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Abstract: This article presents novel research on the utilization of a neural-network-based time
control system for microwave oven heating of food items within a solar-powered vending machine.
The research aims to explore the control of heating time for various food products, considering
multiple variables. The neural network controller is calibrated through extensive experimentation,
allowing it to accurately predict optimal heating times based on input parameters such as food type,
weight, initial temperature, water content, and desired doneness level. The results demonstrate that
the neural-network-controlled microwave oven achieves precise and desirable heating durations,
mitigating the risk of overheating and ensuring superior food quality and taste. Moreover, the
solar-powered vending machine showcases a commitment to sustainable energy sources, effectively
reducing dependence on non-renewable energy and minimizing greenhouse gas emissions. To
maintain food quality and freshness, a food refrigeration unit is integrated into the vending machine,
employing load-balancing technology to control the refrigeration chamber’s temperature effectively.
Energy efficiency is prioritized in both the refrigeration unit and the microwave oven through
intelligent algorithms and system optimization. The combination of a neural-network-controlled
microwave oven, a solar-powered vending machine, and a food refrigeration unit introduces a novel
and sustainable approach to food preparation and energy management.

Keywords: neural network controller; heating time; food products; solar-powered; vending machine;
energy management

1. Introduction

Currently, post the COVID-19 pandemic, activities are resumed both at workplaces
and in public and entertainment spaces (parks, shows, etc.). The provision of food that
is appropriate to human activities, fresh and warm, is of major importance for the health
of the population. In order to provide hot food as close as possible to the workplace or
outdoor activities, we have developed an energy-independent hot food delivery system.
The delivery system is energy-autonomous and provides both cooked products and prod-
ucts which are heated straight away for immediate consumption. The delivery system
can also deliver cold products in case they are consumed later or in another location.
Stand-alone systems for the delivery of hot products are becoming an alternative for fast
food restaurants.

Thus, according to Ref. [1], communities are moving towards healthier products in
vending machines due to the lower prices of the sold products. In cases where energy-
efficient systems are used, the prices of products will be lower than for similar products in
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the hospitality system. Energy-independent vending systems equipped with photovoltaic
panels have several advantages, such as reduced electricity costs, the possibility to be lo-
cated anywhere, easy relocation, ease of installation, independence from the local electricity
grid, being environmentally friendly, and reduced CO2 emissions [2,3].

The market for energy-independent vending systems is in its infancy but is expected
to grow significantly in the coming years. According to Refs. [4,5], the global smart vending
machine market will reach USD 21.4 billion by 2030. The global, post-COVID-19, smart
vending machine market, which was worth USD 9.2 billion in 2022, is estimated to reach
a value of USD 21.4 billion by 2030, growing at a compound annual growth rate (CAGR)
of 11.1% during the analysis period 2022–2030. The heated products market is estimated
to grow at 11.4% CAGR and reach USD 22.1 billion by 2030. Given the continued post-
pandemic recovery, the growth of the snacks segment shows a CAGR of 10.3% for the
period 2022–2030.

In recent years, advancements in technology have revolutionized various aspects of our
daily lives, including the way we prepare and consume food. One such area of innovation
is the control of heating time in microwave ovens, specifically for different food items with
varying water content. One of the most common power sources for microwave ovens is
magnetrons. The spectrum of the microwaves generated by magnetrons depends on the
food that is heated, the position of the food, and may even vary between individual ovens
of the same model. This is the reason heating food in a microwave oven is unpredictable [6].
Simultaneous heat and mass transfer phenomena appear when the moisture transport takes
place inside the solid during food processes such as microwave heating. The packaged
foods in cold storage are considered porous media with small pores [7].

Factors influencing microwave heating of products, according to research presented
in Microwave Heating: Alternative Thermal Process Technology for Food Application [8],
can be: microwave frequency (there is a dependence between the dielectric properties of
the product and the frequency of the applied field); product humidity (water influences
the dielectric properties of the products); final temperature of the products (the higher the
final temperature, the more water evaporates and the dielectric of the products is affected);
product density (the more porous the product, the lower the dielectric properties due to the
lower dielectric properties of the air incorporated in the material); dissolved salts (dissolved
salts in products drive the loss factor as salts are conductors of the electromagnetic field).

This article aims to explore the utilization of a neural network to regulate the heating
process in a microwave oven [9] integrated within a solar-powered vending machine.
Additionally, this article (research) will discuss the significance of food refrigeration through
a refrigeration unit and the efficient management of energy consumption in both the
refrigeration unit and the microwave oven.

The neural network used in this context is calibrated using experimental results,
where various food products are tested to determine the optimal heating time for achieving
desired outcomes [10], unlike in the case of a traditional system where the product is
heated each time without considering its specific characteristics. Through machine learning
techniques, the neural network learns to correlate input parameters such as food type,
weight, initial temperature, water content, and even desired level of doneness with the
desired heating time. This calibration process ensures that the neural network provides
accurate predictions for optimal heating, taking into account the specific characteristics of
the food items. By employing machine learning algorithms [11], the neural network can
process input data and generate accurate predictions for the ideal heating duration [12],
allowing the microwave oven to adapt to various food characteristics. The network’s
calibration is achieved through extensive experimentation, ensuring that the system’s
performance aligns with empirical results. This intriguing solution enables the microwave
oven to achieve perfectly heated meals while minimizing the risk of overheating.

Furthermore, the use of a solar-powered vending machine demonstrates a commitment
to sustainable energy sources. The vending machine’s electrical energy is supplied by a
group of solar panels, harnessing the power of the sun to generate electricity. This approach
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not only reduces dependence on non-renewable energy but also mitigates environmental
impact by minimizing greenhouse gas emissions. By utilizing solar energy, the vending
machine contributes to a greener and more sustainable future.

To maintain food quality and prevent spoilage, the vending machine incorporates a
food refrigeration unit. This unit employs advanced refrigeration technology to maintain
a low temperature within the cooled chamber of the vending machine, ensuring that the
food items remain fresh and unaltered. By controlling the temperature effectively, the
refrigeration unit safeguards the nutritional value and taste of the food, enhancing the
overall consumer experience. Moreover, the refrigeration unit is designed with energy
efficiency in mind, utilizing advanced cooling techniques to minimize energy consumption
while still providing optimal food refrigeration.

Efficient energy management is crucial in both the refrigeration unit and the mi-
crowave oven to maximize the system’s performance and minimize energy consumption.
By employing intelligent algorithms and optimizing the operation of these devices [13],
energy efficiency can be significantly enhanced. This includes strategies such as load bal-
ancing, temperature regulation, and system optimization, all geared towards minimizing
wastage and promoting sustainability [14]. Moreover, the vending machine is equipped
with energy storage systems, such as batteries, which store excess solar energy during
peak production hours and utilize it during periods of lower solar availability, ensuring a
continuous and reliable power supply of the vending machine subsystems.

2. Materials and Methods

The research was carried out on the SVIEE energy efficient vending machine prototype
installed and studied at The Technical University of Civil Engineering of Bucharest (UTCB),
illustrated in Figure 1. This study continues the research on consumption optimization
in the case of an energy-independent vending system. In the article Study on Energy
Efficiency of an Off-Grid Vending Machine with Compact Heat Exchangers and Low GWP
Refrigerant Powered by Solar Energy [15], the research on the efficiency of the thermally
insulated enclosure and the refrigeration system of the experimental model developed for
the study of energy-independent vending systems was presented. Research on optimizing
the operation of independent energy sales systems has also focused on the influence of the
DC–AC inverter [16] and heat transfer in the experimental model of the independent energy
sales system [17]. This article presents the research on the optimization of the electrical
energy consumption of the heating system of the products to be delivered by the vending
machine. The studied SVIEE prototype has the following subsystems: photovoltaic panel
array; solar energy storage battery array; command and control system; thermally insulated
enclosure; cooling system; product heating system; resistance structure.

The analysis of the electrical scheme of the vending machine confirms the need to
carry out research to make energy consumption more efficient for both the cooling system
and the product heating system. Optimization of the energy consumption of the heating
system is necessary in order to save as many resources as possible for the product cooling
system. Switching off the cooling system when the vending machine contains products in
the thermally insulated enclosure leads to product spoilage. The energy balance is very
sensitive, as the system can also be affected by climatic factors (cloudiness) leading to a
decrease in electricity production. The presented study aims at controlling the heating
system by controlling the heating time of the products to be delivered using a neural
network developed and trained for this purpose.

Components illustrated in Figure 2 of the electrical system of the energy-independent
vending machine: 1—solar panels, type TSM, 405 DE09. 08, maximum power 405 W;
2—accumulators, type Victron GEL 12 v 130 AH; 3—battery balancer, type Victron;
4—MPPT, type Victron 150/70 Tr; 5—inverter, type Victron Phoenix 5000 W 48 V–230
V; 6—microwave oven, type M2A/28A vending machines; 7—compressor, type Em-
braco NEU6181U; 8—vaporizer, type Guyan GNKF 850 YAN; 9—condenser, type ELCO;
10—command and control system, manufactured by us. The energy flow produced by the
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array of photovoltaic panels sent to the battery bank is managed by the MPPT type charge
controller. MPPT controllers are known for their efficiency in converting the voltage from
the photovoltaic panels to the battery charging voltage. The DC/DC conversion efficiency
of these systems is 98% [18]. A battery balancer integrated between the four batteries was
used to balance the charging or discharging of the battery bank.
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For heating the products delivered by the energy-independent vending machine, a
microwave oven specially built for model M2A/28A vending machines [19] was adopted
and installed. This microwave oven is in the category of those without a rotating table
and is equipped with two mirror-mounted magnets. The components of the oven are
shown in Figure 3. The oven is equipped with a stainless-steel outer casing; 1—side door;
2—wave stirrer; 3—motorized pallet for the evacuation of heated products; 4—outer casing;
5—upper magnetron; 6—wave stirrer; 7—lower magnetron; 8—front door. The microwave
oven is manufactured in such a way that it allows the products to be introduced through
the automated side door from the refrigerating chamber and to be discharged, after heating,
in a direction perpendicular to the direction of introduction of the products, through the
automated front door. The discharge is performed by pushing with the help of a motorized
pallet. The oven has a power of 2000 W and uses two LG 2M286-23TAG 1050 W magnetrons
with a microwave frequency of 2450 +/− 50 MHz.
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In order to obtain the necessary data to train the neural network, we carried out
practical tests on electricity consumption by heating different products in the microwave
oven for different time periods. For easier testing, the microwave oven was removed
from the vending machine and tested in the laboratory, but it was powered from the
electrical system of the vending machine. The test stand, shown in Figure 4, consists of:
1—microwave oven; 2—automated door opening system; 3—HIOCHI PW3198 analysis
device; 4—laptop; 5—controller for adjusting the heating time.
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The HIOKI PW3198 power quality analyzer has the measurement accuracy voltage:
±0.1% of nominal voltage; current: ±0.2% rdg. ± 0.1% f.s. + current sensor accuracy; active
power: ±0.2% rdg. ± 0.1% f.s. + current sensor accuracy [20]. The equipment, throughout
the duration of the tests, collected data on supply voltage, current, and electrical energy
absorbed by the microwave oven. The data stored in the storage medium of the equipment
were analyzed with the PQ ONE software version 10.2.0, which allows the presentation of
the values of the electrical energy absorbed by the microwave oven in graphical or tabular
form. On the basis of preliminary tests and calibration of the experimental stand, we found
that there is a time of about 5–6 s before the magnetron enters the nominal operating mode.
Taking this into account, the minimum heating time was 10 s [21].

The temperature measurement of the products was carried out with a contact thermome-
ter (measuring range—50–300 degrees Celsius; measuring accuracy +/− 0.1 degrees Celsius),
an infrared thermometer (measuring range—20–380 degrees Celsius; measuring accuracy
+/− 2 degrees Celsius). The surface temperature analysis of the products in the pots was
carried out with an FILR C5 thermal imaging camera. The weighing of the products was
carried out with a scale with an accuracy of +/− 1 g. For the tests, we considered three
types of products packed in crates with a size of 187 mm × 137 mm × 37 mm. The heated
products are: P1—boiled rice; P2—pasta with tomato sauce; P3—sausage and cheese sand-
wich. The test procedure involved the following steps: preparation of the product plastic
recipients; storage of the recipients in the cold room; removal from the cold room; weighing
of the product plastic recipient; determination of the starting temperature of the product;
introduction of the recipient into the microwave oven; heating of the microwave oven
for the programmed time; removal of the plastic recipient; determination of the stopping
temperature of the product in the heated areas. The products were stored in the refrigerator
premises of the vending machine.

3. Results
3.1. Electrical and Thermal

The HIOKI PW3198 power quality analyzer determines the active power during tests,
as shown in Figures 4 and 5. We have a single phase 2 wire 1P2W, and the effective RMS
(root mean square) electrical quantities were determined using the formulas [16]:

Urms =

√√√√ 1
M

M−1

∑
S=0

(US)
2 (V) (1)

Irms =

√√√√ 1
M

M−1

∑
S=0

(IS)
2 (2)

P =
1
M

M−1

∑
S=0

(US × IS) (3)

WP = k
h

∑
1
(|P|) (4)

where Urms—root mean square voltage; Irms—root mean square current; P—active power;
WP—active energy; M—number of samples per cycle; h—measurement time; k—coefficient
for converting to 1 h. For the frequency of 50 Hz, at which the microwave oven operated,
according to IEC61000-4-30 [22], we calculated from the approx. 200 ms aggregation of
10 waveforms. The microwave oven test stand, shown in Figure 5, consists of:
1—microwave oven; 2—automated door opening system; 3—HIOCHI PW3198 analysis
device; 4—laptop; 5—controller for adjusting the heating time.
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Figure 5. Microwave oven test stand.

The analysis of the thermal images, shown in Figure 6, shows that the products
are not uniformly heated due to their different porosity, density, and humidity. The
microwave heating of products is largely dependent on the amount of water present in
the product [8,23], which was also found in experimental research. Microwave heating
is volume heating, and the temperature measurement of the heated product was carried
out by using a contact thermometer which was inserted into the volume of the product as
shown in Figure 7 (right).
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In Figures 8a,b and 9a,b we show the HIOKI PW3198 device recordings for voltage,
current, power and energy obtained for the heating test of product P1—rice pilaf witch
heating time of 10 s, 20 s, 30 s (the blue and white triangle represents the start and end of a
test).
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After performing the heating tests for the set of nine prepared plastic recipients (C1–
C9), we obtained the values shown in Figures 10–12. The tests were repeated four times for
the same type of products and under the same test conditions. The values shown represent
the arithmetic mean of the values obtained from the tests.
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Figure 10. Data obtained for product P1 (boiled rice).
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Figure 11. Data obtained for product P2 (pasta with tomato sauce).

3.2. Neural Network Controller

In this section of the paper, two numerical simulations were performed using the
Simcenter AMESim numerical simulation software to optimize the management of the
energy used and for training, validation, and virtual implementation of the Heating Time
Neural Network Controller (HTNNC) for the microwave oven.
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Figure 12. Data obtained for product P3 (sausage and cheese sandwich).

The first numerical simulation, the Energy Management Controller (EMC), is focused
on the energy management, which considered the charge level of the vending machine
batteries and the next day’s sunshine level resulting from nebulosity predictions to limit
the maximum heating temperature of the products in order to conserve energy. The
simulation’s logic involved three inputs: X for battery charge range, Y for next-day sunshine
level, and desired value of product heating temperature. The simulation network effectively
limits the product heating temperature command based on these inputs. This limited
temperature command is later used as one of the inputs (I3) for the second numerical
simulation, the HTNNC. Figure 13 showcases the structure of the first numerical simulation
network, highlighting its logic, parameters, and components, while Figure 14 presents the
equation and graph of the sunshine level from the next-day nebulosity function.

Energies 2023, 16, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 13. Simulation network of the Energy Management Controller (EMC). 

 
Figure 14. Sunshine level from the next-day nebulosity function output. 

To train the HTNNC, an extensive and comprehensive set of experiments was metic-
ulously conducted, encompassing 9 experiments for each distinct product type, thereby 
resulting in a total of 27 experiments. The training process involved gathering vast 
amounts of data to feed into the neural network, allowing it to learn and make accurate 
predictions for optimal heating times based on the product’s characteristics. The training 
and validation methodology for this neural network is elaborately presented in the fol-
lowing set of figures. These figures provide an insightful visual representation of the ex-
perimental data, the model setup, training parameters, and the overall performance of the 
neural network during the training process. Through these rigorous experiments and val-
idation procedures, the HTNNC is refined and honed to achieve exceptional precision and 
reliability in determining the heating time for various food items within the solar-pow-
ered vending machine’s microwave oven. 

Figures 15–17 present visual insights into the experimental and training data of the 
HTNNC. In Figure 15, the curves highlight the experimental and training data specifically 
related to Product Type 1. Similarly, Figure 16 is for Product Type 2, and Figure 17 is for 
Product Type 3.  

Figure 13. Simulation network of the Energy Management Controller (EMC).



Energies 2023, 16, 6953 11 of 22

Energies 2023, 16, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 13. Simulation network of the Energy Management Controller (EMC). 

 
Figure 14. Sunshine level from the next-day nebulosity function output. 

To train the HTNNC, an extensive and comprehensive set of experiments was metic-
ulously conducted, encompassing 9 experiments for each distinct product type, thereby 
resulting in a total of 27 experiments. The training process involved gathering vast 
amounts of data to feed into the neural network, allowing it to learn and make accurate 
predictions for optimal heating times based on the product’s characteristics. The training 
and validation methodology for this neural network is elaborately presented in the fol-
lowing set of figures. These figures provide an insightful visual representation of the ex-
perimental data, the model setup, training parameters, and the overall performance of the 
neural network during the training process. Through these rigorous experiments and val-
idation procedures, the HTNNC is refined and honed to achieve exceptional precision and 
reliability in determining the heating time for various food items within the solar-pow-
ered vending machine’s microwave oven. 

Figures 15–17 present visual insights into the experimental and training data of the 
HTNNC. In Figure 15, the curves highlight the experimental and training data specifically 
related to Product Type 1. Similarly, Figure 16 is for Product Type 2, and Figure 17 is for 
Product Type 3.  
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In the second numerical simulation, the Heating Time Neural Network Controller
(HTNNC) was developed as an innovative approach to determine the precise heating
time required for various food products. This intelligent neural network was trained to
make decisions based on three critical inputs. Firstly, I1 represented the product type,
encompassing different categories denoted as P1, P2, and P3. Secondly, I2 represented the
product mass, which varied for different product types, ranging from 225 g to 275 g for
P1 and P2 and from 98 g to 112 g for P3. Lastly, I3 served as the input for the product’s
desired temperature, an essential parameter that significantly influences the heating pro-
cess. It is worth noting that the product’s desired temperature input was acquired from
the output of the Energy Management Controller (EMC), which optimizes the product’s
heating temperature based on the vending machine’s battery charge level and next-day
sunshine level.

To train the HTNNC, an extensive and comprehensive set of experiments was metic-
ulously conducted, encompassing 9 experiments for each distinct product type, thereby
resulting in a total of 27 experiments. The training process involved gathering vast amounts
of data to feed into the neural network, allowing it to learn and make accurate predictions
for optimal heating times based on the product’s characteristics. The training and valida-
tion methodology for this neural network is elaborately presented in the following set of
figures. These figures provide an insightful visual representation of the experimental data,
the model setup, training parameters, and the overall performance of the neural network
during the training process. Through these rigorous experiments and validation proce-
dures, the HTNNC is refined and honed to achieve exceptional precision and reliability
in determining the heating time for various food items within the solar-powered vending
machine’s microwave oven.

Figures 15–17 present visual insights into the experimental and training data of the
HTNNC. In Figure 15, the curves highlight the experimental and training data specifically
related to Product Type 1. Similarly, Figure 16 is for Product Type 2, and Figure 17 is for
Product Type 3.

These figures (Figures 15–17) graphically display the relationships between the product
type, product mass, product temperature, and the corresponding heating time. Through
these visualizations, patterns and trends can be observed, enabling the neural network to
effectively learn and make accurate predictions based on these inputs. The experimental
data, when combined with advanced machine learning techniques, play a pivotal role in
refining the HTNNC’s ability to precisely determine the optimal heating time for each
unique food product, contributing to the overall efficiency and quality.
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Figure 18 illustrates the neural network builder with the training and validation data
of the new neural network. In this figure, one can identify the 18 data sets that are used
and the 4 variables of the neural network.
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Figure 19 outlines the training parameters used in the training process. The training
parameters include critical settings such as learning rate and batch size, which directly
influence the network’s ability to generalize and make accurate predictions. By carefully
adjusting these parameters, researchers and developers can achieve an optimal balance
between avoiding overfitting and underfitting, ultimately leading to a well-trained and
efficient neural network model [24].

Figure 20 showcases the model setup and training monitor for the HTNNC, offering
crucial details about the neural network’s architecture and training progress. With a
large number of training epochs (50,000) representing the number of times the entire
data set is used to train a neural network [25], this figure highlights the dedication to
fine-tuning the HTNNC model to achieve exceptional accuracy in determining heating
times for various food products. The representation of six layers in the neural network
indicates a deep learning architecture [26], enabling the network to capture intricate patterns
and relationships between inputs and outputs. The HTNNC model is designed with
three inputs, representing product type, product mass, and desired temperature, which
collectively contribute to precise heating time predictions. The single output corresponds to
the heating time, a fundamental parameter to ensure optimal and efficient food preparation
in the solar-powered vending machine. By providing insights into the network’s structure
and extensive training process, Figure 20 demonstrates the sophistication and effectiveness
of the HTNNC training by displaying a very small training mean squared error with a
maximum value of 10−3 at the end of the training process.

Figure 21 provides additional information about the trained neural network model;
showcasing the model manager for HTNNC_V3, it provides a comprehensive overview of
the neural network’s performance and architecture. The training fidelity and validation
fidelity, both of 99.4%, underscore the remarkable accuracy achieved by the HTNNC_V3
model in predicting heating times for diverse food products. The model’s exceptional
fidelity demonstrates its ability to generalize effectively and make precise decisions based
on the input parameters [27]. The training duration of 533 s indicates the computational
efficiency of the training process, ensuring fast and effective development of the model. The
neural network’s architecture, consisting of six layers of dense type, each with 100 neurons
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activated by the rectified linear unit (ReLU) function, which is the most-used activation
function [28], working well when the system shows saturated behavior, enables the model
to capture complex relationships and patterns within the input data. Overall, the ReLU has
become the preferred choice for most hidden layers in modern neural networks due to its
simplicity, effectiveness, and ability to tackle gradient issues by mitigating the vanishing
gradient problem [29].
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Figure 21. Model manager for HTNNC_V3.

Figure 22 displays the plot of the training results using static data. Since all the gray dots
on the graph—representing the experimental data—and the neural network output—depicted
with red dots—overlap perfectly, the training results are excellent, and assessment is also
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given by the linear correlation coefficient (Pearson) [30]—“fidelity index—100%”—on the left
side of the image.
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Figure 23 presents a graphical X–Y plot of the training results. Since all points are
on the ideal line, this means a perfect fit resulted from excellent training and well-chosen
training parameters.
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Figure 24 displays the error distribution plot resulting from the training process, which
is the difference between the predicted output of the neural network and the true value from
the result set (training data). The control error of average temperature for this application
is very small, reaching 0.004 ◦C, and the maximum error is 0.015 ◦C.
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Figure 24. The error distribution plot.

Following the neural network model’s successful validation, this model was exported
as a submodel, which was integrated in the numerical simulation no. 2 that is presented in
Figure 25. This figure showcases the simulation network of the completed HTNNC, which
is responsible for controlling the heating time of the food products in the microwave oven.
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4. Discussions

This section of the article presents four figures that encapsulate the outcomes of the
study’s simulations and provide insights into the performance of the proposed methodologies.

Figure 26 is generated from a Monte Carlo study whose results were plotted in the
form of a response surface. The results of this study are not extraordinarily accurate because
some interpolation was performed between the 100 runs of the study; still, the results are
accurate enough for this application.
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Figure 26. Maximum product heating temperature.

Figure 26 represents a complex result from the first numerical simulation, the EMC.
The graph plots the battery charge range with values between zero and one on the
X-axis, next-day sunshine level with values between zero and one on the Y-axis, and
the product heating temperature command in ◦C on the Z-axis, depicted in various colors.
This visualization offers a comprehensive understanding of how battery charge and pre-
dicted next-day sunshine levels limit the product heating temperature command, providing
essential insights into the interplay between energy availability and maximum heating
temperatures of the food products. Also in the same figure, one can see how, regardless of
the next-day sunshine level, if the batteries are discharged below 30%, the vending machine
will deliver unheated food products to keep enough energy for the refrigeration unit. On
the other side, if the batteries are charged above 60%, the vending machine will deliver the
food heated to the temperature the customer wants, but not higher than 90 ◦C.

Figures 27–29 are the results of the second numerical simulation, the HTNNC, which
focuses on predicting the optimal heating time of food products depending on their mass
and the desired temperature. These figures are also plotted as response surfaces, only,
unlike in Figure 14, the results presented by them are much more precise because they
result from a batch simulation and each of them has 161 runs with a step of 0.5 ◦C.
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Figure 29. Product 3 temperature vs. product mass and heating time.

Graphing product mass in grams on the X-axis, heating time in seconds on the Y-axis,
and product temperature in ◦C in color on Z-axis, Figure 15 illustrates the relationship
between these variables for product 1. The visual representation showcases how variations
in product mass and heating time impact the resulting product temperature, offering
valuable insights into the heating process’s dynamics and efficiency.

In Figure 27, one can see how for the same heating time, if the mass of the product
increases, the temperature decreases. Unfortunately, the same trend is not noticed in the
case of Figures 28 and 29, most likely due to the inconsistency with which the experimental
data were acquired, caused by the type of product and its inhomogeneity, or due to the too
small size of the data set that was used for training and validation of the neural network.

Similar to Figure 27, Figure 28 presents product 2’s heating process. The graph presents
different heating dynamics for product 2 in comparison with product 1, revealing unique
characteristics and trends in the heating behavior.

Figure 29 presents the heating process for product 3, mirroring the format of Figures 27
and 28. By visualizing the relationship between product mass, heating time, and product
temperature, this figure sheds light on how the heating characteristics differ for product
3 compared to the other two products.
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5. Conclusions

The Results and Discussions sections of this article showcase a comprehensive analysis
through a set of graphs, offering valuable insights into the outcomes of simulations and the
effectiveness of proposed methodologies. The combination of response surfaces, dynamic
heating analyses, and neural-network-driven predictions empowers this study with a
comprehensive perspective on food heating within the solar-powered vending machine
context. The insights gained from these graphs contribute to advancing our understanding
of energy-efficient food heating, paving the way for more precise control strategies and
sustainable approaches in the field of food processing and energy management.

By leveraging a well-calibrated neural network, the HTNNC can accurately determine
the optimal heating time for each food product, ensuring exceptional quality, taste, and
energy efficiency in the microwave oven heating process. By combining the information
from the Energy Management Controller and the HTNNC, the microwave oven is equipped
with an intelligent neural-network-based system that optimizes the heating time for various
food products based on their type, mass, and desired temperature. This advanced control
system ensures precise and efficient food preparation, enhancing the overall quality and
taste while also promoting sustainable energy practices through the use of a solar-powered
vending machine. The results of this study demonstrate the potential of such technological
advancements in revolutionizing food processing and energy management for a greener
and more sustainable future of solar-powered vending machines.

Through meticulous experimentation and numerical simulations, this study demon-
strates the accuracy and effectiveness of the neural-network-controlled microwave oven
in achieving precise heating durations for various food products. The incorporation of
intelligent algorithms, coupled with a commitment to sustainable energy sources and
energy management practices, underlines the promising prospects for a greener and
more efficient future in the food preparation and energy consumption of solar-powered
vending machines.

The integration of scientific rigor and innovative technologies in this research under-
scores the potential to revolutionize traditional food processing methods. The presented
results, figures, and discussions highlight the intricate relationships between input parame-
ters, heating times, and temperatures, offering a holistic understanding of the proposed
systems’ capabilities and their broader implications for sustainable food production and
the energy optimization of solar-powered vending machines.

The combination of the neural-network-controlled heating time of the microwave oven,
powered by a solar energy vending machine, with a food refrigeration unit introduces
a novel and sustainable approach to food preparation and energy management of solar-
powered vending machines. The neural network’s ability to adapt to different food types,
water content, and desired doneness levels allows for precise heating control, ensuring
optimal quality and taste. The integration of solar panels and efficient energy management
techniques promotes sustainability, reducing environmental impact and optimizing energy
consumption. By embracing these technological advancements, we can pave the way for a
greener, more efficient, and delicious future.

In conclusion, this article presents a comprehensive exploration of a novel approach
to food heating in a microwave oven within a solar-powered vending machine, driven by
neural-network-based control systems. The integration of advanced technologies, including
the Energy Management Controller and the Heating Time Neural Network Controller,
showcases the potential to enhance food quality, energy efficiency, and sustainability in
food processing of solar-powered vending machines.
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