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Abstract: Dyes have played a pivotal role in the advancement of modern dye-sensitized solar
cells (DSCs), as they not only facilitate light harvesting, but also serve as blocking layers to impede
recombination. In this study, we conducted a systematic investigation to elucidate the influence of dye
coverage on the photovoltaic parameters of copper-electrolyte-based DSCs by precisely controlling
the dye coverage on the TiO2 substrate using D35 organic dye solutions with varying concentrations.
The dye loading increased proportionally with the increase in dye concentrations until it reached
saturation at a concentration of 0.2 mM. However, an optimal dye concentration of 0.1 mM was
determined in terms of achieving the highest photovoltaic performance, under both outdoor and
indoor light conditions. Notably, a maximum power conversion efficiency (PCE) of 6.50 ± 0.25%
under outdoor illumination (100 mW/cm2) and 10.48 ± 0.30% under indoor light (1000 lux, WW
CFL) was attained using a 0.1 mM D35 dye concentration. Additionally, the dark current and ideality
factor (m) were found to be minimized at the 0.1 mM dye concentration. Furthermore, the ideality
factor (m) exhibited disparities between indoor and outdoor light conditions. The lifetime obtained
from electrochemical impedance spectroscopy (EIS) measurements correlated well with the ideality
factor (m) and dark current. Notably, electron injection, dye regeneration, charge collection, and ion
diffusion were observed to be independent of the dye coverage.

Keywords: copper electrolyte; dye; DSC; indoor photovoltaics

1. Introduction

Dye-sensitized solar cells (DSCs) are considered to be among the most promising
cost-effective and environmentally friendly photovoltaic technologies [1–3]. DSCs are
endowed with many striking features such as color tunability, transparency, flexibility, and
superior performance under indoor/artificial illumination, which makes them attractive
for the development of self-powered, battery-free smart devices [2,4–7]. During the last
three decades, DSCs have significantly transformed to a stage capable of realizing market
penetration. Modern DSCs are among the few technologies that work efficiently under
indoor/ambient light conditions with PCE > 30% and are now commercialized by many
industries globally as energy sources for various Internet of Things (IoT)-based electronic
devices [8–10]. Furthermore, they have also started to establish a presence in the building-
integrated photovoltaic (BIPV) sector [11–15].

Unlike conventional DSCs, which consist of ruthenium metal complex sensitizers
and iodide/triiodide (I−/I3

−) redox mediators, modern DSCs rely on organic dyes with
alternate transition metal complex redox mediators (Co3+/2+/Cu2+/1+) [16–19]. Alternate
redox mediators render an opportunity to modify the redox potential, thereby minimizing
voltage loss and leading to higher open circuit potential (Voc). Likewise, organic sensitiz-
ers possess a higher molar extinction coefficient, which helps in better light-harvesting
properties, contributing towards improved Jsc using thin TiO2 layers. The combination
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of organic dyes and alternate electrolytes generates enormous opportunities to fine-tune
the device properties and to meet the end-user requirements [20,21]. For instance, recently
Naim et al. successfully achieved fully transparent DSCs using a selective near-infrared
sensitizer based on a polymethine cyanine dye along with a cobalt redox mediator [22].
Similarly, Huaulme et al. were able to fabricate photochromic DSCs that can change color
with self-adjustable light transmittance when irradiated [23]. Moreover, presently DSCs
have already reached an efficiency of 15.2% using co-sensitized organic dyes (SL9 and SL10)
along with a copper electrolyte ([Cu(tmby)2]2+/1+) under outdoor/one sun illumination
(AM 1.5 G, 100 mWcm−2) [24]. Similarly, an impressive power conversion efficiency
of 34.5% has already been achieved using a co-sensitized XY1+MS5 dye combination
along with a [Cu(tmby)2]2+/1+ electrolyte under 1000 lux CFL illumination [8]. Earth-
abundant copper redox mediators have played a significant role in the evolution of modern
DSCs, particularly for indoor photovoltaics (IPVs) [9,16,25–27]. Copper redox shuttles are
cost-effective and environmentally friendly, thus possessing adequate potential for indus-
trialization and mass production. More importantly, copper-based redox mediators can
sufficiently regenerate the oxidized dye molecules with efficiencies close to unity, even with
a driving force as low as 0.1 V [28–30]. Using CuII/I redox couples, Voc > 1 V can easily be
obtained without compromising Jsc. Recently, our research group has successfully attained
an impressive open-circuit voltage (Voc) of 1.27 V in a single-junction device, employing the
[Cu(dmp)2]2+/1+ redox mediator in combination with the MS5 dye [31]. In classical DSCs,
dye is responsible for the current generation through light absorption; however, in modern
DSCs, the role of the dye is not merely limited to light absorption—it also plays a pivotal
role in preventing recombination at the TiO2-electrolyte interface [32–35]. For instance,
Tang et al. effectively regulated charge recombination by increasing the dye concentration,
which helped them to obtain high FF even in TiO2 with a thickness of 20 µM [36]. Similarly,
Pazoki et al. carried out a detailed analysis of dye coverage on charge recombination in a
DSC with a cobalt tris(bipyridine) electrolyte and the D35 dye, where they found that more
than 90% of full dye coverage is needed for well-performing DSCs with a cobalt-based
electrolyte [37]. When employing alternate redox mediators like copper complexes with
positive redox potentials, recombination is a critical issue. Furthermore, under low in-
door/artificial light illuminations, recombination becomes essentially more crucial, where
even a small increase in recombination can subsequently hamper the efficiency in a bigger
way. Addressing recombination using additional blocking layers has already proven to
be an efficient and conventional method, but it possesses several bottlenecks in scaling-
up. Thus, modifying the dye coverage on TiO2 and thereby controlling recombination
offers a better possibility to achieve higher Voc and PCE. To enhance our knowledge on
the fundamental understanding of various charge-transfer processes as a function of dye
coverage using a copper redox mediator, D35 organic dye in different concentrations was
used to control the dye loading on TiO2 and we systematically investigated its effect on
the PV parameters using a [Cu(tmby)2]2+/1+ electrolyte both under one-sun (AM 1.5 G,
100 mW/cm2) and indoor illumination (1000 lux, WW CFL).

2. Materials and Methods

For the working electrode, 1.5 × 1.5 cm2 square FTO (TEC15, Greatcell Solar, Quean-
beyan, NSW, Australia) substrates underwent a rigorous cleaning process, starting with
sonication in detergent for 30 min and gentle scrubbing in water. Subsequently, they were
sonicated in deionized (DI) water for another 30 min, followed by sonication in both IPA
and acetone for 15 min each. Next, the FTO substrates were annealed at 500 ◦C for 15 min
in a muffle furnace and then subjected to UV-ozone cleaning. A compact TiO2 blocking
layer over the FTO was deposited by TiCl4 treatment and annealing at 500 ◦C for 30 min.
This treatment involved dipping cleaned FTO substrates in a 53 mM TiCl4 bath at 70 ◦C,
followed by rinsing with DI water and ethanol. A TiO2 paste containing 30 nm particles
was screen-printed onto the substrate and annealed at 500 ◦C for 30 min. Subsequently,
a second TiCl4 treatment was applied to the electrodes, followed by annealing at 500 ◦C
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for 30 min to create a compact TiO2 post-blocking layer over the mesoporous TiO2. For
dye loading, the electrodes were then immersed in the D35 dye bath for 15 h. The dye
solution was prepared using a 1:1 mixture of acetonitrile and tert-butanol. For counter
electrodes, predrilled FTO glasses (TEC8, Greatcell Solar, Queanbeyan, NSW, Australia)
were thoroughly cleaned by sonication in detergent, DI water, and ethanol for 45 min,
followed by annealing at 500 ◦C for 15 min. Prior to PEDOT (poly (3,4-ethylene dioxythio-
phene)) deposition, the electrodes were treated with UV-O3 for 15 min. The PEDOT counter
electrodes were prepared by electro polymerization of 3,4-ethylene dioxythiophene (EDOT)
from a micellar aqueous solution containing 0.1 M sodium dodecyl sulfate (SDS) and 0.01 M
EDOT. The electrodes were assembled using a 25 µm surlyn spacer and heat pressed at
110 ◦C [38–40]. [Cu(tmby)2]2+/1+ electrolyte, consisting of 0.20 M Cu(I), 0.04 M Cu(II), 0.1 M
LiTFSI, and 0.6 M 4-tert-butylpyridine in acetonitrile was injected through the predrilled
holes, and then the holes were sealed using a cover glass.

Solar photocurrent density voltage (J-V) characteristics of the DSCs were evaluated
using the Oriel Class-AAA solar simulator (Model PVIV-94043A) in conjunction with the
Keithley 2440 power source. The intensity of irradiation was measured using a certified
calibrated Si solar cell. Indoor light photovoltaic measurements of DSCs were conducted
inside a dark box, utilizing a worm white compact fluorescent lamp (WWCFL) as the
illumination source. The indoor J-V responses of the DSCs were recorded using a Dyenamo
(Stockholm, Sweden) potentiostat (DN-AE05), enabling precise data acquisition. To quantify
the intensity of the light, a radiometrically calibrated spectrometer (Jaz, Ocean Optics,
Orlando, FL, USA) was employed, ensuring accurate and reliable measurements of the
light spectrum. During the J-V measurements DSCs, a circular black mask with an area
of 0.12 cm2 (smaller than the active area) was employed. The incident photon-to-current
conversion efficiency (IPCE) measurements of the DSCs were conducted in DC mode
using dedicated IPCE equipment. The setup consisted of a 300 W Xenon lamp integrated
with a Newport (USA) monochromator and power meter. For Electrochemical Impedance
Spectroscopy (EIS) analysis, the DSCs were tested under dark conditions using an Autolab
(PGSTAT302N) system from the Netherlands. EIS was performed with an amplitude
perturbation of 10 mV and a frequency range from 100 mHz to 100 kHz. Photo-induced
absorption spectroscopy (PIA) was carried out using PIA equipment from Dyenamo,
Sweeden (DN-AE02). The PIA spectra of the devices were recorded using excitation by
LED, which has a square wave with a modulation frequency of 9.3 Hz.

3. Results
3.1. Solar Cell Characteristics under Outdoor and Indoor Light

For the photovoltaic studies, we fabricated DSCs employing an organic D35 dye
along with a [Cu(tmby)2]2+/1+ redox mediator. Figure 1a shows the structure of the D35
dye and [Cu(tmby)2]2+/1+ redox mediator. As shown in Figure 1b, the D35 dye and
[Cu(tmby)2]2+/1+ redox mediator possess favorable energetics for efficient charge injecting
and dye regeneration. The D35 dye was selected for the present study as it is free from dye
aggregation, providing a platform to exclusively study the charge recombination at the
TiO2/electrolyte interface [41,42]. We quantified the amount of dye on TiO2 via a desorption
study (Figure 1c). In all fabricated DSCs, TiO2 photoanodes with a thickness of 4 µm and
dye loading time of 15 h were used. As observed in Figure 1c, dye loading improved with
an increase in dye concentration and reached a saturation at 0.2 mM dye concentration.
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redox mediator under one-sun illumination. 

  

Figure 1. (a,b) Structure and energetics of D35 dye and [Cu(tmby)2]2+/1+ redox mediator and (c) dye
loading as a function of dye concentration on TiO2 films.

Current density–voltage (J–V) characteristics were carried out under one-sun
(AM 1.5 G, 100 mW/cm2) illumination (Figure 2a) and the resultant photovoltaic pa-
rameters are summarized in Table 1. The Jsc obtained from J-V measurements followed a
similar trend to the IPCE response (Figure 2b). We observed improvement in Voc, Jsc, FF,
and hence PCE with an increase in dye concentration. The optimum PCE of 6.50 ± 0.25%
(Voc-1002 ± 3 mV, Jsc-10.22 ± 0.25 mA/cm2, and FF-0.63 ± 0.01) was obtained for DSCs
fabricated using 0.1 mM dye concentration. Further, the increase in dye concentration
contributed towards the drop in Voc, Jsc, and PCE, while FF remained unaltered. A similar
trend was also observed for DSCs measured at various light intensities ranging from 0.1 sun
to 1 sun. Figure 3 shows photovoltaic parameters of DSCs at various dye concentrations
from 0.1 sun to 1 sun; the corresponding values are given in Table S1.
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Table 1. Photovoltaic parameters of DSCs fabricated with various D35 dye concentrations along with
[Cu(tmby)2]2+/1+ redox mediator under one-sun illumination.

D35 Concentration (mM) Voc (mV) Jsc (mAcm−2) FF η (%)

0.01 622 ± 2 2.40 ± 0.48 0.49 ± 0.02 0.73 ± 0.12

0.05 803 ± 3 4.62 ± 0.37 0.60 ± 0.01 2.22 ± 0.18

0.1 1002 ± 3 10.22 ± 0.25 0.63 ± 0.01 6.50 ± 0.25

0.2 898 ± 4 9.91 ± 0.28 0.64 ± 0.03 5.70 ± 0.26

0.3 895 ± 6 9.09 ± 0.27 0.64 ± 0.02 5.12 ± 0.21
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(a) Voc, (b) Jsc, (c) FF and (d) efficiency from 0.1 sun to 1 sun as a function of dye concentration
(0.01 mM, 0.05 mM, 0.1 mM, 0.2 mM, and 0.3 mM).

Indoor photovoltaic characterization was carried out using a homemade indoor light
simulator using warm white CFL light source. Figure 4 shows the current density–voltage
(J–V) and power curves (P-V) for DSCs fabricated using various dye concentrations under
1000 lux CFL illumination. The indoor photovoltaic parameters are summarized in Table 2.
The photovoltaic performance under 1000 lux illumination followed the same trend of 1 sun,
but with enhanced efficiencies. Higher efficiency under CFL illumination is attributed to
the better spectral overlap of the emission spectrum of CFL with the absorption of the
D35 sensitizer. The highest PCE of 10.48 ± 0.30% (Voc-773 ± 3 mV, Jsc-48.8 ± 0.9 µAcm−2,
and FF-0.78 ± 0.02) was achieved at 0.1 mM dye concentration. Notably, under 1000 lux
illumination, a superior fill factor was observed compared to 1 sun conditions. This is due
to reduced recombination at 1000 lux, which is attributed to a lower photoinduced charge
density. A similar trend in photovoltaic performance was also observed for DSCs measured
at various light intensities ranging from 200 lux to 1000 lux (Figure S1, Table S2).
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Table 2. Photovoltaic parameters of DSCs fabricated with various D35 dye concentrations along with
[Cu(tmby)2]2+/1+ redox mediator under 1000 lux CFL illumination.

D35 Concentration (mM) Voc (mV) Jsc (µAcm−2) FF η (%)

0.01 292 ± 6 7.4 ± 0.8 0.32 ± 0.02 2.4 ± 0.22

0.05 670 ± 2 37 ± 0.9 0.66 ± 0.03 5.84 ± 0.13

0.1 773± 3 48.8 ± 0.9 0.78 ± 0.02 10.48 ± 0.30

0.2 721± 2 46.8 ± 0.6 0.76 ± 0.01 9.17 ± 0.12

0.3 721± 2 46.4 ± 0.2 0.77 ± 0.08 9.09 ± 0.21

3.2. Interfacial Charge Transfer Study

Interfacial charge transfer analysis of the fabricated dye-sensitized solar cells provides
a better understanding of the fundamental processes happening at various interfaces that
dictate the PV performance. In the present study, we relied on various electro-optical
perturbations and pump-probe techniques in addition to steady state current-voltage
(I–V) measurements to understand the fundamental charge transfer process occurring in
different interface of DSCs as a function of the amount of dye on semiconductor. As copper
redox mediators are often limited by mass transport, we analyzed Jsc vs. light intensity
measurement to probe the mass transport (Figure 5). Generally, Jsc increases with an
increase in input light illumination by the relation, Jsc ∝ Iα, where α is the power constant.
α was found to be nearly one for DSCs with different dye loading amounts, suggesting
a minimal influence of dye loading on the mass transport [43]. We observed similar results
in our previous study, where DSCs consisting of D35 dye and [Cu(tmby)2]2+/1+ were found
to be free from mass transport [44]. This could be attributed to the smaller size of the D35
sensitizer, which provides ample space for the electrolyte to penetrate in a working device.
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The difference between the Fermi energy level of TiO2 and the redox potential of
electrolyte accounts for Voc and is related to light intensity (I) by the equation [45,46].

(dVoc)/dlogI = (2.30 mkBT)/q (1)

where m is the ideality factor, kB is the Boltzmann constant, T is the temperature, and q
is the charge. Figure 6a represents Voc as a function of irradiance under outdoor light
conditions, Figure 6b displays Voc as a function of illuminance under indoor light condi-
tions, and Figure 6c shows the ideality factor at various dye concentrations. Generally, the
relation between Voc and I is non-ideal in DSCs, which originates from interfacial charge re-
combination from trap states [47]. Here, we observed a non-ideal relation between Voc and
I with an m value ranging from 2.7 to 5.8 under outdoor illumination and 3.9 to 14.4 under
indoor illumination. As observed from Figure 6c, under both outdoor and indoor illumina-
tion, the m value decreased with increase in dye concentration and reached a minimum
value of 0.1 mM dye concentration, while it further increased at higher concentrations of
dye. It is to be noted that the deviation from ideal behavior is more pronounced under
indoor light illumination, indicating the need to control recombination to realize higher
photovoltaic performance under indoor/artificial illuminations. According to Bisquert
et al., the non-ideal characteristics observed are related to the electron recombination not
only from the conduction band of TiO2, but also from the surface states and trap states dis-
tributed exponentially in the band gap of TiO2 [48,49]. Further, Zhang et al. also observed
a deviation in the ideality factor for DSCs using different organic sensitizers; for instance,
DSCs with NT5 sensitizer showed an m value of 1.7 while MS4 and MS5 showed an m
value of 1.26 and 1.04, respectively [8]. The difference in the ideality factor was mainly
attributed to the reduction in interfacial charge recombination from the surface and trap
states. Thus, in the present context, it can be said that an optimum concentration of dye
molecules on TiO2 is necessary to passivate the surface states for lower recombination.
To clarify this further, we measured the dark current of DSCs (Figure 6d) with various
dye loading amounts. Herein we also included a device without any dye to quantify the
role of dyes in preventing interfacial charge recombination. As seen in Figure 6d with the
increase in dye concentration dark current reduced rapidly and reached a minimum value
at 0.1 mM dye concentration while it again increased at higher dye concentrations. The
trend in dark current aligns with the calculated ideality factor (Figure 6c), which confirms
that the dye molecules are capable of regulating recombination at TiO2/electrolyte interface
and a careful optimization of dye concentration is inevitable to extract the best performance
from these devices particularly employing organic with alternate Cu(II/I) redox mediators.
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(b) illuminance (lux) under indoor light illuminations, (c) ideality factor calculated as a function of
D35 dye concentration under solar and indoor CFL illumination and (d) dark current as a function of
D35 dye concentration.

For a detailed interfacial charge transfer study, we used electrochemical impedance
spectroscopic (EIS) measurements under dark conditions. In TiO2 photoanode, diffusion
and recombination of injected electrons, occur simultaneously. As dye molecules are
placed between TiO2 and electrolyte, it undoubtedly influences the charge dynamics at the
TiO2/electrolyte interface. EIS is considered to be the most reliable characterization tool to
probe charge transfer processes, as both transport time and lifetime can simultaneously be
extracted at the same Fermi level position. On the contrary, employing other perturbation
tools, the lifetime is measured at open circuit condition and transport time is measured
at short circuit condition. EIS measurements were carried out at different steady-state
voltages with a constant perturbation amplitude of 10 mV at frequencies starting from
100 mHz to 100 kHz. The representative Nyquist plot and Bode plot at 0.85 V for different
D35 dye concentrations are given in Figure 7a,b. The impedance plots were fitted using an
equivalent circuit with a transmission line model given in Figure 7c [50,51]. The Nyquist
plot consists of three semicircles, where the first semicircle at a higher frequency corre-
sponds to the charge transfer at the counter/electrolyte interface, the second semicircle at
the intermediate frequency corresponds to charge transfer at TiO2/dye/electrolyte inter-
face, and the semicircle at the lower frequency region represents the diffusion of ions in
the bulk electrolyte. The equivalent circuit consists of resistors, capacitors and constant
phase element. RPEDOT and CPEDOT refer to resistance and capacitance at the counter
electrode/electrolyte interface. Similarly, Rs corresponds to the sheet resistance of the
substrates, Zd represents the impedance of ion diffusion in electrolyte, Rt corresponds
to the resistance of electrons to diffuse in mesoporous TiO2, Rrec is the charge transfer
resistance at the TiO2/dye/electrolyte interface, and Cµ is the constant phase element
representing the capacitance at the TiO2/electrolyte interface. As observed in Figure 7a,
the size of the first semicircle and third semicircle remained unaltered with change in dye
concentration, which suggests that charge transfer at the counter electrode/electrolyte
interface and ion diffusion in the electrolyte, bulk are not influenced by the change in dye
concentrations. A significant change in the middle semicircle suggests that the charge
transfer at the TiO2/dye/electrolyte interface is primarily influenced by variation in dye
concentrations. A similar feature was also observed in the Bode plot, where peaks at low
and high frequency did not change, while a significant change in peaks at intermediate
frequencies was observed.
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The accumulation of electrons at the TiO2/electrolyte interface is quantified using
capacitance. Here constant phase element is used in place of capacitance to obtain a better
fitting. Figure 8a shows Cµ as a function of Fermi voltage (VF). VF is calculated from
the equation:

VF = Vapplied − IReqv (2)

where, Vapplied is the steady state voltage applied across the device during EIS measure-
ment, I is the obtained current, and Reqv is the total series resistance (i.e., summation of
sheet resistance (Rs), counter electrode resistance (Rpedot) and diffusion resistance (Rd).
Cµ is generally used to locate the conduction band (CB) of TiO2. The CB of TiO2 for
DSCs with 0 mM, 0.01 mM, and 0.05 mM dye concentration lies at similar energy levels.
Likewise, the CB of TiO2 for DSCs with higher dye concentrations of 0.1 mM, 0.2 mM,
and 0.3 mM also remains at similar energy levels. However, they are shifted to more posi-
tive potentials compared to the device at lower concentrations. Generally, dye molecules
bind to the TiO2 by releasing protons, which contributes in shifting the conduction band
of TiO2 to a more positive potential [52]. Thus, at higher dye concentrations (0.1 mM,
0.2 mM, 0.3 mM), the number of released protons were sufficient enough to shift the CB
of TiO2 positive potentials. Very often, a positive shift in CB of TiO2 helps to improve
Jsc by providing a better driving force for electron injection from LUMO of the sensi-
tizer to TiO2. Since we used a D35 sensitizer with high negative excited state potentials
(−1.35 V, Figure 1b), a minimal influence in Jsc owing to a CB shift is expected. It is further
explored using photoinduced absorption (PIA) spectroscopy in upcoming discussions.
Moreover, the improvement in Jsc is largely associated with better dye loading at higher
dye concentrations.
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As seen in Figure 8b, there is a lifetime upsurge with the increase in dye concentration
that reaches a maximum at 0.1 mM D35 dye concentration. Subsequent increases in dye
concentration led to a decline in lifetime. The same trend was also observed from Nyquist
and Bode plots (Figure 7). A similar trend in recombination was also previously observed
by Boschloo and co-workers in DSCs fabricated using D35 dye and [Co(bpy)3]3+/2+ redox
mediator [37]. The increasing trend in lifetime with increased dye loading is mainly
attributed to better coverage of dye molecules over the TiO2 surface. However, at higher
dye concentrations (0.1 mM, 0.2 Mm and 0.3 mM) there is a positive shift in CB of TiO2 as
evident from the capacitance plot (Figure 8a), which also reduces the recombination driving
force. Recombination from the bandgap and sub bandgap states are more prominent
in copper electrolyte DSCs. Thus, reducing the recombination driving force along with
better passivation of TiO2 by dyes helped in controlling the photovoltaic performance.
Optimum performance was delivered by DSCs using 0.1 mM dye concentration. Further,
with an increase in concentration (>0.1 mM), we observed a reduction in lifetime. But
we did not observe any change in CB of TiO2 at higher concentrations (Figure 8a), which
indicates that the observed decrease in lifetime is associated with more recombination at
higher concentrations. The trend in lifetime was also reflected and related to the observed
open circuit potential (Voc) (Table 1). DSCs fabricated with 0.1 mM D35 dye solution
provided uniform surface coverage of TiO2 that spatially separates the oxidized Cu(II)
species moving closer to TiO2. Additionally, devices fabricated using 0.1 mM D35 dye
resulted in the lowest recombination driving force. Both the above factors contributed to
higher photovoltaic performance using 0.1 mM D35 concentration. Lifetime also followed
the same trend as that of the ideality factor and dark current (Figure 6c,d). The transport
time (τd) measured from EIS (Figure 8c) shows faster transport for devices with lower dye
concentrations. The charge collection efficiency obtained from EIS showed better collection
employing 0.1 mM D35.
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We further used photoinduced absorption spectroscopy (PIA) to analyze the elec-
tron injection and dye regeneration of DSCs fabricated with different D35 concentrations.
Figure 9a,b shows PIA as a function of wavelength, for dye soaked photoanodes in the
absence and presence of the [Cu(tmby)2]2+/1+ redox mediator, respectively. The absorption
of oxidized D35 dye under different dye concentrations was observed after the 700 nm
wavelength region (Figure 9a). Further, in the presence of a redox mediator, the absorption
response is quenched, which reflects efficient dye regeneration. As the PIA spectra for all
the dye concentrations overlap with and without electrolytes, a similar rate of electron
injection and dye regeneration is expected for DSCs with various dye concentrations. In
short, it can be said that variation of dye coverage over the TiO2 surface has little influence
on injection and regeneration and does not likely modify the structural and energetic
behavior of DSCs to influence the Jsc employing the D35 sensitizer and [Cu(tmby)2]2+/1+

electrolyte. Thus, the observed variations in short-circuit current density (Jsc) unequivocally
depend on the discrepancies in dye loading and the resultant disparities in light harvesting
properties of the sensitizer. Similarly, the variations in voltage are intricately linked to
variations in the recombination dynamics and lifetime of the devices.
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4. Discussion

We studied the role of dye molecules in regulating the charge transfer dynamics of
DSCs employing alternate copper redox mediators. In the present study, D35 organic dye
at various dye concentrations (0.01 mM, 0.05 mM, 0.1 mM, 0.2 mM, and 0.3 mM) was used
along with a [Cu(tmby)2]2+/1+ redox mediator. With the increase in dye concentration, dye
loading over the TiO2 surface was found to increase and reached saturation at 0.2 mM
D35 concentration. However, 0.1 mM dye concentration was found to be optimal in terms
of photovoltaic performance. A maximum power conversion of 6.50 ± 0.25% under the
full sun (100 mW/cm2) and 10.48 ± 0.30% under indoor illumination (1000 lux CFL) was
obtained for devices fabricated using 0.1 mM D35 concentration. The calculated ideality
factor (m) was also more reasonable at 0.1 mM D35 concentration under full sun and
indoor light illuminations. It is important to note that DSCs showed more deviation from
ideal behavior under indoor illumination than under full sun, indicating the importance
of addressing recombination at lower illumination intensities. Further, the ideality factor
was also in line with the obtained dark current results. EIS was carried out under dark
conditions for devices fabricated without the dye and with varying dye concentrations to
gain better knowledge on interfacial charge transfer dynamics dye coverage over TiO2. The
conduction band of TiO2 was found to shift towards positive potentials with increase in
dye concentrations (0.1 mM, 0.2 mM, and 0.3 mM). Likewise, lifetime was also found to
increase with dye concentration, and the best lifetime was showcased by devices fabricated
using 0.1 mM dye, which further dropped at higher dye concentrations (0.2 mM and
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0.3 mM). The increase in lifetime is mainly attributed to the better dye coverage and
reduced recombination driving force associated with the positive shift in CB. In contrast,
the drop in lifetime at higher dye concentrations may be due to disordered dye distribution
over TiO2. Moreover, 0.1 mM dye concentration also delivered the best charge collection
efficiency among the series. The electron injection and regeneration were found to be quite
similar under various concentrations. The targeted applications under indoor photovoltaic
domain demands for higher Voc and a better control on Voc achieved by changing dye
concentration provides better insights, to further improve the Voc in organic dye-copper
electrolyte DSCs. With the optimal surface coverage achieved using 0.1 mM D35 dye
concentration, DSCs delivered a Voc of 1000 mV under 1 sun and 773 mV under 1000 lux
illumination. In a nutshell, variation of dye content over TiO2 surface not only modifies
Jsc but also changes Voc and FF of DSC. Thus, an optimum dye concentration is essential
to realize better photovoltaic performance by employing organic dye-copper electrolyte
combination under outdoor and indoor illumination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16196913/s1. Table S1. Photovoltaic parameters of DSCs
with D35 sensitizer and [Cu(tmby)2]2+/1+ electrolyte under various outdoor illuminations. Table S2.
Photovoltaic parameters of DSCs with D35 sensitizer and [Cu(tmby)2]2+/1+ electrolyte under various
indoor illuminations. Figure S1. Photovoltaic characteristics of DSCs with D35 sensitizer and
[Cu(tmby)2]2+/1+ electrolyte (a) Voc, (b) Jsc, (c) FF and (d) efficiency from 0.1 sun to 1 sun as a function
of dye concentration (0.01 mM, 0.05 mM, 0.1 mM, 0.2 mM, and 0.3 mM) under indoor illumination.
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