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Abstract: The article focuses on the study of the impact of the level of training of security control
operators (SCOs) at airports on the energy consumption of the passenger baggage control process.
With the constant growing emphasis on security at airports, the intensification of training processes
for security personnel, especially those dealing with baggage control, has become very dynamic. An
essential aspect in times of sustainable development is optimizing all kinds of processes (including
training processes) to reduce energy consumption. The analysis of the demand for energy used to
conduct this type of training and the impact of the operator’s training level on the energy consumption
of the control process are entirely ignored and have not been the subject of research by scientists so far.
Therefore, this is a research gap that the authors are trying to fill in this article. The impact of safety
system operator training levels on ensuring optimal energy efficiency was critically analyzed. The
added value of the article is the authors’ model assessing the influence of the level of training of the
SCO on the energy consumption of the control process. The effects of the frequency, duration and level
of operator training on energy consumption rates were investigated. The authors’ activities aimed to
identify the most energy-efficient approaches to training without compromising its quality and, thus,
the safety of passengers. The article discusses potential strategies for minimizing energy use and
draws conclusions that can help airport administrations and training providers adopt sustainable
and energy-efficient training practices.

Keywords: energy consumption; fuzzy logic; training; security control operator; SCO

1. Introduction

Over the past two decades, there has been a significant increase in primary energy
consumption and CO2 emissions globally by 50% [1]. Although there is no certainty about
economic progress, forecasts indicate a significant escalation of global energy demand, with
an expected increase of one-third from 2015 to 2040 [1,2]. This surge in energy consumption
is expected to have a significant environmental impact in the coming years and could
potentially lead to energy supply problems in some regions.

Typically, energy consumers are divided into three main segments: industrial, trans-
port and other. Air transport is one of the most essential elements in the transport segment.

Airports are characterized by significant energy consumption, which is regulated
by many factors. The nature of airport energy consumption is inherently unpredictable,
non-linear and constantly changing. In academic circles, attention is often drawn to the
energy consumption of terminal structures [1–4], even though they are only one (but a
crucial) segment of the entire airport. As such, extensive exploration of the factors affecting
airport energy efficiency has excellent potential for future research.

The primary energy consumption at airports can be divided into two parts: the
aviation part and the land part. The aviation part includes mainly airport lighting and
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radio navigation equipment. In turn, the airport terminal building dominates the land,
partly due to its role as a central hub for passenger and cargo handling and the number of
facilities necessary for its efficient operation. Therefore, innovative research methods to
reduce energy consumption in such facilities are essential.

Electricity is the primary source for meeting the basic energy needs of airports and
ensuring the safe handling of air traffic. Typically, electricity is sourced from the commercial
grid through utilities. However, recent trends and the scientific literature [5–9] reveal the
emergence of alternative energy sources such as combined heat and power plants (CHP) and
renewable energy technologies. Nevertheless, given their different attributes and potential
implications for air traffic safety, it is essential to establish rules that will harmonize airport
operations with these alternative energy sources for the foreseeable future.

Nowadays, the issue of reducing energy consumption is the highest priority for airport
administrators. The key strategies can be divided into the following groups: improvements
to management systems and energy infrastructure, improvements to HVAC (heating, venti-
lation, air conditioning) and lighting systems, and the introduction of modern operational
management systems to improve and optimize the energy efficiency of airports. In addition,
using models and simulations to analyze airport energy consumption can play a crucial role
in reducing consumption [3,4]. This requires the development of precise methodologies
that cater to the unique environment of airports, with an emphasis that extends beyond the
issue of terminal buildings. Moreover, while energy efficiency indicators (EEIs) provide
energy managers with data on energy efficiency, they lack insight into the reasons for
efficient or inefficient energy use. Therefore, there is a need to develop new analytical
methods adapted to the specificity of airports, which will enable a comprehensive look at
the issues of sustainable energy development in airports.

2. Literature Review

Optimization of the energy consumption management process to reduce its levels in
air transport is widely discussed in the scientific literature. A comprehensive review of
this issue was carried out in [2]. Taking into account the analyses contained in this work
and supplementing them with the most recent research results, a clear research gap can be
noticed in the research on the area of energy consumption in terminal passenger service,
and in particular, in all kinds of aspects related to the security control of passenger luggage.
It seems necessary to place appropriate emphasis on modeling and simulating energy
consumption to ensure a high level of passenger safety while maintaining the principles of
sustainable development in terms of energy consumption. It should be emphasized that
the analyses included the entire airport and terminal buildings, with a dominant emphasis
on HVAC systems [10–13]. Some studies have taken a more focused approach to specific
topics. Ma et al. [8] studied the correlation between indoor airflow and indoor space to
enhance indoor comfort. Parker et al. [9] aimed to reduce the carbon footprint by expanding
the glass roof at a specific airport. Meanwhile, Gowresuunker et al. [14] evaluated the
effectiveness of displacement ventilation in an airport terminal.

A group of articles also focuses on forecasting energy consumption in airport terminals.
In this regard, Chen [15] used the objective Markov model, Huang et al. [16] used neural
networks and Fan et al. [17] constructed a model based on probability density functions.

Mambo et al. [18] observed that the dynamic regulation of the internal environment
by the flight schedule could bring improvements of up to 25%. Works [19–21] similarly
recognized the possibility of dynamic thermal comfort and lighting management in various
terminal spaces. In the literature, only a single paper refers to the energy consumption
of terminal operations, and only two [3,4] directly correlate with the analysis of energy
consumption by operating systems. In the work [4], a simulation model was developed
that allows for the simultaneous analysis of the efficiency of the security checkpoint at
the airport and energy consumption per serviced passenger. In the work [3], a simulation
model was used to analyze the sensitivity of energy consumption by the baggage handling
system at the airport to a change in the resource allocation strategy.
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To sum up, a critical gap in the existing literature is the lack of research documenting
the energy consumption of passenger service procedures, in particular baggage security
checks. So far, attention has focused on other aspects. An extensive literature review
on modeling passenger service processes is presented in [22]. The review found that the
main factors were the efficiency of the process and the quality of passenger service. This
approach has worked, and recent research confirms that these elements remain central to
research efforts, as exemplified by the stochastic passenger boarding model developed to
increase process efficiency [23].

In addition, uncertainty is considered when planning operations in airport termi-
nals [24], and optimizing service processes remains the goal [25]. Optimal allocation of
resources is often used to increase process efficiency [26,27].

Airports’ energy management is a crucial matter from both economic and ecological
perspectives. One of the primary challenges in this field is that the data about the total en-
ergy consumption of airports are classified as sensitive information, significantly restricting
their public accessibility. Therefore, researchers and analysts must rely solely on estimated
data to understand which airport processes consume the most energy.

A particularly scrutinized area is baggage control. This process is time-consuming and
demands a substantial amount of energy, contributing a significant portion of the airport’s
overall energy balance. According to certain analyses cited in references [10,11,14], this
process can account for 15% to even 20% of the annual energy consumption in terminal
buildings, especially in large airports. Lighting and cooling have the largest share of energy
consumption in airports. They account for 46% of total energy consumption. Hence, it is not
a negligibly small value compared to the total consumption, indicating that undertaking
analyses concerning efficient control process management is advisable.

Nevertheless, the developed solutions omit the aspects directly affecting energy con-
sumption. This article tries to fill this gap. It aims to develop a model focusing on aspects
that have so far been overlooked in research, i.e., the impact of the level of training of
baggage screening operators at airports on the amount of energy consumption in the entire
screening process.

3. The Process of Training Security Control Operators

The selection of appropriate personnel is crucial at passenger security checkpoints.
SCOs play various roles, with the most important being the security screening of indi-
viduals and their carry-on luggage. Other duties include access control, monitoring the
environment of the checkpoint, and inspecting gates and vehicles [21]. All these tasks
require professional training. Before an SCO is assigned to a control position, they must
undergo a cycle of preparatory training. The details and scope of each stage are pre-
sented in Figure 1. The training cycle concludes with certification, required by national
or international regulatory bodies [28–35]. Obtaining a certificate and starting work does
not mean the end of training. This process is ongoing and requires continuous improve-
ment, especially in the use of emerging technical innovations and the introduction of
modern technologies.

The implementation of advanced scanning systems, image analysis software, and
other technological tools requires operators to keep up with changes and effectively use
these tools in their work.
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Figure 1. The stages of the training system for SCOs.

4. Methodology

The main research problem presented in this study is to create a model and an expert
system that will allow us to assess the impact of the SCO training level at the airport on the
energy consumption of the entire control process.

The proposed SCO training level assessment system is based on integrated knowledge
of the critical skills of the operator. Preliminary research indicates the subjectivity of
assessments and the difficulty in combining various indicators into one coherent assessment
system, which inspired the authors to build such a system. To understand the complexity
of the problem, the research concept is presented in Figure 2.
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The above observations are the basis for adopting the concept in which the system for
assessing the level of training and energy consumption of the inspection process will be
based on an appropriate mathematical model that considers and integrates factors relevant
to the assessment. In this situation, it is required to use methods that consider the imprecise
and uncertain nature of the input variables [36–38]. In our study, we use the fuzzy set
theory and its extension, the theory of fuzzy reasoning [39].

Fuzzy logic, being an extension of classical two-valued logic, is an indispensable tool
in solving many engineering problems for various reasons. First and foremost, it allows for
the modeling of uncertainty and imprecision, which often occur in real technical systems.
It also enables the simulation of human reasoning, which naturally relies on fuzzy concepts
rather than strict values. In the context of complex systems, fuzzy logic facilitates better
management and control, which is crucial given the high level of complexity present in
many systems (an example being the analyzed passenger service system at airports).

Moreover, it allows for the optimization of systems by considering various degrees of
membership in fuzzy sets, which practically translates to the adaptability of systems, en-
abling them to learn and adapt to changing environmental conditions. Another advantage
is the potential reduction in costs associated with designing and implementing new solu-
tions in the field of system management or reducing the costs of using technical facilities.
This, in turn, promotes the responsiveness of systems, which can react more effectively to
changes in the environment, even when working with incomplete or imprecise data. It is
also worth emphasizing the intuitiveness of designing systems using fuzzy logic, which
allows for the use of linguistic variables that are closer to the human way of thinking. This
compatibility with human reasoning means that fuzzy logic can be easily integrated with
other computational intelligence techniques, creating hybrid intelligent systems.

Lastly, it cannot be overlooked that fuzzy logic has already found wide applications in
practical technical systems, including industrial automation, robotics and risk modeling,
which attests to its effectiveness in solving real technical problems.

Schematically, the fuzzy inference system is shown in Figure 3.
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Figure 3. Fuzzy inference system.

The input of the fuzzy block is given the unfuzzy values from observations or mea-
surements. In the blurring block, based on specific membership functions (MFs), they are
associated with the values of linguistic variables, such as, for example, small, medium and
large. The issue of determining the number of values of linguistic variables covering the
entire space of consideration of a given variable, their form and the degree of overlapping of
individual values must be determined each time when building a fuzzy reasoning system.
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It is worth noting here that each unfuzzy input value may correspond to several linguistic
variables with different degrees of membership. The fuzzy values are the input for the
inference block. This block uses a fuzzy rule base, which, in the case of the methods used in
this case, were created by experts: practitioners in the field of security control at the airport.
Fuzzy inference rules are conditional sentences: IF premise THEN conclusion. Based on
the fuzzy premises and all the rules met, the inference block determines the conclusion as a
fuzzy linguistic variable. This conclusion is the input to the sharpening block, which, based
on a defined MF, associates the fuzzy quantity with the original non-fuzzy quantity. It is
the result of the fuzzy reasoning system. It is usually a number from some specific range.

Our solution was prepared in MATLAB version R2023a. The prepared fuzzy reasoning
system uses local models of the Mamdani type. The fuzzy logic modules in MATLAB
offer two analytical systems based on different approaches: Sugeno and Mamdani. The
differences between these approaches are very significant. The Mamdani approach, which is
more traditional, involves formulating fuzzy rules in a linguistic context, allowing for more
intuitive system modeling. In contrast, the Sugeno approach focuses on formulating rules
in a more mathematical context, facilitating precise modeling of functional relationships. In
practice, Mamdani systems utilize membership functions described with words such as
low, medium or high, while Sugeno systems operate on membership functions described
by mathematical equations. This makes the Sugeno approach more oriented towards
precision and mathematical analysis, while Mamdani focuses on linguistic interpretation.
Moreover, Mamdani systems are generally easier to optimize and offer better computational
performance compared to Sugeno systems. The Mamdani approach is often preferred due
to its intuitiveness and ease of interpretation, making it more accessible to individuals
without a deep mathematical background. It is important to note that both approaches
have their place in designing fuzzy systems, and the choice between them depends on
specific project requirements and the designer’s personal preferences.

Mamdani-type systems allow the user to define input and output variables, determin-
ing their ranges and membership functions, which is a fundamental step in constructing
a fuzzy system. Additionally, they can create various membership functions, including
triangular, trapezoidal or Gaussian functions, enabling precise modeling of fuzzy relation-
ships. A crucial element is also the ability to formulate fuzzy rules linguistically, facilitating
the use of expert experience in the system design process. This tool also allows for the
editing of existing rules, adapting them to changing project requirements. Users can utilize
visualization options, including membership function plots and response surface charts,
to better understand and analyze the system’s operation. Within this tool, users also have
the opportunity to simulate the functioning of the fuzzy system, observing its reactions
to various inputs, which is essential for system verification and validation before imple-
mentation. A more advanced feature is the ability to optimize the built model, including
adjusting membership functions and rules to achieve better results. After completing the
design process, the fuzzy system can be exported to various formats or integrated with
other systems in MATLAB, enhancing its utility in different application contexts. It is also
worth noting the intuitive graphical user interface, which facilitates the design of fuzzy
systems without the need to write code. Finally, Mamdani systems in MATLAB support
various defuzzification methods, including the centroid, bisector, weighted average or
maximum methods, allowing for controlled and user-expectation-aligned system output
generation. Consequently, this tool represents a comprehensive solution for designing and
analyzing fuzzy systems.

The Mamdani model performs its functions in the following stages:

1. Blurring: at this stage, the input values are transformed into fuzzy values using the
MF. Each input variable has a specific MF that assigns to the input values the degree
of membership of particular fuzzy sets.

2. Aggregation of premises (combining conditions): the conditions of individual rules
are combined. If a given rule has several conditions, a fuzzy operator (e.g., T-norm)
combines the degrees of membership of the conditions into one value.
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3. Activation of rules: based on the aggregation value of the premises, the relevant rules
are activated. Activation assigns a truth value (membership degree) to each rule. The
truth value of a rule is equal to the aggregation value of the premises for the rule.

4. Activation of output sets: after activating the rules, the output sets are assigned
activation values based on the conclusion of the rules. For each rule, the degree
of membership for the conclusion is computed based on the rule’s truth value. In
practice, this means “trimming” the MF of the output sets to the truth values of
the rules.

5. Aggregation of output sets: all activated output sets are combined into one output set
using the aggregation operator (e.g., maximum, minimum or simultaneous minimum
and maximum—MIN/MAX); details are in Figure 4.

6. Sharpening: transforming the fuzzy output set into one numerical value.
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Figure 4. Functioning of FIS of Mamdani model using MIN/MAX operator for two activated output
sets into one output (triangle MF).

The analysis of the problem of evaluating the level of training of SCOs drew attention
to the need to include in the model and to have a thorough knowledge of the operators’
skills in assessing X-ray images at security checkpoints regarding various categories of
prohibited items. There are four categories: sharp objects, explosives, firearms and other
prohibited items and substances. This observation was used to create a model. Thanks
to this, it was possible to obtain an unambiguous assessment of the operator’s level of
training and to analyze partial results within four categories of hazardous objects.

A unique test stand was constructed to obtain the data necessary to build our fuzzy
model. The core of the stand was the system that SCOs use daily. Such a station has not only
been equipped with all the functionalities of a typical baggage control system at the control
station. It was additionally equipped with the operator’s eyeball tracking system, the
so-called eye-tracker system. Additional equipment allowed us to obtain data to conduct
analyses that are impossible to estimate in traditional systems, e.g., the time duration that
the operator focuses their eyes on a dangerous object and many other parameters. The
details will be discussed in Section 5. Figure 5 shows the appearance of the test stand
equipped with the eye-tracker system.
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5. The Model for Assessing the Impact of the SCO Training Level on the Energy
Consumption of the Baggage Control Process

The model for assessing the impact of the SCO training level on the energy consump-
tion of the control process was implemented as a fuzzy reasoning system. The analysis of
the issues allowed us to propose a general structure for the model. Due to the nature of the
problem, it has a hierarchical structure in which the outputs of the first-level fuzzy local
models are inputs to the second-level fuzzy local models. Thanks to this, it was possible to
obtain and analyze partial results, which are crucial for the conducted analyses. The model
also includes the possibility of calibrating partial grades (and thus also the final grade)
by taking into account the importance factor (issue importance) determined by experts.
Systems of this type are based on the knowledge created on the basis of measurements and
observations, as well as the knowledge of domain experts.

Details are shown in Figure 6.
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5.1. First-Level Local Models

Different mapping details on the analysis images characterize the dangerous ele-
ment/object categories. Research shows that security control operators’ training levels may
vary for the four listed categories. However, the feature of the work of SCOs, consisting
of looking for patterns in images of X-rayed baggage, consistent with typical images of
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prohibited items, is common to all categories. Therefore, the constructed model has four
first-level linguistic input variables. They include the following indicators:

1. Mean time to correctly indicate a dangerous item (MTCI): the average time expressed
in seconds (s) necessary for the operator to indicate a dangerous object in the image,
calculated based on the operator’s eye movements tracked by the eye-tracker system;

2. Zone analysis order (colors) (ZAO): a dimensionless value, determined based on the
operator’s eye movements tracked by the eye-tracker system (details in the description
of the variable);

3. Correct effectiveness indication (CEI): a variable describing the effectiveness of de-
tection by the operator of objects, materials and substances considered prohibited;
expressed as a percentage (%), calculated based on the quotient of correctly indicated
dangerous objects among all those hidden in the images;

4. Mean eye focus time on dangerous item (MEFT): the average time expressed in
seconds (s) that the operator focused on a dangerous object hidden in the image,
calculated based on the operator’s eye movements tracked by the eye-tracker system.

5.1.1. Mean Time to Correctly Indicate a Dangerous Item (MTCI)

The critical point affecting the overall throughput of an airport is the security check-
point, where operators must quickly screen people and baggage effectively. The time it
takes to handle a single passenger depends, among other things, on the level of training and
experience of the security control operators. It is assumed that this time should not exceed
15 s. The research stage showed that, in the case of experienced operators, we rarely have a
situation where the operator needs more than 11 s to analyze the image and thus indicate the
prohibited element. Therefore, when describing a linguistic variable, the limiting value is 11
s (measured by tracking eye movements using the eye-tracker system). If the operator does
not make a binding decision within this time, it means that they cannot assess the contents
of the baggage, and proper intensive training is necessary at a certain level of difficulty.
In real life, this factor is much more critical regarding potential consequences. Incorrectly
conducted assessments may lead to a threat to the health or life of traveling passengers.

The linguistic variable “Mean time to correctly indicate a dangerous item” is repre-
sented by three values that describe the assessment of the level of training in the context
of detecting prohibited items from this group: fast, medium and slow. Figure 7 shows the
fuzzy sets describing the values for the linguistic variable “Mean time to correctly indicate a
dangerous item”. These values are specified in seconds, allowing values to be read directly
from the stand. Based on the research conducted on a control group of experienced SCOs,
the following descriptions were adopted for MFs:
◦ Fast: time less than 7 s;
◦ Medium: time in the range of 7 ÷ 11 s;
◦ Slow: time over 11 s.
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5.1.2. Zone Analysis Order (Colors) (ZAO)

The conducted research showed that, in the case of experienced operators, there is a
specific pattern in the field of image analysis.

However, to fully understand the contents described in this section, it seems necessary
to discuss how the image is obtained during the X-ray luggage screening with an RTG
device. As a result of the screening, we obtain a layered image: the color represents the
type of material, and the color intensity indicates its thickness. The thicker the object, the
greater its intensity. In the basic view, the image color depends on the atomic number of
the chemical elements constituting the object and is, accordingly:

1. Orange, for elements with an atomic number Z: 1 < Z < 10;
2. Green, for elements with an atomic number Z: 11 < Z < 18;
3. Blue, for elements with an atomic number Z: Z > 19.

The first group (orange color) includes objects such as light elements, hydrogen,
carbon, nitrogen, oxygen and its chemical compounds, organic materials including many
explosives, plastics like acrylic, paper, textiles, food items, wood and water. The second
group (green color) includes medium–heavy objects: pure aluminum, sodium, chlorine,
table salt, etc. The third group includes, among others, thin elements: metals, titanium,
chrome, iron, nickel, copper, zinc, tin, silver, etc.

Depending on the thickness of the screened material, the color will be more or less
intense, as the force with which the radiation is absorbed is visible in the form of corre-
spondingly higher (thicker objects) or lower (thinner objects) color intensity. Objects that
completely absorb radiation will appear black in the image. Similarly, when overlaying
several layers of different objects, the color intensity increases.

The essential dangerous items detected in carry-on luggage include:

1. Liquids and other organic substances: the view depends on the material density,
mainly visible in the primary image in green or orange;

2. Metal knives/gun parts: mainly visible in the image in the form of a blue shade of
varying intensity;

3. Imitations of safe objects: no dominant color, the view depends on the material the
object is made of.

Eye-tracking software can determine the share of the operator’s gaze focused on
individual colors in the image and, therefore, on dangerous objects. By analyzing how the
operator’s eye focus is positioned during image analysis, we can also determine the order
in which individual colors are tracked, the mean time to correctly indicate a dangerous
item and the mean eye focus time on a dangerous item.

Each operator first analyzes the blue areas, i.e., areas where weapons or sharp objects
may be hidden. If they do not notice the shapes characteristic of prohibited items, they
analyze the orange areas in search of explosive materials. At the very end, without indi-
cating prohibited items, an analysis is carried out of the other colors in the image. The
eye-tracker system enables accurate tracking of the eyeball movement and thus enables
accurate analysis of zones and areas of observation. The linguistic variable “Zone analysis
order” is represented by three values related to the observation time where the gaze is
focused on the danger zones: short, medium and long. The analysis is carried out using the
eye-tracker software, and the data are obtained directly from the stand. Figure 8 shows the
MF describing the values for the linguistic variable “Zone analysis order”. These values
are expressed as a percentage. Based on the research conducted on a control group of
experienced SCOs, the following descriptions were adopted for individual MFs:
◦ Short: less than 20% of observation time focused on hazardous areas;
◦ Medium: in the range of 21 ÷ 80% of observation time focused on hazardous areas;
◦ Long: over 80% of observation time focused on hazardous areas.
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5.1.3. Correct Effectiveness Indication (CEI)

SCOs are expected to perform their task of detecting prohibited items and substances
in baggage with a predetermined success rate. The minimum efficiency required from
operators during their monthly examinations should not be lower than 75%. Of course, in
the case of experienced operators, it is required that they achieve the best possible result,
confirming the appropriate preparation for work at the security checkpoint, following the
principle: the higher the detection rate, the greater the level of security guaranteed by the
control point. In real-life conditions, where an employee experiences time pressure or a
sense of great responsibility for passengers and is subject to constant control by supervisory
authorities, achieving 100% efficiency in detecting prohibited items and substances in
passengers’ luggage is almost impossible. Therefore, a threshold of 90% was adopted for
the calculation, with the described linguistic variable as high efficiency. The linguistic
variable “Correct effectiveness indication” is represented by three values that describe the
assessment of the level of training in the context of detecting prohibited items from this
group: unacceptable, medium and high. Figure 9 shows the MF describing the values for
the linguistic variable “Correct indication effectiveness”. Based on research conducted on a
group of experienced SCOs, the following descriptions were adopted for individual MFs:
◦ Unacceptable: score less than or equal to 75%;
◦ Medium: score in the range of 76 ÷ 95%;
◦ High: score over 95%.
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5.1.4. Mean Eye Focus Time on Dangerous Item (MEFT)

The eye-tracker system allows you to add up the time the operator focuses his eyes on
the prohibited item when analyzing the baggage image. The times read directly from the
eye-tracker system described the linguistic variable “Mean eye focus time on dangerous
item”. Research has shown that in the case of experienced operators, these times are similar
(but consistently lower) than the average times for correctly indicating a dangerous object.
This proves that an experienced operator detects a prohibited item quickly and spends the
remaining time ensuring it is right before making a decision. This variable is represented by
three values that describe the assessment of the level of training in the context of detecting
prohibited items from this group: short, medium and long. Figure 10 shows the fuzzy sets’
MFs describing the values for the linguistic variable “Mean eye focus time on dangerous
item”. These values are specified in seconds, allowing them to be read directly from
the stand.

Energies 2023, 16, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 9. The form of the MF of the input linguistic variable “Correct effectiveness indication”. 

5.1.4. Mean Eye Focus Time on Dangerous Item (MEFT) 

The eye-tracker system allows you to add up the time the operator focuses his eyes 

on the prohibited item when analyzing the baggage image. The times read directly from 

the eye-tracker system described the linguistic variable “Mean eye focus time on danger-

ous item”. Research has shown that in the case of experienced operators, these times are 

similar (but consistently lower) than the average times for correctly indicating a danger-

ous object. This proves that an experienced operator detects a prohibited item quickly and 

spends the remaining time ensuring it is right before making a decision. This variable is 

represented by three values that describe the assessment of the level of training in the 

context of detecting prohibited items from this group: short, medium and long. Figure 10 

shows the fuzzy sets’ MFs describing the values for the linguistic variable “Mean eye focus 

time on dangerous item”. These values are specified in seconds, allowing them to be read 

directly from the stand. 

Based on the research conducted on a control group of experienced SCOs, the follow-

ing descriptions were adopted for individual MFs: 

o Short: less than 7 s; 

o Average: in the range of 7 ÷ 11 s; 

o Long: above 11 s. 

 

Figure 10. The form of the MF of the input linguistic variable “Mean eye focus time on dangerous 

item”. 

5.1.5. The First-Level Local Output Variable: Evaluation of the Effectiveness of  

Hazard Identification 
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dangerous item”.

Based on the research conducted on a control group of experienced SCOs, the following
descriptions were adopted for individual MFs:
◦ Short: less than 7 s;
◦ Average: in the range of 7 ÷ 11 s;
◦ Long: above 11 s.

5.1.5. The First-Level Local Output Variable: Evaluation of the Effectiveness of
Hazard Identification

The first-level local output variable, which is also the second-level input variable, de-
scribes the assessment of the level of training in the context of detecting forbidden objects
in images using four values: beginner, intermediate, advanced and experienced. Figure 11
shows the MF describing the values for the linguistic variables “Evaluation of the effectiveness
of hazard identification”. These values are expressed as percentages on a scale from 0 to 100,
which allows (after the defuzzification process) to compare them and perform mathematical
operations directly. Based on the research conducted on a control group of experienced SCOs,
the following descriptions were adopted for individual membership functions:
◦ Beginner: total score less than or equal to 50%;
◦ Intermediate: total score in the range of 51 ÷ 65%;
◦ Advanced: total score in the range of 66 ÷ 80%;
◦ Experienced: total score above 80%.
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5.2. Second-Level Local Models

The outputs of the first-level local models determine the training level of the SCO
for each category related to image analysis to detect prohibited items. On this basis, in
the second-level local model, the final, aggregated assessment of the SCO training level
is made, considering the energy consumption of the entire process (variable Summary
Evaluation—SE). We have two input variables at the second local level: Evaluation of
hazard identification (EoE) effectiveness and Energy Consumption (EC). The first one is
described in Section 5.1.

5.2.1. Energy Consumption (EC)

The “Energy Consumption” variable directly relates to the X-ray machine used to scan
the baggage. In all our analyses, we considered an X-ray device with a smaller inspection
tunnel size (100 × 100 cm and a standard penetration of 35 mm): scanner low power
(LP). The advantage of this type of device is its small size and limited demand for energy
consumption. The device consumes 0.262 kWh in the standby mode and 0.725 kWh in the
operating mode (scanner). Due to the specificity of the magazine, it would be necessary
to precisely describe the method of estimating the MF for the “Energy Consumption”
variable. Research conducted by the team revealed that during one shift (lasting 8 h), an
SCO participates in five sessions consisting of analyzing 50 images in each session. The
operator analyzes 250 images during one workday, so the device is in permanent working
mode. An experienced operator needs about 7 s to analyze a single image; an inexperienced
operator may even need 15 s. The total working time of an experienced SCO is 1750 s for
the task, and that of an inexperienced SCO is 3750 s. During this time, the former consumes
0.352 kWh (due to the very fast analysis of the device, it is constantly in scanner mode), and
the latter consumes 0.497 kWh of energy (0.352 kWh from device operation and 0.145 kWh
from the device being in standby during image analysis by an inexperienced operator).
On this basis, limited values related to energy consumption during operation were adopted:
low as up to 0.370 kWh; medium as 0.371–0.480 kWh; and high as above 0.480 kWh. The
details are in Figure 12.
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5.2.2. Final Output Variable: Summary Evaluation (SE)

The final assessment of the level of SCO training is made using a five-point scale
with three linguistic variables. To enable an unambiguous assessment, three levels of
advancement were assumed, taking into account both purely technical aspects related to
the security screening process and the impact of training on the level of energy consumption
during the baggage screening process itself. Adopting a five-point rating scale with three
linguistic variables greatly facilitates the construction of FIS engine rules (see Section 5.3)
and limits their number, facilitating the analysis of results obtained during empirical or
simulation tests. Based on research conducted on a control group of experienced SCOs, the
following descriptions were adopted for individual MFs (details in Figure 13):
◦ Weak: sum of points below 1;
◦ Average: total score in the range of 1 ÷ 4;
◦ Experienced: total score above 4.
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5.3. Knowledge Base: FIS (Fuzzy Inference System) Rules

In the case of the presented model of assessing the SCO training level on the energy
consumption of the control process, the knowledge base, which is a set of rules of the
“engine” of the blurring system (FIS), is of a hybrid nature because it was created based
on two different approaches. The first was acquiring knowledge from experts: specialists
in creating and operating airport security control systems. The experts defined only part
of the rules presenting the most important relationships between the input variables
and the assessment of the level of training for a given category of prohibited items. In
particular, experts indicated the importance of individual factors (input variables) in the
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final assessment of the level of training. The remaining rules were generated automatically
(and then verified for correctness) by the capabilities of the Fuzzy Logic Designer module
of the MATLAB environment. The proposed method may involve machine learning
algorithms such as unsupervised, supervised learning, optimization or genetic algorithms.
Automatic rule generation can help fill in missing rules, optimize existing rules, or adapt
the model to changing conditions.

A well-trained operator is an operator who quickly and effectively eliminates danger-
ous items from luggage, thus minimizing the energy consumption of devices supporting
the screening process. In the case of creating the rules of the knowledge base, special
attention was paid to the effectiveness of the correct indication of dangerous items. It is
impossible to obtain the “experienced” level of training without sufficiently high efficiency.
In the case of the presented model, 81 rules have been defined at the first level and 12 at the
second level. An example fragment of the knowledge base is presented in Figure 14.
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6. Results

Experimental SCO tests were conducted to verify the built model’s correct functioning.
In total, 18 operators were tested. The research was carried out in three groups:
◦ Operators with 0 ÷ 24 months of experience in the position;
◦ Operators with 24 ÷ 90 months of experience in the position;
◦ Operators with 90 ÷ 150 months of experience in the position.

The tests were carried out on a built test stand using eye-tracking technology
(see Section 4). As in real conditions, each operator was tested in threat recognition during
five sessions with 50 images in each session. In total, each SCO analyzed 250 images. The
images of baggage with (or without) threats that the operators analyzed were previously
prepared by selecting groups of 50 photos from a database of almost 10,000 photos (the
database was built as part of the project in cooperation with the airport). Each subsequent
session was characterized by a greater difficulty scale (from the easiest to the most difficult).
All operators were tested on the same group of images (displayed randomly within one
session) to compare results. The test bench software allows you to read the total duration
of an entire session (the total analysis time of 250 images). Based on this time, a script
written in MATLAB calculated the energy consumption for a real X-ray station used in
an airport for baggage screening. Details on how the time is calculated are described in
Section 5.2, in the discussion of the Energy Consumption variable. The calculated variable
was transferred automatically as input EC to the prepared fuzzy model. Based on the
results of the tests, the total assessment of the operator’s training level was calculated. The
results of the conducted research are presented in Tables 1–3.
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Table 1. Results of experimental test SCOs.

No. of SCO
Experience in

Position
(Months)

The Value of the Parameter (Variable) Obtained in the Test
EC *

(kWh) SEMTCI
(s)

ZAO
(%)

CEI
(%)

MEFT
(s)

Summary Time of
Sessions (s)

Group 0 ÷ 24 months of experience in the position

1 7 11.22 47 77 5.11 3123 0.45 1.95
2 9 10.56 48 79 7.23 2756 0.46 1.71
3 6 11.65 39 81 7.56 3154 0.45 1.89
4 7 10.82 48 77 8.33 3100 0.45 2.00
5 14 10.76 56 76 5.45 2974 0.45 1.99
6 9 12.03 43 78 7.41 2843 0.45 1.91

Group 24 ÷ 90 months of experience in the position

7 48 9.11 65 79 8.56 2343 0.39 3.22
8 34 8.03 76 86 7.65 2245 0.38 3.47
9 32 9.31 67 96 5.44 2346 0.39 3.25

10 56 9.77 72 77 5.76 2567 0.41 2.87
11 48 8.44 66 88 6.43 2134 0.39 3.76
12 35 7.56 69 83 6.66 2056 0.37 4.03

Group 90 ÷ 150 months of experience in the position

13 120 6.11 88 97 5.12 1536 0.31 4.24
14 96 7.07 74 92 5.83 1765 0.35 4.20
15 123 6.33 71 94 5.44 1654 0.33 4.17
16 134 5.45 89 92 4.08 1438 0.28 4.24
17 135 6.11 87 96 5.23 1546 0.31 4.24
18 94 6.34 66 94 5.06 1747 0.35 4.15

Legend: MTCI—mean time to correctly indicate a dangerous item; ZAO—zone analysis order (colors);
CEI—correct effectiveness indication; MEFT—mean eye focus time on dangerous item; EoE—evaluation of
the effectiveness of hazard identification; EC *—energy consumption of one SCO per day (during one shift: 8 h);
SE—Summary Evaluation.

Table 2. Results of calculation of energy consumption of SCOs.

No. of SCO Experience in
Position (Months)

EC per Day
(8 h) (kWh)

Mean EC per Day
in Group (kWh)

Weekly EC per
One SCO * (kWh)

Yearly EC per One
SCO ** (kWh)

Group 0 ÷ 24 months of experience in the position

1 7 0.45

0.45 2.25 135

2 9 0.46
3 6 0.45
4 7 0.45
5 14 0.45
6 9 0.45

Group 24 ÷ 90 months of experience in the position

7 48 0.39

0.39 1.95 117

8 34 0.38
9 32 0.39

10 56 0.41
11 48 0.39
12 35 0.37

Group 90 ÷ 150 months of experience in the position

13 120 0.31

0.32 1.60 96

14 96 0.35
15 123 0.33
16 134 0.29
17 135 0.31
18 94 0.35

Legend: Weekly EC per one SCO *—5 working days a week (8 h each shift); yearly EC per one SCO **—300
working days a year.
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Table 3. Scenario analysis results for different SCO group compositions depending on experience.

No. of
Scenario

Group Experience
in Position

No. of
SCO

Yearly EC per
SCO (kWh)

Summary
Yearly EC

per 1 Group of
SCOs on 1 ×
RTG Scanner

LP * (kWh)

Summary
Yearly EC

per 3 Groups
of SCOs on 1

× RTG
Scanner LP

(kWh)

Summary
Yearly EC

per 3 Groups
of SCOs on 3
× Lines of

Control with
RTG Scanner

LP (kWh)

Summary
Yearly EC

for Big
Airport with 6

Lines of
Control (kWh)

1
0 ÷ 24 months 10 135

1350 4050 12,150 364,50024 ÷ 90 months 0 117
90 ÷ 150 months 0 96

2
0 ÷ 24 months 0 135

1170 3510 10,530 315,90024 ÷ 90 months 10 117
90 ÷ 150 months 0 96

3
0 ÷ 24 months 0 135

960 2880 8640 259,20024 ÷ 90 months 0 117
90 ÷ 150 months 10 96

4
0 ÷ 24 months 5 135

1260 3780 11,340 340,20024 ÷ 90 months 5 117
90 ÷ 150 months 0 96

5
0 ÷ 24 months 5 135

1155 3465 10,395 311,85024 ÷ 90 months 0 117
90 ÷ 150 months 5 96

6
0 ÷ 24 months 0 135

1065 3195 9585 287,55024 ÷ 90 months 5 117
90 ÷ 150 months 5 96

Legend: RTG scanner LP *—low-power X-ray scanner.

Based on the analysis presented in Table 3, it can be seen that the annual difference
in energy consumption during the inspection of hand luggage using a low-power X-ray
scanner between experienced and inexperienced SCO is 30%.

Experimental studies have shown that the area of passenger baggage security control
requires the examination of factors that have been completely overlooked so far. One of
these factors is the economic factor (represented by the energy costs of the entire baggage
control process), which the authors included in this publication. A control group consisting
of six SCOs, with two operators with experience from each group, which were subjected
to the tests presented in the article, was used to calibrate the model (determining the
boundary values during the estimation of MF values representing individual linguistic
variables). Based on the studies of these operators at real workstations operated at the
airport, all input variables of the model were calculated. The expansion of the research
group and the obtained results (Table 1) indicate that the authors did not make mistakes
while building the model. The research results show that, from an economic point of
view, the effectiveness of detecting dangerous objects in passenger luggage cannot be the
only criterion for assessing SCOs during the verification of their capabilities. The energy
difference used to assess 250 images between the best of the operators (No. 16) and the
weakest (No. 2) was over 0.17 kWh, to the disadvantage of the less experienced operator.
The difference of 0.17 kWh is only seemingly small. It should be emphasized that this is
the difference in energy consumption of a very low-power RTG scanner during baggage
control, operated by operators with different levels of experience during one full working
day (one shift lasts 8 h). During one shift, the security control team usually consists of
10 people (at medium-capacity airports). In the case of larger airports, this number can
be higher. Moreover, one full day consists of three shifts, each with 10 operators. So, the
seemingly small difference is multiplied by 30 (see Tables 2 and 3). Even in small local
airports, there are at least three parallel security control lines, so this value increases even
more. To show the impact of the level of training on the value of consumption, the authors
analyzed six different scenarios (Table 3). In each scenario, the team of operators on one
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shift lasting 8 h consisted of SCOs with a uniform (from the point of view of the obtained SE
result) level of experience (scenarios 1, 2 and 3), and for comparison, a similar analysis was
carried out for mixed teams (scenarios 4, 5 and 6). The authors emphasize once again that
while preparing the evaluation tool, presented in the article, they took into account a very
low-power RTG scanner. Scanners commonly used at airports have five times more power
than the one used to build the tool. The tool presented in the article has a very universal
character. To illustrate the scale of the problem to the reader, the authors presented the
results of calculations for a large European airport equipped with control stations with
high-power RTG scanners and six parallel security control lines for comparison in Table 3
(last column). In this case, the annual energy consumption difference in the entire process
between teams of experienced and inexperienced operators amounted to over 105 000 kWh,
thus showing savings reaching tens of thousands of euros.

At the same time, it was observed that with the increase in the operator’s experience,
the time of identification of dangerous objects (MTCI) in the luggage and the effectiveness
of correct indication (CEI) were shortened. The same effect can be achieved by training the
operator at appropriately prepared training stations devoid of the most energy-consuming
elements, such as RTG scanners. Analyzing the data contained in Table 1, it can be seen
that the overall training assessments (SE) of operators from the first group (experience at
the position of less than 24 months) practically disqualify them from working as SCOs
from an economic point of view (they formally meet the requirements regarding the CEI
indicator value). This observation may be a hint for people managing the entire process
of supervising baggage security control to train these least-experienced operators very
intensively on simulators before they are allowed to work at real stations. Simulator
training is stress-free and pressure-free, which additionally shapes habits and develops a
certain automatism in the decisions made related to image analysis. The research showed
that the most experienced operators almost automatically focused their gaze on dangerous
objects for up to 82% (MFET/MTCI ratio: the average value for the entire group) of the
time needed for correct indication, while beginner operators focused for only 60% of the
time needed. The conclusions drawn allow people responsible for managing the entire
security control process (supervising the work of operators) to create individual training
strategies for each operator, which will significantly reduce the costs of the entire process.

7. Conclusions and Discussions

During the research, a large amount of experimental data was collected, which enabled
the evaluation of selected parameters. These were then used to validate the assumptions
made in the model.

The results obtained confirm the correctness of the assumptions adopted during the
model construction stage. The analyses carried out indicate the possibility of effectively
using the constructed model to make quick and highly effective diagnoses in terms of
the level of SCO training (both in terms of general assessment and individual categories).
Therefore, they provide the opportunity to appropriately plan the improvement training
process, especially for operators showing deficiencies in individual areas.

The model presented in the article can be used to analyze the impact of various factors
on the overall assessment of the level of operator training. The key conclusion from the
conducted experimental research is that raising the level of SCO training greatly affects the
level of electricity consumption, which has been proven in Section 6. To use its advantages
even more effectively in the training process itself or at the stage of planning a training
cycle, it is necessary to test a larger number of operators (especially those with the most
experience) and possibly modify the model itself (e.g., in terms of the number of input
variables). However, based on the experience gained so far, it is possible to propose the
following scheme of work with the model and its implementation in the training process:

1. Preparation of input data: collecting information on individual factors affecting the
level of SCO training, such as skills, experience, theoretical knowledge, etc. These
data should be transformed into a form suitable for the inputs of fuzzy models.
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2. Starting the simulation: based on the input data, a simulation is carried out, which
allows the assessment of the impact of individual factors on the final assessment of
the SCO training level.

3. Analysis of the results: analysis of the simulation results in terms of understanding
how individual factors affect the assessment of SCO training. On this basis, training
strategies can be developed to improve weaknesses and use strengths.

4. Experiments with different scenarios: it is possible to conduct various simulation
experiments to study the influence of different combinations of factors on the final
score. This can help determine the optimal training path for the SCO that will deliver
the best results.

5. Verification and validation: after experimentation, the results can be verified and vali-
dated by comparing them with actual training results or other assessment methods.

6. Further improvement of the model: modifying the number of inputs to the model,
MF, inference rules or hierarchical structure to obtain better results.

The quick and effective assessment of the SCO training level allows for the preparation
of practical, personalized training strategies that will allow you to achieve the best results
and thus contribute to improving passenger safety while guaranteeing optimization in
electricity use and sustainable development.

In summary:

1. The research showed that differences in SCO experience significantly affect the energy
consumption of the baggage control process. Operators with more experience con-
sume less energy, which translates into significant savings, especially in large airports
with multiple control lines.

2. Simulators, being less energy-consuming than actual RTG scanners, offer significant
potential for training new operators, allowing them to develop skills in a stress-free
and pressure-free environment, which additionally shapes habits and develops a
certain automatism in the decisions made.

3. The built evaluation tool opens the way to developing individual training strategies
for each operator, which can significantly reduce the costs of the entire process, with
particular emphasis on training operators with less experience.

4. The authors of the study emphasize that economic analysis, represented by the
energy costs of the entire baggage control process, is a significant factor that has been
completely overlooked so far, suggesting that it should be included in the assessment
of SCO operators’ efficiency.

5. The tool presented in the article has a universal character and can be used to analyze
various control systems, not only those based on low-power RTG scanners.

These conclusions suggest that both the training and professional experience of
SCO operators are crucial for the efficiency and economy of the security control pro-
cess, with the potential to significantly reduce operational costs and increase the efficiency
of threat detection.
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