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Abstract: Weather-driven uncertainties and other extreme events, particularly with the increasing
reliance on variable renewable energy (VRE), have made achieving a reliable microgrid operation
increasingly challenging. This research proposes a comprehensive and integrated planning strat-
egy for capacity sizing and operational planning, incorporating forecasting and demand response
program (DRP) strategies to address microgrid operation under various conditions, accounting
for uncertainties. The microgrid includes photovoltaic systems, wind turbines, and battery energy
storage. Uncertainties in VREs and load fluctuations are modeled using Monte Carlo simulations
(MCSs), while forecasting is based on the long short-term memory (LSTM) model. To determine the
best techno-economic planning approach, six cases are formulated and solved using a multi-objective
particle swarm optimization with multi-criteria ranking for these three objectives: total lifecycle
costs (TLCC), reliability criteria, and surplus VRE curtailment. Shortage/surplus adaptive pricing
combined with variable peak critical peak pricing (SSAP VP-CPP) DRP is devised and compared with
a time-of-use VP-CPP DRP in mitigating the impacts of both critical and non-critical events in the
system. The simulation results show that the integrated planning, which combines LSTM forecasting
with DRP strategies, achieved about 7% and 5% TLCC reductions for deterministic and stochastic
approaches, respectively. The approach allowed optimal sizing and operation planning, improving
the utilization of VREs and effectively managing uncertainty, resulting in the most cost-effective and
robust VRE-based microgrid with enhanced resilience and reliability.

Keywords: variable renewable energy sources (VREs); demand response program (DRP); shortage/
surplus-based adaptive pricing (SSAP); deficiency of power supply probability (DPSP); variable peak
critical peak pricing VP-CPP DRP

1. Introduction

The global movement toward nearly complete dependence on variable renewable
energy sources (VREs), precisely wind and solar, has gained significant momentum as
societies seek to tackle climate change and ensure a sustainable energy future. One crucial
solution that has emerged to achieve resilient energy systems is the concept of self-sufficient
community microgrids [1]. These microgrids enable the decentralization of energy gen-
eration, storage, and consumption, explicitly focusing on utilizing VREs. Nevertheless,
the inherent uncertainty and volatility of VREs pose significant challenges to ensuring
reliable microgrid operations [2]. While energy storage systems (ESSs) such as batteries [3],
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flywheels, and fuel cells [4] show promise and are prove to be beneficial in enhancing
energy supply management and maintaining a stable balance between electricity supply
and demand in microgrids, their practicality diminishes with increasing VRE penetration.

As the adoption of VREs becomes more widespread, there arises a need for substantial
energy storage capacity to meet the growing demand. However, the cost of implementing
battery energy storage systems (BESSs) remains prohibitive, making it impractical to rely
solely on BESSs as a cost-effective solution for VRE-based microgrids [5]. Furthermore,
the non-dispatchable nature of VREs adds complexity and challenges to conventional
planning techniques for microgrid operations and capacity sizing. Thus, a holistic approach
is essential to successfully integrate multiple VREs and ensure operational resilience even
during unfavorable events. This involves not exclusively relying on BESSs by intelligently
incorporating short-term and long-term planning techniques [6]. Microgrids can guarantee
reliable operations by employing these integrated planning techniques while effectively
injecting a significant portion of VREs into their energy systems. These planning methods
encompass various strategies, including demand-side management (DSM), resource and
load forecasting, etc.

Demand-side management (DSM) programs are strategically designed to modify
consumers’ electricity consumption behaviors, leveraging the flexibility of demand re-
sources and aiming to achieve an economic load profile for utilities. DSM programs offer
lower price incentives to consumers, encouraging them to adjust their electricity usage
based on utility-preferred timing [7]. The integration of intelligent DSM practices has
led to numerous techno-economic benefits, such as reducing the cost of electricity for
consumers, maximization of the operation of VREs generation units, minimization of the
overall system’s peak demand, etc. [8,9]. Advancements in cyber-communication have
further revolutionized DSM operations by enabling real-time monitoring and efficient
control of consumer devices, aligning with the priorities and needs of power systems, thus
contributing to remarkable progress in the overall VRE-based electricity market design.
The increasing intelligence of power systems, where smart consumer devices and electricity
infrastructure communicate seamlessly and respond to utility needs, has resulted in signifi-
cant improvements in ensuring the reliability of microgrid systems with higher levels of
VRE integration. The challenge of balancing varying VRE generation with fluctuating load
patterns, which once hindered the widespread adoption of VREs, is now solvable.

DSM employs various strategic approaches, with demand response programs (DRPs)
playing a crucial role in balancing real-time electricity demand and supply, ensuring reliable
and efficient integration of VREs into microgrid systems. DRPs serve as strategies to achieve
the most suitable and economically viable operating conditions, considering information
about available supply capacity, load requirements, and energy market dynamics over time.
Utility companies often offer incentives through customer-friendly tariff packages, such
as flexible payment options and attractive prices for adjusted load demand patterns and
resulting electricity consumption, to encourage specific changes in customers’ electricity
usage patterns. Implementing well-designed DRP schemes can lead to substantial cost
savings in the planning and operation of electric grids or microgrids [10]. DRP models can
be categorized into two main types: price-based and incentive-based demand response
models, encompassing various variations, such as critical peak pricing (CPP), real-time
pricing (RTP), time of use (TOU), emergency demand response, and critical demand
response, among others [11].

The benefits of efficient prediction strategies for optimizing VRE-based power systems
have gained notable attention in recent research due to their promise to guarantee relia-
bility and achieve result-based sustainable energy transition planning. Through proactive
predictions and responses to changes in VREs, microgrids can achieve a well-balanced
and dependable power supply, lessening the over-reliance on expensive ESSs and other
backups. Similarly, VREs introduce inherent variability and uncertainty. This uncertainty
significantly threatens the stability and efficiency of VRE-based systems. However, with
accurate forecasting providing insight into extreme events for the microgrid, DRP strategies
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can be harnessed in advance to muster sufficient resources to mitigate critical stress in the
system, which could otherwise lead to a cascading power failure. By accurately forecasting
VRE variability and responding in real time to anticipated discrepancies in system supply
and demand, microgrids can effectively handle the uncertainty associated with VREs.

The significance of integrated planning, including optimal sizing and operational
planning, has been underscored in various studies. The authors of [12] emphasize the
critical need for integrated sizing and operational planning to maximize VRE-based systems’
efficiency, reliability, and robustness. These studies emphasize that the infrastructure
may be over- or under-designed without optimal sizing, leading to resource waste or
inadequate power supply. Additionally, microgrid operations could become unreliable
without effective operational planning, including practical resource forecasting, leading to
power fluctuations. Given the growing adoption of VREs into community mini-grids, VRE-
generation variability and uncertainty have highlighted the need for integrated optimal
planning to manage and mitigate these challenges. The existing literature shows that
comprehensive and integrated planning studies remain insufficiently explored, underlining
the need for advanced strategies to navigate the complex dynamics and uncertainties of
VREs on a community microgrid’s integrated capacity and operation.

Consequently, this study proposes a comprehensive approach to community microgrid
planning, integrating demand response strategies, precise forecasting, and joint sizing
and operation planning under uncertainty. These elements are crucial for managing the
complexities and uncertainties of VRE-based microgrids. The proposed approach offers
multiple benefits, such as improved resilience and reliability, enhanced VRE utilization,
and better ride-through capabilities in extreme weather events. The specific contributions
of this study are highlighted below:

• A comprehensive and integrated method for planning community microgrids based
on VREs is proposed and examined. This approach incorporates DRPs strategies,
precise forecasting, and combined sizing and operational planning, all under uncer-
tain conditions.

• The techno-economic advantages of implementing a combined DRP approach, inte-
grating DRP strategies based on shortage/surplus adaptive pricing (SSAP) alongside
variable peak critical peak pricing (VP-CPP) DRPs, have been proposed and thor-
oughly investigated. These are compared with a combination of time of use (TOU)
and VP-CPP strategies. These two ensemble DRP approaches have been demonstrated
to provide a more robust and dynamic response, significantly enhancing the resilience
and reliability of microgrids under severe conditions, such as extreme weather events,
compared to traditional DRP strategies.

• To ascertain the role of accurate forecasting in conjunction with SSAP VP-CPP DRP
strategies, the LSTM approach has been investigated for VRE generation and load
demand forecasting to enable optimal preparation and reduce the need for load
curtailment or generation curtailment, thereby bolstering the resilience of microgrids
against sudden power generation fluctuations.

• To address the inherent variability and resulting uncertainty introduced by VREs and
load variation, which could potentially undermine the reliability and operability of
isolated community microgrids, Monte Carlo simulations have been employed to
generate uncertainty scenarios. This ensures the robustness of the system against
extreme weather fluctuations.

The rest of this paper is arranged as follows: Section 2 outlines the system configuration
and mathematical modeling. A thorough explanation of the proposed integrated planning
framework and demand response program models is provided in Section 3. Section 4
delves into the formulation of multi-objective optimization problems and simulation setup.
Section 5 includes results, analysis, and discussions, while the conclusion of the work is
presented in Section 6.
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2. System Configuration and Mathematical Modelling

Figure 1 depicts the proposed system configuration for a VRE-based community
microgrid system design. The proposed model incorporates WT, BESS, PV systems, and
various load types.

Flexible demand resources

Wind park

Energy storage system

Photovoltaic system

Microgrid dispatch & control center
Electricity price setting Flexible demand resources

Control & communication networkMicrogrid distribution infrastructure (AC)

Critical loads

Critical loads

State of charge VRE generation
LSTM forecaster

weather

Load demand

C

C

C
C

C

C

C

C

Figure 1. Proposed system configuration.

2.1. Wind Turbine (WT)

The power output of a WT system at a given time (t) is contingent on the instantaneous
wind speed (u(t)) at the installed hub height. By using the piece-wise function outlined in
Equation (2), the power generated (Sw(t)) of the WT specific to a particular hub height and
WT model can be computed as follows [8].

Sw(t) =


Scp

w ×
u3(t)−u3

ci
u3

r−u3
co

uci ≤ v ≤ ur

Scp
w ur < u ≤ uco

0 u < uci, u > uco

(1)

where Scp
w signifies the rated capacity of the installed WT, whereas uco, uci, and ur denote

the cut-out, cut-in, and rated wind speeds, respectively.

2.2. Photovoltaic (PV)

The power output (Spv) of a PV system is primarily influenced by factors such as solar
irradiance (II(t)), temperature (Temp(t), and derating factor (Λpv). Equation (2) illustrates
the instantaneous power output of the PV system [13]

Spv(t) =
(

II(t)
Istc
× [1 + αpv(Temp(t)− Tempstc)]

)
× Scp

pv ×Λpv (2)
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where Scp
pv denotes the installed PV’s capacity, and αpv is the temperature coefficient. Istc,

and Tempstc denote the solar irradiance and temperature under standard test conditions.

2.3. Battery Energy Storage System (BESS)

When the total power generated by the WT (Swt) and PV (Spv) surpasses the load
demand (SL), the BESS transitions into a charging state to absorb the surplus power.
Conversely, it switches to a discharging state when the demand exceeds the total power
generated to balance out the power deficit in the system. The difference between the
total VRE generation and the load demand primarily dictates how much power can be
stored or drained from the BESS at any moment [14]. The power drawn from or sent to
the BESS for discharging or charging, respectively, is contingent on the previous state of
charge (SOC(t− 1)) and the constraints of the BESS system: the maximum (SOCmax) and
minimum (SOCmin) SOC boundaries. The SOC status (SOC(t)) of the BESS at any specific
time (t) and the BESS constraints are detailed in Equations (3) and (4), respectively.

SOC(t) = SOC(t− 1)(1− SDb) + Sch
b (t)× ηc

b −
Sds

b (t)
ηd

b
(3)

SOCmin ≤ SOC(t) ≤ SOCmax

SOCmin = 0.1× Scp
b

SOCmax = 0.9× Scp
b

(4)

where Scp
b represents the BESS installed capacity, and SDb is the self-discharge of the BESS;

ηc
b and ηd

b are the BESS’s discharging and charging efficiencies as percentages; and (Sds
b (t))

and (Sch
b (t)) represent the discharging and charging power to and from the BESS at a time

(t), respectively.

3. Proposed Integrated Planning Framework

The flowchart in Figure 2 shows the proposed planning framework for a VRE-based
community microgrid considering uncertainty and various demand response mechanisms.
A comprehensive planning framework is critical in capacity and operational decision-
making for VRE-dependent systems to guarantee improved operational reliability and
serviceability, particularly during prolonged unfavorable weather conditions.

Two operation strategies are devised to ensure the robust operational capability of the
proposed system, namely normal non-critical and critical (emergency) operation modes.
During non-critical periods, the operation of the BESS is well coordinated with the demand
response strategies to maintain a steady power supply to the load demand by correcting
power imbalances in the system during spans of acceptable levels of deficient or surplus
VRE generation.

The system is considered to be in the optimal operation state when the generated
power from VREs equals the power demand. The price of electricity remains constant, as
determined in the preceding period, and the flexible resources (FDRs) stay unadjusted to
maintain this state. Nevertheless, if the power generated by VREs exceeds the demand,
or the demand exceeds generation, the utility activates a demand response program by
providing incentives through price adjustments. This helps address the power mismatch
by lowering or increasing electricity prices, encouraging consumers to utilize excess power,
or addressing shortages in the system by rescheduling power consumption. If the surplus
or the power shortage cannot be fully addressed by adjusting the DRP once the available
FDRs have been exhausted, the BESS is initiated into operation. The price is optimally
adjusted to keep the system within acceptable operation limits, guaranteeing optimal and
normal operation.
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Figure 2. Flowchart for proposed planning framework for a VRE-based community microgrid
considering LSTM forecasting, uncertainties, and advanced DRPs.

On the other hand, during harsh weather conditions in which a VRE-generating
resource capability becomes extremely low, and the reliability of the systems is entirely
dependent on energy storage for which the state of charge is noted to be critical, the
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system transitions into an emergency state. During such a critical state, VP-CPP DRP is
initiated, and an extremely high electricity price is enforced to discourage the end-user
from non-essential electricity usage and alleviate the system’s stress, thereby guaranteeing
a survival mechanism without collapsing into a state of total power outage. The uncertainty
consideration of the VREs and the load demand guarantee that the system is designed
to be robust and capable of managing variability and uncertainties of VRE resources
with diverse operating characteristics. Coupling demand-side flexibility through demand
price-response resources with the foreseen generation profile of VRE units using LSTM
time-ahead resource forecasts guarantees improved and optimized performance for the
community microgrid system overall.

3.1. Demand Response Programs, Load Modeling Concept, and Flexible Demand Resources

Demand response planning significantly impacts the allocation of resources and price-
setting within a power system. Integral to this process is load modeling, a concept that
classifies loads into different categories: adjustable, non-adjustable, elastic, and inelastic.
By understanding the adaptability and constraints of each load type, system operators
can manage resources more efficiently, set prices with a higher degree of accuracy, and,
consequently, optimize the performance of the power system.

3.1.1. Flexible Demand Resource Modeling and Economic Load Model

DRPs typically segregate electrical demand into elastic (Se
L(t)) and inelastic (Si−e

L (t))
loads. Elastic demand includes electrical loads, such as dishwashers and water pumps,
where operation times can be rearranged from one period to another. Conversely, inelastic
loads operate within fixed times (fixed operation and usage times). Such inelastic loads
are further divided into adjustable Sadj

L (t) and non-adjustable Sn−adj
L (t) loads [15]. Heating,

ventilation, and air conditioning systems fall under adjustable inelastic loads. In contrast,
hospital and other non-crucial loads are classified as critical Scrt

L (t) and non-critical Sn−crt
L (t)

non-adjustable loads, respectively [16,17]. Therefore, the overall system load SL(t) at any
given time t can be represented as the sum of all types of electric loads as described
below (5):

SL(t) = Si−e
L (t) + Se

L(t) (5)

where:
Si−e

L (t) = Sadj
L (t) + Scrt

L (t) + Snon−crt
L (t)

S f lx(t) = Sadj
L (t) + Se

L(t) (6)

Scurt
L (t) = Sadj

L (t) + Snon−crt
L (t) (7)

It is essential to underscore that flexible demand resources (S f lx
L (t)), as outlined in

Equation (6), comprise both elastic and adjustable inelastic load demands. These FDRs are
deemed responsive to price fluctuations defined by the adopted DRP, and participation is
purely voluntary from the consumers’ perspective. Meanwhile, Equation (7) elucidates the
types of load demand that can be curtailed when the microgrid is in a state of emergency
or criticality.

3.1.2. Price Elasticity of Demand

The price elasticity of demand (ψpr(x,x)) is a measure that reflects the connection
between changes in the electricity demand and variations in the price of electricity [6,18].
As detailed in Equations (8) and (9), any adjustment in the electricity price during periods
x or y will lead to a proportional change in the electricity demand (δSL(x) or δSL(y)) in the
corresponding x or y period, and vice versa. This means that the overall load pattern for
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entire periods (x, y ∈ T) is impacted by hourly fluctuations in electricity prices during both
the xth and the yth periods.

ψpr(x,x) =
ER

pr(x)
SL(x)

.
∂SL(x)
∂ER

pr(x)
; ∀x, y ∈ T (8)

ψpr(x,y) =
ER

pr(x)
SL(x)

.
∂SL(y)
∂Sr(y)

; ∀x, y ∈ T (9)

where ψpr(x,y) and ψpr(x,x) are the multi-period and single-period price elasticities of the
demand, respectively. ER

pr is the reference price of electricity.

3.2. Combined Time-of-Use and Variable Peak Critical Peak Pricing (DRP)

TOU DR operates on a time-based pricing scheme, offering predetermined rates for
different periods of the day, such as peak rates for peak system loading and off-peak rates
for low-demand periods [19,20]. The number and variations of the distinct pricing periods
and tariff structure enforced are usually utility-specific based on the need for improving
the overall system’s efficiency. On the contrary, variable period CPP (VP-CPP) is a variant
of critical peak pricing where the specific time, duration of the interval, and days on which
the critical peak rates will be enforced are not specified or fixed in advance [21,22]. Instead,
critical peak pricing is determined based on the urgent need or state of the grid, such
as during a loss of a generation unit, increased excess load on the system, or weather
events [23,24]. Furthermore, the customers are generally informed with little advance
notification about the upcoming extreme rates. The implementation of a combination of
the TOU and VP-CPP as proposed, with varying electricity rates during different periods,
including peak, off-peak, valley, and critical peak periods, with the specific critical peak
periods subject to an extreme system state is expressed in (11). The impact of the TOU-VP-
CPP pricing scheme implementation, described in Equation (10), yields a responsive load
model, as expressed in Equation (11).

Etou−vpcpp
pr (t) =


Etou−vpcpp

pr,peak (i); ∀i ∈ T; (peak period)

Etou−vpcpp
pr,midpeak (j); ∀j ∈ T; (mid-peak period)

Etou−vpcpp
pr,o f f peak (k); ∀k ∈ T; (off peak period)

Etou−vpcpp
pr,critical (l); ∀l ∈ T; (critical peak period)

(10)

Stou−vpcpp
L (x) = SL(x)

1 + ψpr(x,x)
[Etou−vpcpp

pr (x)− ER
pr(x) + Epd

pr (x) + Eps
pr(x)]

ER
pr(x)

+
T

∑
y=1,y 6=x

ψpr(x,y)
[Etou−vpcpp

pr (y)− ER
pr(y) + Epd

pr (y) + Eps
pr(y)]

ER
pr(y)


; for all x, y ∈ T (11)

Etou−vpcpp
pr (y) and Etou−vpcpp

pr (x) are the set TOU-VP-CPP DRP prices of electricity

for the yth period and the xth period, respectively. Epd
pr (x) and Epd

pr (y) are the incentive
payments, while Eps

pr(x) and Eps
pr(y) are the penalties for non-compliance with the DRP

provisions by the consumers, respectively.

3.3. Shortage/Suplus-Based Adaptive Pricing and Variable Peak Critical Peak Pricing DRP

The proposed SSAP VPP-CPP is an advancement of a time-based DRP with two modes
of operation: critical and non-critical. During non-critical periods, the SSAP VPP-CPP
DRP aims to offer dynamic electricity prices varying according to deviations between
the expected electricity demand and total variable renewable energy (VRE) generation
output; mismatch power is addressed by discharging or charging the BESS while priori-
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tizing rescheduling the available FDR in real time. Conversely, when the system is highly
constrained, such as under severe weather conditions in which the capability of VREs
to generate power diminishes significantly, and the system’s reliability heavily relies on
energy storage with a critical state of charge, an emergency arises (critical mode). In such a
critical state, the VP-CPP DRP is activated, enforcing a considerably higher electricity price
to discourage non-essential electricity consumption by end-users and alleviate stress on the
system. This ensures that the microgrid has a sufficient survival mechanism to ride through
a critical/stressed state without collapsing to a state of complete power outage. The adap-
tive pricing approach of SSAP CPP-VPP, elaborated on in Equation (12), provides enhanced
flexibility and responsiveness to different microgrid states (whether in standard or critical
periods); this yields a new and cost-effective load profile, as expressed in Equation (13):

δEssap−vpcpp
pr (t) =



Ecrt
pr ;

{
(SOC(t) ≤ SOCcrt) and (Sg ≤ 0)

}
Sg(t)−SL(t)
δSL f lx,max × (ER

pr − Emax
pr );

{
Sg(t)− SL(t) +

SOCmax−SOC(t)
ηd

b

}
≤ 0

Sg(t)−SL(t)

δS f lx,min
L

× (ER
pr − Emin

pr );
{

Sg(t)− SL(t) + (SOC(t)− SOCmin)× ηc
b
}
≤ 0

0; Otherwise

(12)

Sssap−vpcpp
L (x) = SL(x)

1 + ψpr(x,x)
[Essap−vpcpp

pr (x)− ER
pr(x) + Epd

pr (x) + Eps
pr(x)]

ER
pr(x)

+
T

∑
y=1,y 6=x

ψpr(x,y)
[Essap−vpcpp

pr (y)− ER
pr(y) + Epd

pr (y) + Eps
pr(y)]

ER
pr(y)


; for all x, y ∈ T (13)

where
Essap−vpcpp

pr (t) = ER
pr + δEssap−vpcpp

pr (t) (14)

3.4. Point Forecasting Using LSTM and Uncertainty Modeling Using Monte Carlo Simulations

Uncertainty modeling of the VREs and the load demand of the system and accurately
predicting their state hours in advance is crucial for efficient operation and resource capacity
planning of a VRE-based community microgrid.

3.4.1. LSTM-Based Point Forecasting

This work employs the long short-term memory (LSTM) approach to predict next-hour
load demand, solar irradiances, and wind speed point focus for each period for the entire
scheduling horizon. LSTM is a distinct variation of RNN (recurrent neural network) with
improved prediction capabilities [25]. The distinctive gate mechanism employed in LSTM
makes it robust to overcome the drawbacks of vanishing gradients during backpropagation
through time compared to other deep learning techniques [26]. This allows LSTM to retain
long-term dependencies in sequential data, making it a powerful choice for sequence-to-
sequence modeling [27]; thus, it is selected in this study based on its outstanding capability
in time series forecasting.

LSTM consists of a cell state and three gates: input, forget, and output [28]. The cell
state is a pathway for information modulated by the gates. The input gate (Equation (16))
determines what information is stored, the forget gate (Equation (15)) chooses what to
retain or discard, and the output gate (Equation (18)) selects the data to be output based on
the cell state [29,30].

ft = σ(W f · [ht−1, xt] + b f ); forget gate (15)

it = σ(Wi · [ht−1, xt] + bi) and C̃t = tanh(WC · [ht−1, xt] + bC); input gate (16)
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Ct = ft × Ct−1 + it × C̃t; update of cell state (17)

ot = σ(Wo[ht−1, xt] + bo) and ht = ot × tanh(Ct); output gate (18)

where σ is the sigmoid function, and ht−1 is the output from the previous time step.
xt is the input for the current time step. b and W are the biases and weights for each
gate, respectively.

3.4.2. Uncertainty Modeling with Monte Carlo

To ensure the robustness of the system designed with a guaranteed acceptable level of
reliability, Monte Carlo simulations (MCSs) have been incorporated into the optimal capac-
ity planning to account for the uncertainty of the VREs and the load demand. MCS method-
ology utilizes statistical sampling processes to generate random scenarios for stochastic
parameters: solar irradiance [31], load demand, and wind speed that reflect their uncer-
tainty [14]. The MCS technique models uncertainties by sampling inputs and transforming
them using probability distribution functions to generate scenarios [31,32]. This strat-
egy yields a finite number of possible scenarios for all stochastic parameters, enabling a
thorough evaluation of system robustness under various conditions.

3.5. MOPSO Algorithm and TOPSIS Ranking Technique

This study employs a hybrid approach combining a MOPSO (multi-objective par-
ticle swarm optimization) and TOPSIS (technique for order preference by similarity to
ideal solution) to solve and select the best optimal system configuration and operation
approach for the community microgrid. Based on the non-dominated alternatives obtained
from the MOPSO algorithm, TOPSIS ranks the non-dominated solutions and selects the
best solution.

3.5.1. Multi-Objective Particle Swarm Optimization

A MOPSO is a technique inspired by natural swarm behaviors to solve discrete and
continuous optimization problems [33]. It focuses on identifying optimal objective function
values using two solution points: local best Pbesti = (pi1, pi2, . . . , pid) and global best
Pbestg = gbest = (pg1, pg2, . . . , pgd). The subsequent particle positions are updated as:

Vt+1
id = w× vk

id + c1 × rand1 × (Pbestid − Xid) + c2 × rand2 × (gbestd − Xid)

Xk+1
id = Xk

id + Vk+1
id

w = wdamp ×
itermax − iter

itermax
+ wi

where iter is the current iteration, and itermax denotes the total number of iterations.
The MOPSO approach, in this work, sorts non-dominated solutions for improved

search accuracy within efficient, non-inferior, and admissible Pareto fronts; it is boosted
further by a mutation operator identical to the NSGA II algorithm [34]. For a multi-objective
problem with n objective functions and m decision variables, the goal is to minimize:

minimize ~f (~x) = [ f1(~x), f2(~x), . . . fn(~x)] for~x∗ ∈ ε

~g(~x) ≤ 0

~h(~x) = 0

Here, ~g and~h represent inequality and equality constraints, respectively. A point is
Pareto optimal if:

∀i ∈ I( fi(~x) = fi(~x∗))
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or for at least one i ∈ I:
fi(~x) > fi(~x∗)

3.5.2. Technique for Order Preference by Similarity to Ideal Solution

The core concept of TOPSIS is that the best optimal alternative should be closest
to the positive-ideal solution and farthest from the negative-ideal solution [35,36]. At
both the application and theoretical levels, TOPSIS is a highly effectual technique for
alternative evaluation in multi-criteria decision-making [37,38]. The TOPSIS procedure is
as follows [39]:

Normalize the optimal alternative matrix (xp,q).

vp,q = xp,q

√
m

∑
1

x2
p,q (19)

where vp,q represents the normalized attribute values.
Allocate weights (wq) to each of the attributes and compute the weighted normalized

matrix (Ep,q):
Ep,q = vp,q × wq (20)

Determine the positive-ideal E+ and negative-ideal E− solutions, respectively,
as follows:

E+ =
{(

max rp,q|q ∈ Q′
)(

min rp,q|q ∈ Q′
)}

(21)

E− =
{(

min rp,q|q ∈ Q′
)(

max rp,q|q ∈ Q′
)}

(22)

Compute the Euclidean distances from both the negative-ideal B−p and positive-ideal
B+

p solutions:

B+
p =

√
∑m

1
(
rp,q − r+q

)2 (23)

B−p =
√

∑m
1
(
rp,q − r−q

)2 (24)

compute Op, which represents the relative closeness to the ideal solution.

Op = B−p /
(

B−p + B+
p

)
(25)

Finally, alternative ranking based on the preference order is performed.

4. Multi-Objective Optimization Problems Formulation and Simulation Setup

The optimization process involves three techno-economic objective functions to deter-
mine the most cost-effective and efficient capacity configuration and operation planning for
a community microgrid. The three objectives encompass the economic criterion, reliability
requirements, and the management or curtailment of surplus VRE generation and/or load
curtailment, all while considering uncertain operating conditions.

4.1. Objective Functions

1. Objective 1—Total Life-Cycle Cost (TLCC) minimization (Economic criteria): The
first objective function is formulated as a total life-cycle cost (TLCC) minimization
problem, as elaborated in Equation (26), which aims to optimize the net present
value (NPV) of all costs associated with the system components incurred throughout
the system’s lifetime. The TLCC is composed of the investment costs (ICz), annual
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operation and maintenance costs (O&Mz), replacement costs (RCz), and salvage
value (SVz).

min TLCC =
Z

∑
z=1

{(
ICz +

n=N

∑
n=1

(O&Mz + RCz − SVz)

(1 + i)n

)
× Cz

}
(26)

where in Equation (26), z is used as an index to identify each specific component within
the system. The decision variables, denoted as Cz, signify the most efficient capacities
for the individual system components, namely PV (photovoltaic), ESS (energy storage
system), and WT (wind turbine). The project lifetime and the yearly time step are
denoted as N and n, respectively. The decision variables are the capacities of the WT,
denoted as Scp

w ; the photovoltaic panels (PV), denoted as Scp
w ; and the BESS, denoted

as (Scp
w ).

2. Objective 2—Deficiency of power supply probability (Reliability criteria): DPSP
is the ratio of the total curtailed load demand (the unserved energy demands) (Scurt

L )
to the total load demand over an entire operation planning period (T).

DPSP =
∑T

t=1 Scurt
L (t)

∑T
t=1 SL(t)

× 100% (27)

This score reflects the extent to which the system relies on demand curtailment
to balance power supply and demand. The lower the DPSP, the less the system
relies on demand curtailment (unserved energy demands), and the more reliable the
system [40,41].

3. Objective 3—Loss of Produced Power Probability (LPPP): LPPP is the proportion
of total curtailed power (wasted/unused) from VREs (Scurt

g ) to the total power that all
the VRE sources could potentially generate (Sg) during the entire operation period (T).
LPPP is a metric that signifies the likelihood of non-utilization of available variable
renewable energy (VRE) due to factors such as BESS restrictions, demand–supply
imbalances, or operational constraints [42].

LPPP =
∑T

t=1 Scurt
g (t)

∑T
t=1 Sg(t)

× 100% (28)

A high LPPP indicates a substantial waste of potential renewable energy, signaling
suboptimality in the power system’s operation and design.

4.2. Constraints

1. Demand-generation power balance constraints: At any given time (t), the combined
power from VREs and the BESS should meet the load demand, regardless of the DRP
or uncertainty considerations:

Sw(t) + Spv(t) + Sds
b (t)− Sch

b (t) = SL(t); (case 1)
Sw(t) + Spv(t) + Sds

b (t)− Sch
b (t) = Stou−vpcpp

L (t); (case 2)
Sw(t) + Spv(t) + Sds

b (t)− Sch
b (t) = Sssap−vpcpp

L (t); (case 3)
Sw(t) + Spv(t) + Sds

b (t)− Sch
b (t) = SL(t); (case 4)

Sw(t) + Spv(t) + Sds
b (t)− Sch

b (t) = Stou−vpcpp
L (t); (case 5)

Sw(t) + Spv(t) + Sds
b (t)− Sch

b (t) = Sssap−vpcpp
L (t); (case 6)

(29)

Cases 1 through 3 are deterministic, while Cases 4 through 6 incorporate load and
VREs uncertainties.

2. BESS constraints:

Sch
b (t) ≤ Sch,max

b
Sds

b (t) ≤ Sds,max
b

(30)
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Equation (30) represents the upper bounds for both the discharging (Sd,max
b ) and

charging power (Sc,max
b ) of the BESS, which are determined by the C-Rate of the BESS,

which is the rate at which the BESS is being charged or discharged relative to its
total capacity.

3. FDR constraint:

δS f lx,min
L (t) ≤ δS f lx

L (t) ≤ δS f lx,max
L (t) (31)

where (δS f lx,min
L ) and (δS f lx,max

L ) correspond to the minimum and maximum allowable
capacities for an FDR, respectively, at any given time (t).

4. Set electricity price limits:

Edrp,min
pr ≤ δEdrp

pr (t) ≤ Edrp,max
pr (32)

where (Edrp,max
pr ) and (Edrp,min

pr ) represent the maximum and minimum electricity price
limits, respectively, at any given time (t).

5. VREs power output limits:
0 ≤ Spv(t) ≤ Scp

pv (33)

0 ≤ Sw(t) ≤ Scp
w (34)

4.3. Optimization Parameters, Case Study, and Simulation Cases

This research explores various strategies for capacity sizing and operational planning
for a VRE-based community microgrid using MOPSO-TOPSIS in a Matlab environment.
Central to these strategies are forecasting, DRPs, and uncertainty considerations. Monte
Carlo simulations (MCSs) are employed to model the uncertainty of VREs and load vari-
ations. Load demand uncertainty is assumed to stem from two factors: the everyday
fluctuations in load demand typically experienced in a power system and the potential
uncertainties related to customer response to pricing volatility, among other factors due to
the implementation of DRP strategies. The mean absolute error (MAE) error metrics are
initially calculated based on the results of LSTM forecasting using Scikit-learn in Python.
The resulting MAE is then used as a sufficient indicator of the level of uncertainty for
each data point in time to quantify the uncertainty. The MCS then generates 50 scenarios
within a specified percentage range of the MAE [43,44]. This approach allows the simula-
tion of various potential outcomes for the stochastic parameters within each period, thus
facilitating a comprehensive evaluation of system robustness under various conditions.

4.3.1. Techno-Economic Parameter and Case Study

The proposed planning for a VRE-based community microgrid, aiming for a transition
to 100% VREs, has been investigated and validated using a real case study of an isolated
community microgrid in Kenya as a test benchmark. The existing microgrid system within
the case study predominantly depends on diesel power generation. The techno-economic
parameters, alongside the hourly load demand and climatic data for the Kenyan case within
the geographical space of 2.3369◦ N, 37.9904◦ E are all drawn from the actual conditions of
this specific area, as detailed in Table 1 [45–47].
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Table 1. Techno-economic parameters and specifications.

Economics [47]

Inflation rate 4 (%)
Discount rate 4 (%)
System lifetime 20 (years)
Scheduling horizon 8760 (h)

PV system [48]

Investment cost 1695 ($/kW)
O and M cost 26 ($/kW/yr)
Derating factor of PV 90 (%)
Lifetime 20 (years)

WT specifications [47]

Investment cost 2030 ($/kW)
O and M cost 76 ($/kW/yr)
Lifetime 20 (years)
Cut-in wind speed 4 (m/s)
Rated wind speed 14.5 (m/s)
Cut-out speed 25 (m/s)
Survival wind speed 60 (m/s)
Wind shear coefficient 0.143

BESS [49–51]

Investment costs 330 ($/kWh)
Replacement cost 330 ($/kWh)
Round-trip efficiency 90 (%)
Lifetime 10 (years)

4.3.2. Simulation Cases

In this paper, six distinct simulation cases are investigated, each representing a differ-
ent approach for the optimal planning and capacity sizing of a community microgrid:

• Case 1—Deterministic-based Planning (base case): This case focuses on capacity sizing
and operation planning without considering DRP and forecasting. A flat reference
pricing scheme is adopted in this case.

• Case 2—Deterministic-based planning considering TOU-VP-CPP DRP: This case
integrates the time-of-use (TOU) with variable peak critical pricing (TOU-VP-CPP
DRP). In this case, a TOU pricing model is merged with a VP-CPP DRP overlay for
exceptional events. During a normal state, the load profile is categorized into three
pricing periods: peak demand from 7 p.m. to 11 p.m. at 150% of the flat rate, off-peak
from 8 a.m. to 7 p.m. at the reference price, and low peak at 50% of the flat rate.
During an extreme event or critical microgrid state, the pricing is set to 200% of the
reference price.

• Case 3—Deterministic-based planning considering SSAP DRP: A shortage/surplus-
based adaptive pricing (SSAP) DRP is introduced. The pricing setup is dynamic, with
the maximum and minimum price limits set to 150% and 50% of the reference price,
respectively, during the normal microgrid state. During extreme events, the price is
set to an extreme rate of 200% of the reference price.

• Case 4—Stochastic-based planning considering uncertainty: This case accounts for
the uncertainty in VREs and the load demand using MCSs without incorporating any
DRPs or forecasting in the operation strategy. The pricing scheme is similar to that of
Case 1.

• Case 5—Stochastic-based planning considering uncertainty, TOU DRP, and LSTM
forecasting: This case employs stochastic optimization with MCSs to account for the
uncertainty in VREs and the load demand. It optimizes operation planning using time-
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of-use variable peak critical peak pricing (TOU-VP-CPP DRP). The pricing structure is
similar to that of Case 2.

• Case 6—Stochastic planning considering uncertainty, LSTM forecasting, and SSAP
DRP: The system incorporates SSAP DRP and employs forecasting for VREs and
the load demand to devise a flexible and responsive microgrid system. While the
pricing scheme is similar to that of Case 3, electricity prices for the upcoming hour
are announced one hour in advance based on the forecasted power imbalances in
the system.

These cases primarily vary in their considerations of uncertainty, DRP structure, and
incorporation of forecasting into the planning process.

4.3.3. Demand Response Structure and Flexible Demand Capacity

For all of the DRP schemes considered, the permissible FDR capacity is set to allowable
values of ±10% of the overall system load at any specified time t. The electricity tariff and
pricing structure are derived from the current tariffs established by the Kenyan Energy
Regulatory Commission [52]. In this research, the reference electricity price ER

pr is set to
15.80 US cents per kWh, which corresponds to the standard rate in the Kenyan electricity
tariff setup. The elasticity of the demand, in relation to various system loadings, are detailed
in Table 2.

Table 2. Demand’s price elasticity [53].

Peak Mid-Peak Off-Peak

Mid-peak 0.016 0.01 −0.1
Peak −0.1 0.012 0.016
Valley 0.012 −0.1 0.01

5. Results, Analysis, and Discussions

The simulation results for the six cases were determined; each focused on optimal
capacity and operation planning, with and without uncertainty, DRPs, and LSTM-based
forecasting consideration. The MOPSO algorithm was employed in each case to deter-
mine optimal planning results. Several non-dominated optimal configurations for system
components and their corresponding operational strategies were determined. The TOPSIS
technique prioritized and determined the most favorable and techno-economic planning
approach among the multiple optimal solutions (non-dominated).

5.1. LSTM-Based Point Forecasts for Wind Speed, Solar Irradiances, and Load Demand

The LSTM forecasting model was utilized for DRP implementation and Monte Carlo-
based scenario generation in Cases 4, 5, and 6. Figures 3–5, contrast the actual values with
the LSTM-predicted values for solar irradiances, wind speed, and load demand. The MAEs
for wind speed and associated WT power were 0.14 m/s and 23.81 kW, respectively. For
solar irradiances and the PV power output, the MAEs were 19.97 w/m2 and 21.07 kW,
respectively, with the load demand forecast showing an MAE of 24.68 kW.
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Figure 3. The actual versus one-hour-ahead LSTM-predicted values of solar irradiances.

Figure 4. The actual versus one-hour-ahead LSTM-predicted values of wind speed.

Figure 5. The actual versus one-hour-ahead LSTM-predicted values of load demand.

Drawing upon forecast accuracy indicators, MAE metrics were applied to generate
scenarios using MCSs for wind speed, solar irradiance, and load demand in Cases 4, 5, and
6. The scenarios were generated within a 25% range, a margin determined by the highest
MAE observed in the load demand forecast. To provide a concise view, only 50 generated
scenarios are depicted in Figures 6–8 for solar irradiances, wind speed, and load demand,
respectively. The reliability of the LSTM forecasting model has proved effective for wind
speed, solar irradiances, and load demand based on simulation results, as evidenced by
the low MAE scores. Thus, the forecasting model was adopted in Cases 4, 5, and 6 to
optimize the efficient use of VRE generation and mitigation of variability of VREs and
the load demand. The LSTM model’s precision is invaluable in enhancing the operational
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efficiency and generating uncertainty scenarios for a stochastic optimization using the MCS
technique.

A comprehensive analysis and discussion of the results for all cases considered is
as follows:

Figure 6. Shows solar irradiance uncertainty scenarios based on MCSs.

Figure 7. Shows wind speed uncertainty scenarios based on MCSs.

Figure 8. Shows load demand uncertainty scenarios based on MCSs.

5.2. Case 1: Optimal System Component Capacities and Operation Planning without Considering
Demand Response

Table 3 shows the optimal capacities of the microgrid’s components and the TLCC
against their corresponding reliability (DPSP) and VRE curtailment (LPPP) percentages for
the first four best-ranked non-dominated solutions. Figure 9a shows the non-dominated
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optimal Pareto front in 3D for the three objectives considered. As neither the DRP nor
forecasting is considered, the microgrid is optimized and operated in its fundamental form.
This solution is considered the least efficient for all cases because it neither anticipates
demand fluctuations nor optimizes planning based on varying VRE generation. Thus,
this case is considered a classical planning approach to capacity sizing and operational
planning, providing a baseline against which to compare more advanced techniques.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Figure 9. The Pareto front for the feasible and non-dominated solutions for all considered simula-
tion cases.
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Table 3. The optimal component capacities, DPSP and LPP, and their corresponding TLCCs for the
first four best-ranked non-dominated solutions for each of the six considered cases.

Case
DPSP

(%)
TLCC
(US $)

LPPP
(%)

PV
(kW)

WT
(kW)

BESS
(kWh)

TOPSIS
Rank

#1

0.48 10,377,384.54 6.26 1440 1850 4800 1

0.41 10,494,044.60 3.22 1300 1990 4400 2

0.00 11,019,716.78 1.21 1230 1990 6500 3

1.81 10,340,568.33 8.35 1690 1790 3800 4

#2

0.57 10,314,687.16 4.35 1530 1830 4200 1

0.76 10,362,979.42 1.30 1050 2130 4000 2

0.83 10,529,262.01 0.60 1120 2040 5100 3

0.03 10,899,321.22 5.22 1540 1960 4600 4

#3

0.06 9,649,293.00 1.33 1270 1840 3500 1

0.09 9,814,061.64 1.24 1090 1920 4200 2

0.01 9,893,660.45 1.95 1610 1670 3700 3

0.00 9,952,736.65 2.16 1280 1790 4900 4

#4

0.12 10,576,185.15 10.31 1480 2000 4900 1

0.00 11,157,231.69 4.32 1200 2260 4400 2

1.55 10,318,166.83 6.28 1290 2000 3700 3

3.52 9,718,020.35 3.09 1150 1960 3100 4

#5

0.36 10,378,836.97 5.05 1430 1930 3600 1

0.23 10,400,379.64 3.50 1710 1680 5100 2

0.00 10,570,027.75 1.56 1310 1960 4700 3

0.58 10,157,349.44 2.86 1480 1840 3900 4

#6

0.04 10,066,405.65 2.05 1420 1920 3200 1

0.00 10,093,575.32 3.23 1390 2050 4100 2

0.19 9,371,605.78 1.10 1580 1550 3800 3

0.11 9,319,214.79 0.73 1210 1850 2600 4

5.3. Case 2: Optimal System Component Sizing and Operation Planning Considering TOU
VP-CPP DRP

In case 2, incorporating TOU-VP-CPP DRP into the simulation introduced a more
robust approach to planning. Figure 9b presents the non-dominated optimal Pareto front
in 3D for Case 2, considering the three conflicting objectives: DPSP, TLCC, and LPPP.
Compared to Case 1, Case 2 reveals a substantial cost reduction of around 5%, from
$10,377,384.53 to $10,314,687.15 for the best-ranked results. This cost reduction, as shown
in Table 3, is achieved without significantly impacting or compromising the system’s
reliability (the DPSP is approximately 0.5% for both Cases 1 and 2). Implementation of the
TOU VP-CPP DRP pricing structure largely contributes to this cost-saving. By encouraging
consumers to shift loads from high-priced to low-priced periods throughout the day, energy-
usage efficiency improves, potentially leading to further cost reductions. This impact is also
evident in the decreased system component capacities, particularly the 12.7% reduction
in BESS capacities for the best-ranked configuration, as compared to case 1. While the
results based on VP-CPP application on top of TOU as a critical event mitigation strategy
did not rank among the best, their role in averting total system collapse during periods of
lower reliability and constrained generation is significant. However, this approach has a
notable limitation. With its static pricing, the TOU VP-CPP DRP scheme lacked sensitivity
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to variations in VREs and demand. This lack of responsiveness and flexibility towards
VREs hinders the system’s overall adaptability, affecting its techno-economic performance.

5.4. Case 3: Optimal System Component Sizing and Operation Planning Considering SSAP
VP-CPP DRP

In this case, capacity and operation planning are simulated and assessed, considering
the SSAP VP-CPP DRP. Figure 9c presents the non-dominated optimal Pareto front in 3D for
Case 3. As evidenced in Table 3, this case outperformed all other cases in terms of costs, with
the lowest TLCC of $10,278,836.96 and maximum reliability and a DPSP of 0.06% for the top-
ranked result. Moreover, it demanded the minimal optimal component sizes, in particular,
the BESS requirement of 3500 kWh, which is the minimum compared to Cases 1 and 2
(deterministic cases). The effectiveness of this case stems from its sensitivity to fluctuations
in VREs and demand due to the superior feature of the advanced shortage/surplus-based
adaptive pricing technique. This technique deploys dynamic and adaptive pricing to
harness adequate FDR by adjusting electricity prices based on supply and demand balances.
However, this approach is deterministic and does overlook the inherent uncertainty in load
demand and VREs.

5.5. Case 4: Optimal System Component Capacities and Operation Planning
Considering Uncertainty

This approach makes robust planning decisions by considering the inherent uncer-
tainty in VRE output and the load demand based on MCS scenarios when determining
optimal capacity sizing and operation planning. However, due to the introduction of
these uncertainties, matching the VRE generation becomes challenging, necessitating larger
component sizes for the PV, WT, and BESS.

As evident in Table 3, compared to all the planning cases, this configuration is the
most expensive, with a TLCC of about $10,576,185.15 for the best-ranked system and
$11,157,231.69 for the system with DPSP reliability set to the minimum. Similarly, this
system has the highest VRE curtailment of about 10.31% of the total VRE-generated power
compared to all cases investigated. Figure 9d presents the non-dominated optimal Pareto
front in 3D for Case 4.

While this case delivers a highly robust decision framework, it does not incorporate
predictive or responsive strategies. Its method for addressing uncertainties involves up-
scaling component capacities to increase reliability. However, this approach leads to the
highest overall system cost compared to all of the scenarios.

5.6. Case 5: Optimal System Component Sizing and Operation Planning Considering
LSTM-Based Forecasting, TOU VP-CPP DRP, and Uncertainty

This case closely resembles Case 2 but considers a stochastic optimization approach.
Accounting for uncertainties makes planning decisions more robust, similar to Case 4.
Combining TOU and VP-CPP pricing, the microgrid is designed to react proactively to
unexpected power imbalances in critical and non-critical states, enhancing the overall
reliability and efficiency.

Moreover, employing LSTM forecasting improves the accuracy of VREs output and
load demand projections, resulting in a more cost-efficient design than Scenario 4. When
comparing the best-ranked planning decisions in scenarios 1 and 4, there is an evident
reduction in component sizes, which subsequently helps decrease the overall system cost.
Figure 9e presents the non-dominated optimal Pareto front in 3D for Case 5.

An important point to note is that the LSTM forecasts enable the system to differentiate
between overlooking critical and non-critical events. Such anticipatory capability allows
for swift adjustments in pricing settings/decisions aligned with the TOU VP-CPP DRP
model, further improving the power utilization strategy and overall efficiency. However,
despite the aforementioned advantages of Case 5 over Case 1, 2, 3, and 4, this approach
has a significant drawback. The utilization of LSTM forecasting remains under-exploited
due to the predominance of non-dynamic pricing. The electricity pricing structure is still
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predominantly static due to the TOU VP-CPP DRP’s TOU aspect. The resultant electricity
price does not mirror the instantaneous variations in VREs and demand in the system. This
non-responsiveness necessitates bigger system components and increases the system’s cost
compared to Case 2 as outlined in Table 3. This lack of agility and adaptability in response
to VREs moderately diminishes the competitive edge of this planning approach.

5.7. Case 6: Optimal System Component Sizing and Operation Planning Considering
LSTM-Based Forecasting, SSAP VP-CPP DRP, and Uncertainty

Case 6 presents a stochastic optimization approach combined with SSAP VP-CPP
DRP and forecasting to devise an adaptable and resilient microgrid system that effectively
addresses uncertainty. This design synergistically integrated the adaptive pricing strategy
developed in Case 3 with the stochastic optimization under uncertainty inherent in Cases 4
and 5. According to the simulation results presented in Table 3, comparing the best-ranked
techno-economic results, Case 6 excels over other cases in terms of costs (minimum TLCC)
and optimized component sizes, especially the BESS, which stands as the most expensive
component (the selected capacity of BESS in Case 6 is only 3200 kWh, while other cases
have much bigger capacity sizes).

This system efficiently addresses uncertainties by coordinating precise forecasting and
DRP techniques. By leveraging SSAP DRP and VRE forecasting, the microgrid swiftly re-
sponds to immediate supply-demand imbalances. The SSAP pricing strategically activates
FDRs during VRE peak times and deactivates sufficient FDRs during periods of decreased
VRE output. This approach reduces the reliance on the more expensive BESS solution,
similar to the efficiencies observed in Case 3.

While the proactive management of uncertainties increases system robustness, evi-
denced by a notably low DPSP value of less than 0.04% in all the results tabulated in Table 3,
indicating superior reliability, it also necessitates more significant system components
(heftier investments), particularly PV and WT capacities. These increases render the system
somewhat more expensive than Case 3. However, the robustness and adaptability devised
in Case 6, especially during unforeseen critical states such as extreme weather conditions
or power imbalances, indicates that the system performs exceptionally well, demonstrating
superior reliability.

Though Case 3 may superficially seem economically advantageous, being cheaper
in terms of its TLCC by approximately 4% for the best-ranked results and 1% for the
scenario with the lowest DPSP (compared to Case 6), it is crucial to note that Case 3
follows a deterministic approach. In practical terms, scenario 6 offers a more realistic and
robust blueprint to weather the harshest scenarios, representing a near-ideal realization
of a community microgrid. Overall, scenario 6 sets a compelling precedent for future
community microgrids’ capacity and operational planning under uncertainty, especially
those targeting 100% VRE-based generation.

6. Conclusions

This paper proposed a comprehensive and holistic approach to microgrid planning,
which incorporates DRP strategies, accurate forecasting, and integrated sizing and opera-
tion planning for managing the complexities and uncertainties in VRE-based community
microgrids. This study aimed at evaluating and determining the best optimal configuration
and planning approach for component sizing and operation planning with consideration
for flexibility management strategies for a community microgrid with the lowest TLCC,
highest reliability, and minimum VRE curtailments. Six cases with unique strategies for
managing challenges posed by VREs and load demand in the optimal planning and op-
eration of a community microgrid, consisting of BESS, PV, and WT, were investigated.
From the results, Case 2, which considered the TOU VP-CPP DRP pricing, achieved a
5% TLCC without sacrificing reliability compared to Case 1, which is the base case with-
out the DRP, primarily due to TOU VPP on the pricing. However, it lacks sensitivity to
VREs and demand variations. On the other hand, Case 3 considered the proposed SSAP
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VP-CPP DRP, yielding optimal system planning at a higher reliability performance with
a minimum TLCC (of about 7% compared to Case 1) due to its adaptive pricing based
on the supply-demand power imbalances state in the system; however, the optimization
mentioned above is based on a deterministic planning approach. The simulation results for
Cases 4, 5, and 6 are based on stochastic planning approaches. Case 4 considered VRE and
load demand uncertainties, offering higher resilience, although at a higher TLCC due to
more extensive system component requirements. Case 5, an improvement upon Case 2 but
based on stochastic-based planning, integrates LSTM-based forecasting for VRE output
and load demand and yields better performances in reliability. However, its effectiveness is
hampered by the fixed pricing inherent in TOU DRP. Overall, Case 6 amalgamates features
from preceding cases, incorporating SSAP DRP based on adaptive pricing, LSTM-based
forecasting, and stochastic optimization. This results in enhanced adaptability and re-
silience to uncertainties. Incorporating LSTM forecasting combined with SSAP VP-CPP
DRP further enhances the system, providing foresight and ensuring ample time for effective
mobilization of FDRs to shift demand to periods of surplus generation or curtail demand
during supply shortfalls. This synergistic approach likely bolsters the microgrid’s resilience
against extreme events and ensures optimal VRE power utilization. Although Case 6
is more expensive than Case 3, its robust decision-making under uncertainty provides
guaranteed reliability under extreme weather events or upon the occurrences of a critical
state in the microgrid system. Thus, the proposed planning approach can be considered
the optimal blueprint for developing future VRE-based community microgrid systems.
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Nomenclature

VRE variable renewable energy
BESS battery energy storage system
DPSP deficiency of power supply probability (%)
PV photovoltaic system
WT wind turbine
T planning horizon (8760 h)
t hour index (hour)
Epd

pr penalty rates DRP (US cents/kWh)
Eps

pr incentive rates for DRP (US cents/kWh)
Sc

pv wind turbine’s power capacity (kW)
Sc

w wind turbine’s power capacity (kW)
Sg instantaneous total VREs output power (kW)
Spv instantaneous power output of PV (kW)
Sw instantaneous power output of WT (kW)
Sc

b BESS installed capacity (kWh)
SOCmax BESS maximum state of charge (kWh)
SOCmin BESS minimum state of charge (kWh)
SOCcrt BESS critical state of charge (kWh)
δS f lx

L instantaneous capacity of FDR (kW)
δSmax

L maximum allowable FDR capacity (kW)
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δSmin
L minimum allowable FDR capacity (kW)

FDR flexible demand resource
DRP demand response program
VP− CPP DRP variable peak critical peak pricing DRP
TOU DRP time-of-use DRP
TOUVP− CPP DRP TOU with VP-CPP DRP
SSAP DRP shortage/surplus-based adaptive pricing DRP
SSAPVP− CPP DRP shortage/surplus-based adaptive pricing with VP-CPP DRP
SL load demand (kW)
ER

pr reference price of electricity (US cents/kWh)
ETOU−VP−CPP DRP

pr TOU-VP-CPP DRP electricity price (US cents/kWh)
ESSAP−VP−CPP DRP

pr SSAP-VP-CPP DRP electricity price (US cents/kWh)
N project lifetime (years)
Scurt

L curtailed load demand
Scurt

g curtailed power from VREs
f inflation rate (%)
i annual interest rate (%)
d discount rate (%)
OandM operation and maintenance
II incident solar irradiance (W/m2)
Temp temperature of the PV module
αp temperature coefficient of the PV module
Λpv derating factor of PV (%)
DR demand response
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