. Int. J. Hydrog. Energy 2019, 44, 17260–17268. [CrossRef]

174. Nasrudin, N.A.; Jewaratnam, J.; Hossain, M.A.; Ganeson, P.B. Performance comparison of feedforward neural network training
algorithms in modelling microwave pyrolysis of oil palm fibre for hydrogen and biochar production. Asia-Pac. J. Chem. Eng. 2020,
15, e2388. [CrossRef]

175. Bicer, Y.; Dincer, I.; Aydin, M. Maximizing performance of fuel cell using artificial neural network approach for smart grid
applications. Energy 2016, 116, 1205–1217. [CrossRef]

176. Adeniyi, A.G.; Ighalo, J.O.; Marques, G. Utilisation of machine learning algorithms for the prediction of syngas composition from
biomass bio-oil steam reforming. Int. J. Sustain. Energy 2021, 40, 310–325. [CrossRef]

177. Li, Y.; Yan, L.; Yang, B.; Gao, W.; Farahani, M.R. Simulation of biomass gasification in a fluidized bed by artificial neural network
(ANN). Energy Sources Part Recovery Util. Environ. Eff. 2018, 40, 544–548. [CrossRef]

178. Shenbagaraj, S.; Sharma, P.K.; Sharma, A.K.; Raghav, G.; Kota, K.B.; Ashokkumar, V. Gasification of food waste in supercritical
water: An innovative synthesis gas composition prediction model based on Artificial Neural Networks. Int. J. Hydrog. Energy
2021, 46, 12739–12757. [CrossRef]

179. Li, J.; Pan, L.; Suvarna, M.; Wang, X. Machine learning aided supercritical water gasification for H2-rich syngas production with
process optimization and catalyst screening. Chem. Eng. J. 2021, 426, 131285. [CrossRef]

180. Rahman, I.; Vasant, P.M.; Singh, B.S.M.; Abdullah-Al-Wadud, M. On the performance of accelerated particle swarm optimization
for charging plug-in hybrid electric vehicles. Alex. Eng. J. 2016, 55, 419–426. [CrossRef]

181. Kang, Q.; Feng, S.; Zhou, M.; Ammari, A.C.; Sedraoui, K. Optimal Load Scheduling of Plug-In Hybrid Electric Vehicles via
Weight-Aggregation Multi-Objective Evolutionary Algorithms. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2557–2568. [CrossRef]

182. Chen, Z.; Xiong, R.; Wang, K.; Jiao, B. Optimal energy management strategy of a plug-in hybrid electric vehicle based on a particle
swarm optimization algorithm. Energies 2015, 8, 3661–3678. [CrossRef]

183. Vasant, P.M.; Rahman, I.; Singh, B.S.M.; Abdullah-Al-Wadud, M. Optimal power allocation scheme for plug-in hybrid electric
vehicles using swarm intelligence techniques. Cogent Eng. 2016, 3, 1203083. [CrossRef]

184. Lan, T.; Kang, Q.; An, J.; Yan, W.; Wang, L. Sitting and sizing of aggregator controlled park for plug-in hybrid electric vehicle
based on particle swarm optimization. Neural Comput. Appl. 2013, 22, 249–257. [CrossRef]

185. Rahman, I.; Vasant, P.M.; Mahinder Singh, B.S.; Abdullah-Al-Wadud, M. Swarm Intelligence-Based Smart Energy Allocation
Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles. Math. Probl. Eng. 2015, 2015, 620425. [CrossRef]

186. Sadeghi, S.; Jahangir, H.; Vatandoust, B.; Golkar, M.A.; Ahmadian, A.; Elkamel, A. Optimal bidding strategy of a virtual power
plant in day-ahead energy and frequency regulation markets: A deep learning-based approach. Int. J. Electr. Power Energy Syst.
2021, 127, 106646. [CrossRef]

187. Mozaffari, A.; Vajedi, M.; Azad, N.L. A robust safety-oriented autonomous cruise control scheme for electric vehicles based on
model predictive control and online sequential extreme learning machine with a hyper-level fault tolerance-based supervisor.
Neurocomputing 2015, 151, 845–856. [CrossRef]

188. Karfopoulos, E.L.; Hatziargyriou, N.D. A multi-agent system for controlled charging of a large population of electric vehicles.
IEEE Trans. Power Syst. 2013, 28, 1196–1204. [CrossRef]

189. Xu, L.; Wang, J.; Chen, Q. Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy
neural network battery model. Energy Convers. Manag. 2012, 53, 33–39. [CrossRef]

190. Chen, Z.; Wang, F.; Feng, Q. Cost-benefit evaluation for building intelligent systems with special consideration on intangible
benefits and energy consumption. Energy Build. 2016, 128, 484–490. [CrossRef]

191. He, Z.; Gao, M.; Ma, G.; Liu, Y.; Chen, S. Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian
Networks. J. Power Sources 2014, 267, 576–583. [CrossRef]

192. Kang, L.; Zhao, X.; Ma, J. A new neural network model for the state-of-charge estimation in the battery degradation process.
Appl. Energy 2014, 121, 20–27. [CrossRef]

193. Klass, V.; Behm, M.; Lindbergh, G. A support vector machine-based state-of-health estimation method for lithium-ion batteries
under electric vehicle operation. J. Power Sources 2014, 270, 262–272. [CrossRef]

194. Tang, C.; Yuan, Z.; Liu, G.; Jiang, S.; Hao, W. Acoustic emission analysis of 18,650 lithium-ion battery under bending based on
factor analysis and the fuzzy clustering method. Eng. Fail. Anal. 2020, 117, 104800. [CrossRef]

https://doi.org/10.1016/j.ijhydene.2013.08.106
https://doi.org/10.1016/j.energy.2020.117935
https://doi.org/10.1109/ACCESS.2020.2994577
https://doi.org/10.1016/j.ijhydene.2012.12.109
https://doi.org/10.1016/j.ijhydene.2019.02.108
https://doi.org/10.1002/apj.2388
https://doi.org/10.1016/j.energy.2016.10.050
https://doi.org/10.1080/14786451.2020.1803862
https://doi.org/10.1080/15567036.2016.1270372
https://doi.org/10.1016/j.ijhydene.2021.01.122
https://doi.org/10.1016/j.cej.2021.131285
https://doi.org/10.1016/j.aej.2015.11.002
https://doi.org/10.1109/TITS.2016.2638898
https://doi.org/10.3390/en8053661
https://doi.org/10.1080/23311916.2016.1203083
https://doi.org/10.1007/s00521-011-0687-2
https://doi.org/10.1155/2015/620425
https://doi.org/10.1016/j.ijepes.2020.106646
https://doi.org/10.1016/j.neucom.2014.10.011
https://doi.org/10.1109/TPWRS.2012.2211624
https://doi.org/10.1016/j.enconman.2011.06.003
https://doi.org/10.1016/j.enbuild.2016.07.021
https://doi.org/10.1016/j.jpowsour.2014.05.100
https://doi.org/10.1016/j.apenergy.2014.01.066
https://doi.org/10.1016/j.jpowsour.2014.07.116
https://doi.org/10.1016/j.engfailanal.2020.104800


Energies 2023, 16, 6974 43 of 45

195. Weng, C.; Cui, Y.; Sun, J.; Peng, H. On-board state of health monitoring of lithium-ion batteries using incremental capacity
analysis with support vector regression. J. Power Sources 2013, 235, 36–44. [CrossRef]

196. Jin, F.; Yong-Ling, H. Adaptive mutation particle swarm optimized BP neural network in state-of-charge estimation of Li-ion
battery for electric vehicles. Bulg. Chem. Commun. 2015, 47, 904–912.

197. Hou, Z.; Xie, P.; Hou, J. The state of charge estimation of power lithium battery based on RBF neural network optimized by
particle swarm optimization. J. Appl. Sci. Eng. 2017, 20, 483–490. [CrossRef]

198. Li, X.; Yuan, C.; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support
vector regression. Energy 2020, 203, 117852. [CrossRef]

199. Chandran, V.; Patil, C.K.; Karthick, A.; Ganeshaperumal, D.; Rahim, R.; Ghosh, A. State of charge estimation of lithium-ion battery
for electric vehicles using machine learning algorithms. World Electr. Veh. J. 2021, 12, 38. [CrossRef]

200. Li, S.; Zhou, Y.; Li, R.; Zhao, X. Online Lithium Battery Fault Diagnosis based on Least Square Support Vector Machine Optimized
by Ant Lion Algorithm. Int. J. Perform. Eng. 2020, 16, 1637–1645. [CrossRef]

201. Zhao, X.; Xuan, D.; Zhao, K.; Li, Z. Elman neural network using ant colony optimization algorithm for estimating of state of
charge of lithium-ion battery. J. Energy Storage 2020, 32, 101789. [CrossRef]

202. Hossain Lipu, M.S.; Hannan, M.A.; Hussain, A.; Ayob, A.; Saad, M.H.M.; Muttaqi, K.M. State of charge estimation in lithium-ion
batteries: A neural network optimization approach. Electronics 2020, 9, 1546. [CrossRef]

203. Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction
of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [CrossRef]

204. Bian, C.; He, H.; Yang, S.; Huang, T. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long
short-term memory encoder-decoder architecture. J. Power Sources 2020, 449, 227558. [CrossRef]

205. Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.-Y.; Kim, H. LSTM-Based Battery Remaining Useful Life Prediction with Multi-Channel
Charging Profiles. IEEE Access 2020, 8, 20786–20798. [CrossRef]

206. Tian, Y.; Lai, R.; Li, X.; Xiang, L.; Tian, J. A combined method for state-of-charge estimation for lithium-ion batteries using a long
short-term memory network and an adaptive cubature Kalman filter. Appl. Energy 2020, 265, 114789. [CrossRef]

207. Yang, F.; Zhang, S.; Li, W.; Miao, Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy 2020, 201,
117664. [CrossRef]

208. Chen, W.; Qi, W.; Li, Y.; Zhang, J.; Zhu, F.; Xie, D.; Ru, W.; Luo, G.; Song, M.; Tang, F. Ultra-Short-Term Wind Power Prediction
Based on Bidirectional Gated Recurrent Unit and Transfer Learning. Front. Energy Res. 2021, 9, 808116. [CrossRef]

209. Shen, S.; Sadoughi, M.; Li, M.; Wang, Z.; Hu, C. Deep convolutional neural networks with ensemble learning and transfer learning
for capacity estimation of lithium-ion batteries. Appl. Energy 2020, 260, 114296. [CrossRef]

210. Fasahat, M.; Manthouri, M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term
Memory neural networks. J. Power Sources 2020, 469, 228375. [CrossRef]

211. Qu, X.; Yu, Y.; Zhou, M.; Lin, C.-T.; Wang, X. Jointly dampening traffic oscillations and improving energy consumption with
electric, connected and automated vehicles: A reinforcement learning based approach. Appl. Energy 2020, 257, 114030. [CrossRef]

212. Machado, F.; Trovão, J.P.F.; Antunes, C.H. Effectiveness of supercapacitors in pure electric vehicles using a hybrid metaheuristic
approach. IEEE Trans. Veh. Technol. 2016, 65, 29–36. [CrossRef]

213. Sarve, A.N.; Varma, M.N.; Sonawane, S.S. Response surface optimization and artificial neural network modeling of biodiesel
production from crude mahua (Madhuca indica) oil under supercritical ethanol conditions using CO2 as co-solvent. RSC Adv.
2015, 5, 69702–69713. [CrossRef]

214. Betiku, E.; Omilakin, O.R.; Ajala, S.O.; Okeleye, A.A.; Taiwo, A.E.; Solomon, B.O. Mathematical modeling and process parameters
optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta
indica) seed oil biodiesel synthesis. Energy 2014, 72, 266–273. [CrossRef]

215. Betiku, E.; Ajala, S.O. Modeling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa
paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology.
Ind. Crops Prod. 2014, 53, 314–322. [CrossRef]

216. Prakash Maran, J.; Priya, B. Comparison of response surface methodology and artificial neural network approach towards efficient
ultrasound-assisted biodiesel production from muskmelon oil. Ultrason. Sonochem. 2015, 23, 192–200. [CrossRef] [PubMed]

217. Nassef, A.M.; Sayed, E.T.; Rezk, H.; Abdelkareem, M.A.; Rodriguez, C.; Olabi, A.G. Fuzzy-modeling with Particle Swarm
Optimization for enhancing the production of biodiesel from Microalga. Energy Sources Part Recovery Util. Environ. Eff. 2019, 41,
2094–2103. [CrossRef]

218. Ogaga Ighose, B.; Adeleke, I.A.; Damos, M.; Adeola Junaid, H.; Ernest Okpalaeke, K.; Betiku, E. Optimization of biodiesel
production from Thevetia peruviana seed oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm and
response surface methodology. Energy Convers. Manag. 2017, 132, 231–240. [CrossRef]

219. Piloto, R.; Sanchez, Y.; Goyos, L.; Verhelst, S. Prediction of cetane number of biodiesel from its fatty acid ester composition using
artificial neural networks. Renew. Energy Power Qual. J. 2013, 1, 83–87. [CrossRef]

220. Piloto-Rodríguez, R.; Sánchez-Borroto, Y.; Lapuerta, M.; Goyos-Pérez, L.; Verhelst, S. Prediction of the cetane number of biodiesel
using artificial neural networks and multiple linear regression. Energy Convers. Manag. 2013, 65, 255–261. [CrossRef]

221. Miraboutalebi, S.M.; Kazemi, P.; Bahrami, P. Fatty Acid Methyl Ester (FAME) composition used for estimation of biodiesel cetane
number employing random forest and artificial neural networks: A new approach. Fuel 2016, 166, 143–151. [CrossRef]

https://doi.org/10.1016/j.jpowsour.2013.02.012
https://doi.org/10.6180/jase.2017.20.4.10
https://doi.org/10.1016/j.energy.2020.117852
https://doi.org/10.3390/wevj12010038
https://doi.org/10.23940/ijpe.20.10.p15.16371645
https://doi.org/10.1016/j.est.2020.101789
https://doi.org/10.3390/electronics9091546
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1016/j.jpowsour.2019.227558
https://doi.org/10.1109/ACCESS.2020.2968939
https://doi.org/10.1016/j.apenergy.2020.114789
https://doi.org/10.1016/j.energy.2020.117664
https://doi.org/10.3389/fenrg.2021.808116
https://doi.org/10.1016/j.apenergy.2019.114296
https://doi.org/10.1016/j.jpowsour.2020.228375
https://doi.org/10.1016/j.apenergy.2019.114030
https://doi.org/10.1109/TVT.2015.2390919
https://doi.org/10.1039/C5RA11911A
https://doi.org/10.1016/j.energy.2014.05.033
https://doi.org/10.1016/j.indcrop.2013.12.046
https://doi.org/10.1016/j.ultsonch.2014.10.019
https://www.ncbi.nlm.nih.gov/pubmed/25457517
https://doi.org/10.1080/15567036.2018.1549171
https://doi.org/10.1016/j.enconman.2016.11.030
https://doi.org/10.24084/repqj11.224
https://doi.org/10.1016/j.enconman.2012.07.023
https://doi.org/10.1016/j.fuel.2015.10.118


Energies 2023, 16, 6974 44 of 45

222. Wong, P.K.; Wong, K.I.; Vong, C.M.; Cheung, C.S. Modeling and optimization of biodiesel engine performance using kernel-based
extreme learning machine and cuckoo search. Renew. Energy 2015, 74, 640–647. [CrossRef]

223. Hosseini, S.H.; Taghizadeh-Alisaraei, A.; Ghobadian, B.; Abbaszadeh-Mayvan, A. Artificial neural network modeling of perfor-
mance, emission, and vibration of a CI engine using alumina nano-catalyst added to diesel-biodiesel blends. Renew. Energy 2020,
149, 951–961. [CrossRef]

224. Shukri, M.R.; Rahman, M.M.; Ramasamy, D.; Kadirgama, K. Artificial neural network optimization modeling on engine
performance of diesel engine using biodiesel fuel. Int. J. Automot. Mech. Eng. 2015, 11, 2332–2347. [CrossRef]

225. Alves, J.C.L.; Poppi, R.J. Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support
vector machines (SVM). Talanta 2013, 104, 155–161. [CrossRef] [PubMed]

226. Filgueiras, P.R.; Alves, J.C.L.; Poppi, R.J. Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using
near infrared spectroscopy and synergy interval support vector regression. Talanta 2014, 119, 582–589. [CrossRef] [PubMed]

227. Alviso, D.; Artana, G.; Duriez, T. Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic
programming. Fuel 2020, 264, 116844. [CrossRef]

228. Sharma, P. Gene expression programming-based model prediction of performance and emission characteristics of a diesel engine
fueled with linseed oil biodiesel/diesel blends: An artificial intelligence approach. Energy Sources Part A Recovery Util. Environ.
Eff. 2020, 45, 8751–8770. [CrossRef]

229. Singh, N.K.; Singh, Y.; Sharma, A.; Rahim, E.A. Prediction of performance and emission parameters of Kusum biodiesel based
diesel engine using neuro-fuzzy techniques combined with genetic algorithm. Fuel 2020, 280, 118629. [CrossRef]

230. de Giorgi, M.G.; Campilongo, S.; Ficarella, A.; Congedo, P.M. Comparison between wind power prediction models based on
wavelet decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN). Energies
2014, 7, 5251–5272. [CrossRef]

231. Kong, X.; Liu, X.; Shi, R.; Lee, K.Y. Wind speed prediction using reduced support vector machines with feature selection.
Neurocomputing 2015, 169, 449–456. [CrossRef]

232. Yuan, X.; Tan, Q.; Lei, X.; Yuan, Y.; Wu, X. Wind power prediction using hybrid autoregressive fractionally integrated moving
average and least square support vector machine. Energy 2017, 129, 122–137. [CrossRef]

233. Ren, Y.; Suganthan, P.N.; Srikanth, N. A Novel Empirical Mode Decomposition with Support Vector Regression for Wind Speed
Forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1793–1798. [CrossRef]

234. Liu, Z. Wind speed forecasting model based on fuzzy manifold support vector machine. J. Inf. Comput. Sci. 2014, 11, 2387–2395.
[CrossRef]

235. Yu, C.; Li, Y.; Zhang, M. An improved Wavelet Transform using Singular Spectrum Analysis for wind speed forecasting based on
Elman Neural Network. Energy Convers. Manag. 2017, 148, 895–904. [CrossRef]

236. Zhao, Y.; Zhao, X.; Hu, H. Wind speed forecasting based on chaotic particle swarm optimization support vector machine. Int. J.
Appl. Math. Stat. 2013, 48, 347–355.

237. Osório, G.J.; Matias, J.C.O.; Catalão, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system
combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75,
301–307. [CrossRef]

238. Zeng, J.; Qiao, W. Short-term wind power prediction using a wavelet support vector machine. IEEE Trans. Sustain. Energy 2012, 3,
255–264. [CrossRef]

239. Lu, N.; Liu, Y. Application of support vector machine model in wind power prediction based on particle swarm optimization.
Discrete Contin. Dyn. Syst. Ser. S 2015, 8, 1267–1276. [CrossRef]

240. Wu, Q.; Peng, C. A least squares support vector machine optimized by cloud-based evolutionary algorithm for wind power
generation prediction. Energies 2016, 9, 585. [CrossRef]

241. Wang, C.; Wu, J.; Wang, J.; Hu, Z. Short-term wind speed forecasting using the data processing approach and the support vector
machine model optimized by the improved cuckoo search parameter estimation algorithm. Math. Probl. Eng. 2016, 2016, 4896854.
[CrossRef]

242. Zhang, J.; Wu, Y.; Guo, Y.; Wang, B.; Wang, H.; Liu, H. A hybrid harmony search algorithm with differential evolution for
day-ahead scheduling problem of a microgrid with consideration of power flow constraints. Appl. Energy 2016, 183, 791–804.
[CrossRef]

243. Siano, P.; Mokryani, G. Assessing wind turbines placement in a distribution market environment by using particle swarm
optimization. IEEE Trans. Power Syst. 2013, 28, 3852–3864. [CrossRef]

244. Pookpunt, S.; Ongsakul, W. Optimal placement of wind turbines within wind farm using binary particle swarm optimization
with time-varying acceleration coefficients. Renew. Energy 2013, 55, 266–276. [CrossRef]

245. Pookpunt, S.; Ongsakul, W. Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai
district, Southern Thailand. Energy Convers. Manag. 2016, 108, 160–180. [CrossRef]

246. Ekonomou, L.; Lazarou, S.; Chatzarakis, G.E.; Vita, V. Estimation of wind turbines optimal number and produced power in a
wind farm using an artificial neural network model. Simul. Model. Pract. Theory 2012, 21, 21–25. [CrossRef]

247. Massan, S.-U.-R.; Wagan, A.I.; Shaikh, M.M.; Abro, R. Wind turbine micrositing by using the firefly algorithm. Appl. Soft Comput.
J. 2015, 27, 450–456. [CrossRef]

https://doi.org/10.1016/j.renene.2014.08.075
https://doi.org/10.1016/j.renene.2019.10.080
https://doi.org/10.15282/ijame.11.2015.15.0196
https://doi.org/10.1016/j.talanta.2012.11.033
https://www.ncbi.nlm.nih.gov/pubmed/23597903
https://doi.org/10.1016/j.talanta.2013.11.056
https://www.ncbi.nlm.nih.gov/pubmed/24401458
https://doi.org/10.1016/j.fuel.2019.116844
https://doi.org/10.1080/15567036.2020.1829204
https://doi.org/10.1016/j.fuel.2020.118629
https://doi.org/10.3390/en7085251
https://doi.org/10.1016/j.neucom.2014.09.090
https://doi.org/10.1016/j.energy.2017.04.094
https://doi.org/10.1109/TNNLS.2014.2351391
https://doi.org/10.12733/jics20103420
https://doi.org/10.1016/j.enconman.2017.05.063
https://doi.org/10.1016/j.renene.2014.09.058
https://doi.org/10.1109/TSTE.2011.2180029
https://doi.org/10.3934/dcdss.2015.8.1267
https://doi.org/10.3390/en9080585
https://doi.org/10.1155/2016/4896854
https://doi.org/10.1016/j.apenergy.2016.09.035
https://doi.org/10.1109/TPWRS.2013.2273567
https://doi.org/10.1016/j.renene.2012.12.005
https://doi.org/10.1016/j.enconman.2015.11.002
https://doi.org/10.1016/j.simpat.2011.09.009
https://doi.org/10.1016/j.asoc.2014.09.048


Energies 2023, 16, 6974 45 of 45

248. Tria, F.Z.; Srairi, K.; Benchouia, M.T.; Mahdad, B.; Benbouzid, M.E.H. An hybrid control based on fuzzy logic and a second order
sliding mode for MPPT in wind energy conversion systems. Int. J. Electr. Eng. Inform. 2016, 8, 711–726. [CrossRef]

249. Bouzekri, A.; Allaoui, T.; Denai, M.; Mihoub, Y. Artificial intelligence-based fault tolerant control strategy in wind turbine systems.
Int. J. Renew. Energy Res. 2017, 7, 652–659.

250. Soufi, Y.; Kahla, S.; Bechouat, M. Feedback linearization control based particle swarm optimization for maximum power point
tracking of wind turbine equipped by PMSG connected to the grid. Int. J. Hydrog. Energy 2016, 41, 20950–20955. [CrossRef]

251. Pelletier, F.; Masson, C.; Tahan, A. Wind turbine power curve modelling using artificial neural network. Renew. Energy 2016, 89,
207–214. [CrossRef]

252. Morshedizadeh, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.-K.; Saif, M. Application of imputation techniques and Adaptive
Neuro-Fuzzy Inference System to predict wind turbine power production. Energy 2017, 138, 394–404. [CrossRef]

253. Clifton, A.; Kilcher, L.; Lundquist, J.K.; Fleming, P. Using machine learning to predict wind turbine power output. Environ. Res.
Lett. 2013, 8, 024009. [CrossRef]

254. Yang, Z.-X.; Wang, X.-B.; Zhong, J.-H. Representational learning for fault diagnosis of wind turbine equipment: A multi-layered
extreme learning machines approach. Energies 2016, 9, 379. [CrossRef]

255. Hang, J.; Zhang, J.; Cheng, M. Application of multi-class fuzzy support vector machine classifier for fault diagnosis of wind
turbine. Fuzzy Sets Syst. 2016, 297, 128–140. [CrossRef]

256. Laouti, N.; Othman, S.; Alamir, M.; Sheibat-Othman, N. Combination of model-based observer and support vector machines for
fault detection of wind turbines. Int. J. Autom. Comput. 2014, 11, 274–287. [CrossRef]

257. Civelek, Z.; Lüy, M.; Çam, E.; Mamur, H. A new fuzzy logic proportional controller approach applied to individual pitch angle
for wind turbine load mitigation. Renew. Energy 2017, 111, 708–717. [CrossRef]

258. Meghni, B.; Dib, D.; Azar, A.T. A second-order sliding mode and fuzzy logic control to optimal energy management in wind
turbine with battery storage. Neural Comput. Appl. 2017, 28, 1417–1434. [CrossRef]

259. Van, T.L.; Nguyen, T.H.; Lee, D.-C. Advanced Pitch Angle Control Based on Fuzzy Logic for Variable-Speed Wind Turbine
Systems. IEEE Trans. Energy Convers. 2015, 30, 578–587. [CrossRef]

260. Mondal, S.; Bhattacharya, A.; Nee Dey, S.H. Multi-objective economic emission load dispatch solution using gravitational search
algorithm and considering wind power penetration. Int. J. Electr. Power Energy Syst. 2013, 44, 282–292. [CrossRef]

261. Ramadan, H.S.; Bendary, A.F.; Nagy, S. Particle swarm optimization algorithm for capacitor allocation problem in distribution
systems with wind turbine generators. Int. J. Electr. Power Energy Syst. 2017, 84, 143–152. [CrossRef]

262. Ferreira, P.M.; Ruano, A.E.; Silva, S.; Conceição, E.Z.E. Neural networks based predictive control for thermal comfort and energy
savings in public buildings. Energy Build. 2012, 55, 238–251. [CrossRef]

263. Yu, W.; Li, B.; Jia, H.; Zhang, M.; Wang, D. Application of multi-objective genetic algorithm to optimize energy efficiency and
thermal comfort in building design. Energy Build. 2015, 88, 135–143. [CrossRef]

264. Yang, M.-D.; Chen, Y.-P.; Lin, Y.-H.; Ho, Y.-F.; Lin, J.-Y. Multiobjective optimization using nondominated sorting genetic algorithm-
II for allocation of energy conservation and renewable energy facilities in a campus. Energy Build. 2016, 122, 120–130. [CrossRef]

265. Naji, S.; Keivani, A.; Shamshirband, S.; Alengaram, U.J.; Jumaat, M.Z.; Mansor, Z.; Lee, M. Estimating building energy
consumption using extreme learning machine method. Energy 2016, 97, 506–516. [CrossRef]

266. Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support Vector Regression
(SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [CrossRef]

267. Jain, R.K.; Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family residential buildings using
support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy.
Appl. Energy 2014, 123, 168–178. [CrossRef]

268. Gomes, L.; Faria, P.; Morais, H.; Vale, Z.; Ramos, C. Distributed, agent-based intelligent system for demand response program
simulation in smart grids. IEEE Intell. Syst. 2014, 29, 56–65. [CrossRef]

269. Wen, Z.; O’Neill, D.; Maei, H. Optimal demand response using device-based reinforcement learning. IEEE Trans. Smart Grid 2015,
6, 2312–2324. [CrossRef]

270. Ahmadi, P.; Almasi, A.; Shahriyari, M.; Dincer, I. Multi-objective optimization of a combined heat and power (CHP) system for
heating purpose in a paper mill using evolutionary algorithm. Int. J. Energy Res. 2012, 36, 46–63. [CrossRef]

271. Haghrah, A.; Nazari-Heris, M.; Mohammadi-Ivatloo, B. Solving combined heat and power economic dispatch problem using real
coded genetic algorithm with improved Mühlenbein mutation. Appl. Therm. Eng. 2016, 99, 465–475. [CrossRef]

272. Mohammadkhani, F.; Khalilarya, S.; Mirzaee, I. Exergy and exergoeconomic analysis and optimization of diesel engine based
Combined Heat and Power (CHP) system using genetic algorithm. Int. J. Exergy 2013, 12, 139–161. [CrossRef]

273. Yazdi, B.A.; Yazdi, B.A.; Ehyaei, M.A.; Ahmadi, A. Optimization of micro combined heat and power gas turbine by genetic
algorithm. Therm. Sci. 2015, 19, 207–218. [CrossRef]

274. Gopalakrishnan, H.; Kosanovic, D. Operational planning of combined heat and power plants through genetic algorithms for
mixed 0-1 nonlinear programming. Comput. Oper. Res. 2015, 56, 51–67. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.15676/ijeei.2016.8.4.1
https://doi.org/10.1016/j.ijhydene.2016.06.010
https://doi.org/10.1016/j.renene.2015.11.065
https://doi.org/10.1016/j.energy.2017.07.034
https://doi.org/10.1088/1748-9326/8/2/024009
https://doi.org/10.3390/en9060379
https://doi.org/10.1016/j.fss.2015.07.005
https://doi.org/10.1007/s11633-014-0790-9
https://doi.org/10.1016/j.renene.2017.04.064
https://doi.org/10.1007/s00521-015-2161-z
https://doi.org/10.1109/TEC.2014.2379293
https://doi.org/10.1016/j.ijepes.2012.06.049
https://doi.org/10.1016/j.ijepes.2016.04.041
https://doi.org/10.1016/j.enbuild.2012.08.002
https://doi.org/10.1016/j.enbuild.2014.11.063
https://doi.org/10.1016/j.enbuild.2016.04.027
https://doi.org/10.1016/j.energy.2015.11.037
https://doi.org/10.1016/j.apenergy.2017.03.034
https://doi.org/10.1016/j.apenergy.2014.02.057
https://doi.org/10.1109/MIS.2013.2
https://doi.org/10.1109/TSG.2015.2396993
https://doi.org/10.1002/er.1781
https://doi.org/10.1016/j.applthermaleng.2015.12.136
https://doi.org/10.1504/IJEX.2013.053387
https://doi.org/10.2298/TSCI121218141Y
https://doi.org/10.1016/j.cor.2014.11.001

	Introduction 
	Literature Review 
	Applications of Artificial Intelligence on Sustainable Energy 
	Dominant Theme Identification and Co-Word Analysis 

	Materials and Methods 
	Workflow Overview 
	Study Design 
	Design of the Search String 
	Data Collection 
	Data Selection 
	Initial Design 
	Exclusion 
	Final Design 

	Data Collection and Preparation 
	Data Analysis, Visualization, and Interpretation 

	Results 
	Performance Metrics 
	General Performance Metrics 
	Performance Trend Metrics 
	Authors’ Performance Metrics 
	Organizations’ Performance Metrics 
	Countries’ Performance Metrics 
	Sources’ Performance Metrics 

	Determination of the Dominant Themes Using Co-Word Analysis 
	Keywords Preparation 
	Selection of the Minimum Number of Keyword Occurrences 
	Clusters of Author Keywords Obtained for Each Year 


	Discussion 
	Analysis of Dominant Themes 
	Solar Energy 
	Smart Grids and Microgrids 
	Fuel Cells 
	Hydrogen 
	Electric Vehicles 
	Biofuels 
	Wind Power 
	Management, Planning, and Operation of Energy Systems 

	Current Dominant Themes 

	Conclusions, Limitations, and Future Work 
	Conclusions 
	Limitations 
	Future Work 

	Appendix A
	References

