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Abstract: This paper presents the concept of an innovative control of a central heating system in
a multifamily building based on the original thermodynamic model, the resulting architecture of
the control system, and the originally designed and manufactured wireless temperature sensors for
thermal zones. The novelty of this solution is the developed layers of the control system: distributed
measurement and correction analysis, which is based on the existing infrastructure and the local
HVAC controller. This approach allows for the effective use of the measured temperature data from
thermal zones and finally sending the value of the calculated correction of settings to the controller.
Moreover, in the analytical layer, a model was also implemented that calculates the necessary amount
of energy based on data from the subsystem of temperature sensors located in the thermal zones of
the building. The use of the algorithmic strategy presented in this paper extends the functionality and
significantly improves the energy efficiency of the existing, classic, reference heating control algorithm
by implementing additional control loops. Additionally, it enables integration with demand-side
response systems. The presented concept was successfully tested, achieving real energy savings for
heating by 12%. These results are described in a case-study format. The authors believe that this
concept can be used in other buildings and thus will have a positive impact on the energy savings
used to maintain thermal comfort in buildings and significantly reduce CO2 emissions.

Keywords: central heating; energy efficiency; thermal building model; distributed control systems

1. Introduction

The maintenance of thermal comfort and air quality within buildings consumes about
40% of total energy [1,2]. Due to the growing population of the Earth and the need to
reduce CO2 emissions, there is an urgent and deep need to improve the energy efficiency of
heating systems in multifamily buildings, hotels, and public buildings, which is due to the
lack of effective control systems and the effect of scale in this area. At the same time, it was
assumed that an efficient and relatively quick change of the current state is possible using
existing heating systems together with their accompanying control systems. However,
this requires supplementing its functionality with additional sensors (data sources) and
algorithmic optimization while maintaining thermal comfort in the building.

In addition, environmental changes resulting from human activity are increasingly
visible and felt. There is a real need to reduce CO2 emissions, move away from fossil
fuels, and increase the volume of emission-free energy generation from renewable energy
sources (RES), forcing a real technological revolution in thermal energy. Therefore, as a
natural complement to technological changes in energy systems, it is necessary to build
an appropriate knowledge base about the demand side and use it by mutually matching
resources to real needs. The optimization potential of such activities is estimated to be as
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high as several dozen percent in terms of energy generation and distribution efficiency.
The implementation of these innovations is supported by the growing potential of telecom-
munication and information technologies, allowing the implementation of demand-side
response (DSR) and day-ahead market (DAM) strategies. This requires multidimensional
identification of the object and buildings and gathering knowledge about the process of
power supply and heat distribution [1–3].

It should be noted that in multifamily housing, to provide central heating (CH) and
domestic hot water (DHW), buildings are equipped with heating substations, which are
an intermediate element between the municipal heating infrastructure and installations
in buildings. District heating and substation solutions until the 1960s had no regulating
devices or limited operating capabilities. Along with the development of electronic and
digital technologies, the energy consumption of local nodes was metered, and fees for
thermal energy were collected. To reduce the bills for this energy, regulators and controllers
were introduced to the heating nodes to ensure thermal comfort while saving energy. These
regulators, used until this day, usually operate in an open control loop, at most offering
the function of external temperature compensation, in accordance with the heating curve
programmed in their memory. Such an approach and action are not very effective and do
not consider many important thermodynamic aspects of the object, such as a multifamily
residential building [1,2,4]. However, the authors point out that this previously and still
largely used infrastructure of heating substation control systems can be the basis for a
relatively easy and quick expansion of the control function with new possibilities that not
only improve control but also contribute to the reduction of energy consumption related to
the process of heat supply to the building.

In the case described in this paper, the intention of the authors was to develop and
verify in practice such an innovative concept of controlling a heating substation that
would ensure seamless integration with the infrastructure already existing in the building
and, at the same time, would allow solving problems with which the classic regulators
offered on the market were not able to cope help. Therefore, after a thorough domain
analysis, a method and a solution were proposed that consider hardly identifiable thermal
phenomena in the building and actively influence the control function on their basis. This
solution is based on an original and innovative thermodynamic model that works with
a distributed network of original temperature sensors. Additionally, an effective system
was developed for data acquisition and implementation of diagnostic functions of the CH
system, including an approach based on the historical value-based approach. Finally, the
model has been implemented and verified in case study installation in typical multifamily
residential buildings in Poland, Central and Eastern Europe.

The remainder of this paper is organized as follows: Section 2 discusses related work
and presents the state of the art. Next, Section 3 presents methodology with a short
discussion of control strategies for heating systems as well as details of the original and
innovative thermal model of a multifamily residential building proposed by the authors.
Then, details of the developed network thermal energy control and management system
of the multifamily residential building are presented in Section 4. Afterwards, Section 5
provides the results of the experiments with analyses, and finally, the conclusions and
suggestions for future work are given in Section 6.

2. State of the Art and Related Works

In the scientific literature, the subject of controlling heating, ventilation, and air condi-
tion (HVAC) systems, in particular CH installations, is a popular and often analyzed issue.
Various scientific and engineering teams try to influence the quality of control of processes
that take place in heat substations in different ways.

In the context of the issues addressed in this article, the popularization of fuzzy logic
had a great impact on improving the quality of regulation in HVAC systems. According
to [5], systems based on fuzzy logic systems can reduce the number of sensors and improve
the quality of control. These systems used the following parameters to create control rules:
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• Current energy consumption, indicating the load at the moment;
• Medium-term trends, indicating the phases of heating and extinction;
• Short-term trends, indicating disturbances such as opening doors/windows;
• Average energy consumption of the previous day, indicating the general situation and

the heating level of the house.

A significant disadvantage of this approach seems to be the multitude of rules that
must be prepared in advance. It is also important to observe, identify, and prioritize the
meaning and significance of each of these rules. Despite the high effectiveness of the
system, its preparation is time-consuming and requires industry experience and specific
knowledge in the field. However, this technique has not been abandoned. On the contrary,
research and technical analyses are carried out on the possibility of its use in various control
strategies. Tieqiang S. et al. [6] showed that the traditional PID controller does not perform
the control task sufficiently well due to frequent changes of conditions in the tested CH
system—long delays and time dependence of this system. A PID controller with variable,
constantly adjusting parameters combined with fuzzy logic elements, was proposed. Based
on simulation studies, a higher control efficiency was demonstrated than in the case of the
classic PID controller. In turn, in [7], the authors used a modified PID controller (fuzzy
PID) and an intelligent distributed data acquisition system to improve the efficiency and
supervision of the CH system. The practical application of that solution shows that the
control system can enhance the advantage of the central heat supply system. In addition, it
is reliable and inexpensive to maintain.

The authors of [8] describe the idea of 4th generation district heating (4GDH) as
a coherent technological and institutional concept where smart thermal grids assist the
appropriate development of sustainable energy systems. In particular, they focused on the
possibility of using intelligent solutions and systems in the implementation of building
heating functions in the structures of local district heating networks. It has been proven
that their introduction to existing district heating networks is possible with relatively small
investment and technological expenditures. In [9], Jansen J. et al. undertook research on the
issue of control of 4th generation CH systems. The publication focuses on the comparison of
the control model based on predictions with previously used discrete rule-based methods.
The results showed an improvement in control, which allowed for energy savings by 17%
in the summer and by 3% in the winter.

According to the authors of [10], buildings consume about 40% of the world’s primary
energy, and HVAC systems are among the most significant factors affecting primary energy
consumption. Furthermore, the demand for HVAC energy is expected to increase in the
future. Therefore, improvements in the efficiency and design of HVAC systems would
be critical to mitigating global energy and environmental problems. The authors argue
that the model predictive control (MPC) approach plays a key role in the effective design
and operation of HVAC systems. They divided energy modeling issues according to the
following criteria:

• Different approaches for building energy modeling

# White-Box Modeling Approaches;
# Grey-Box Modeling Approaches;
# Black-Box Modeling Approaches;

• Application of MPC for different types of HVAC systems

# Radiant Cooling and Heating Systems;
# Air Handling Units (AHUs);
# Chillers and Cooling Towers.

In the paper [11], the authors put forward the thesis that the development of informa-
tion technologies and electronics provides access to an increasing amount of information
regarding the weather, temperature, and insolation, and thanks to this, better and better
building models can be created. The authors point to the fact that the popularity of the
MPC-based approach is increasing, and there are more and more review publications in



Energies 2023, 16, 6830 4 of 27

the literature on the issues of model predictive control in HVAC. The authors presented a
general outline of the MPC idea. In addition, they discussed several examples of HVAC
systems using this approach, showing various types of applications of this type of system.
On the other hand, in [12], Salakij S. et al. focus on developing an accurate building model
based on a physical approach. The model is used for model-based predictive control
(MBPC), which aims to optimize thermal energy management in a building. The MBPC
system has been developed to obtain an optimized temperature setting schedule based on
occupant activity. To verify the correctness of the model, the authors used the analytical
method and simulations in the Energy PLUS environment.

Publication [13] presents an analysis of various approaches to controlling HVAC sys-
tems, depending on their level of sophistication, using energy simulations, in which ANN
(artificial neural network) is the subject of research due to the need to implement a control
mechanism without sensors. ANN analysis was performed using real occupancy and
weather information collected for each day and hour, with energy simulations performed
for four scenarios using IDA-ICE software. The results for ANN showed that predicting
the time intervals of the occupancy of the facility can be determined with an accuracy of
almost 87%. The AR forecast also corresponded to various parameters, such as special
days (holidays, days off, days with excessive occupancy, etc.). This allows the use of the
proposed HVAC control algorithm throughout the year, without exceptions.

A comprehensive comparison of the performance of the MPC-based approach with
other approaches in control strategies was carried out in a literature review [14]. The
authors focused on the regulation of control methods, with particular emphasis on the
theory and applications of MPC in HVAC systems. Several control methods dedicated
to HVAC have been extracted from the literature review (Figure 1) and are followed by a
brief overview of each of these methods. Gaps in MPC research have been identified, and
directions for future research have been identified.
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In another study [15], the authors focused on formulating problems with MPC as
applied to the control and management of thermal energy in buildings as a whole (consid-
ering the dynamics of the building and the HVAC system). MPC has also been successfully
used in several other building infrastructure control applications. For example, the MPC
formula can be used to control and optimize electrical devices in apartments, the interaction
of a building with a smart grid, or a local microgrid with RES. Generally, MPC algorithms
have found effective application wherever energy resources management for construction
and prosumer installations is required, within the limits set.

Paper [16] summarizes research on the impact of MPC and weather forecasts on in-
creasing energy efficiency in integrated room automation (IRA) while maintaining comfort
for users. IRA is responsible for the simultaneous control of HVAC systems and the po-
sitioning of blinds as well as the regulation of electric lighting in a specific area of the
building so that the temperature, CO2 level, and lighting level remain within the defined
comfort range. MPC is an advanced control technique that, when used in buildings, uses
the building dynamics model and solves the problem of determining the optimal setting
values for control. The paper presents the development and analysis of the stochastic model
predictive control (SMPC) strategy for climate control in buildings, considering the uncer-
tainty resulting from the use of weather forecasts. In the first step, the MPC potential was
evaluated using large-scale factoring simulations of different types and HVAC systems for
four representative European sites. Then, for selected representative cases, the performance
of SMPC control, the impact of the accuracy of weather forecasts, and the adaptability of
the SMPC were examined. The results indicate that SMPC has a significant advantage over
the currently common practices of building control organizations.

In a different publication [17], the authors discuss metrics and examples pertaining to
testing environments designed for HVAC systems. In [18], the authors show the possibility
of simulating test conditions in a laboratory setting by employing an electrical circuit
composed of resistors and capacitors. This circuit represents the resistance and heat capacity
of various elements within a room, primarily focusing on air and walls. This model enables
the replication of natural environmental changes as needed, effectively allowing for the
emulation and recreation of unpredictable conditions. To address the impact of weather
fluctuations and human influence, a feed-forward method was introduced, altering its state
based on anticipated disturbances [19].

In another work [20], an Internet of Things (IoT) system was developed to monitor
an HVAC system in the Smart Factory. This system relied on temperature and humidity
sensors, as well as an energy meter for the air conditioning. However, the use of Wi-Fi
communication ruled out the possibility of using battery power for the sensors, significantly
limiting the capacity to collect data from multiple rooms through a single access point.

In a separate publication [21], the authors describe the architecture of a real-time
control system designed for heating energy management. This system combines a controller
based on FPGA with a cloud backend.

To simplify the assessment of HVAC systems, certain researchers [22] opt to focus
their measurements on a single room. This approach reduces the number of HVAC devices
under control and facilitates the creation of repeatable conditions. Some scholars argue
that indoor variations occur in cycles, and they suggest relying solely on user experience
feedback to gauge the effectiveness of the control strategy being tested. If user satisfaction
remains unchanged, the energy consumed by the HVAC equipment serves as an evaluation
metric [23]. When individuals experience discomfort, they change automatic settings,
leading to increased energy consumption by the HVAC system. The level of satisfaction
can be linked to the degree of thermal discomfort, which is zero if the temperature falls
within acceptable limits but follows a quadratic function of temperature deviations when
outside those limits. Additionally, the authors stress the importance of considering outdoor
temperature in their analysis, suggesting the use of heating degree days (HDD) as a
metric for this purpose [24], possibly in conjunction with metered energy usage data [25].
However, relying solely on HDD is insufficient for assessing user comfort [26], but it
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becomes valuable when combined with information about HVAC energy consumption
and indoor temperature. Other performance criteria can also be employed as optimization
objectives in various HVAC control strategies. These criteria include energy consumption,
cost and peak, fossil fuel consumption, HVAC system runtime, thermal comfort, and CO2
emissions [27].

It is important to note that some of the solutions discussed in publications require
completely new hardware infrastructure, which entails a significant increase in the cost
of upgrading and using such systems. Moreover, the use of machine learning/artificial
intelligence techniques is a complex task requiring large amounts of data and measurement
samples, and it significantly increases the complexity of control methods. Additionally,
there is a noticeable lack of orientation towards 4th generation district heating networks.
Due to the adoption of regulations regarding the conservation of energy consumption and
also for the needs of heating, it is important to provide an effective way to introduce a higher
quality control system to existing buildings as part of the thermal modernization process.

3. Methodology

To develop a thermal model best suited to the class of multi-family buildings, and
at the same time with a relatively simple algorithmic and computational structure, a
methodology was adopted based on the analysis of the control strategy and then including
its results in the model structure.

3.1. Control Strategies for Central Heating Systems in Buildings

In a standard CH system, the controller measures the outdoor temperature (Figure 2)
around the building and then calculates the setting of the water supply temperature
for radiators considering the calibration curves roughly selected based on the building
documentation. In single-family buildings, a room temperature sensor in a selected place
in the building (usually the living room) is most often used as feedback from the facility.
However, in the case of larger buildings, multifamily buildings, hotels, schools, and offices,
no sensors are usually used. Therefore, the verification of calibration curves’ building use
profiles is simplified. Usually, the only steps taken to roughly optimize the control process
result from the design documentation and the experience of the heat substation automation
system installer and are set at the level of the weather regulator [28].
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The implementation of the room control strategy allows not only for effective man-
agement of, e.g., night/weekend time set back of the reference value (Figure 3), but also,
which is equally important, allows for effective compensation of yields from heat energy
streams Φ and dissipation in the building as well as from oversizing design of the heating
system, which are used during installation works in the building. In design practice, an
oversizing of the heating system is usually used, mainly for legal reasons (the need to
guarantee thermal comfort during cold winters). However, the issues of availability of only
the estimated demand for heat energy of the building are equally important (leaks and the
so-called thermal bridges in the building structure, which are the result of inevitable execu-
tion errors, are not taken into account); it is also very difficult to determine the actual value
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of the so-called multiplicity of air exchange in the building, in gravitational ventilation
systems, and the phenomenon of building infiltration by external air.
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Considering these weakness and challenges of control strategies for central heating
systems in multi-residential buildings have been identified. The hydraulic structure of
the reference heating substation for the building analyzed as a case study in this article
is a parallel connection of CH and DHW circuits. This means a certain independence of
the work of these circuits, which, however, must be balanced to the so-called ordered
power, resulting from the contract with the heat supplier, and the heat connection power,
which is limited by the efficiency of the system. The detailed information of the reference
installation is provided in Section 3.3. In both circuits, the primary side (the so-called high
parameters) can be distinguished, where both pressures and temperatures are higher due
to lower energy transmission losses, and the secondary sides of the circuits, operating on
reduced parameters and supplying, respectively, radiators with a hot heating medium and
taps for hot tap water at users.

In the CH circuit, the output temperature of the circuit behind the heat exchanger is
controlled with the use of standard PID control by means of an actuator which is a valve.
The task of the local HVAC process controller is to maintain the set temperature resulting
from the so-called heating curve (calibration curve), as well as regulation according to the
variability resulting from the variable temperature of the medium on the high-parameter
side, depending on the external temperature, which is regulated by the heat supplier. DHW
circuits do not accumulate heat, and, additionally, in newer installations, there is no DHW
tank on the secondary side of the heat exchanger, which means that the control system must
perform “on-the-fly” control, which is difficult due to the high dynamics of changes and
emerging disturbances in the form of hot water dispensing. In less advanced installations,
which constitute the vast majority on the market, the control of the output temperature
of the DHW circuit is carried out using standard PID control by means of an actuator
which is a valve. Issues related to the optimization of energy consumption by the DHW
installation will be the subject of future work and the authors intend to describe them in a
separate paper.

3.2. Original, Innovative Thermal Model of Building

Based on the conducted research and numerous consultations with experts in the
HVAC industry, many types of heat fluxes Φ operating in the building (Figure 4) have been
identified, which are dispersed to the surroundings of this object:

• hot heating medium supplied with CH node: ΦCH;
• hot heating medium supplied with RES systems: ΦRES;
• heat flux from building users (according to various sources, generation of 60–80 W of

thermal power per person is assumed): ΦUSER;
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• heat flux coming from infrared radiation (infrared) emitted by the Sun and aggregated
in the building through window glazing: ΦSUN;

• heat flux coming from the dissipation power of electrical receivers used in the building:
ΦELEC;

• heat stream coming from the thermal energy of the air exchanged in the building as a
result of both gravitational and mechanical ventilation: ΦVENT;

• heat flux penetrating individual surfaces of the external building envelope due to
force, which is the temperature difference between the inside of the building in each
zone and the external temperature of the partition on a given surface: ΦOUT.
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Based on a simple hourly method an equivalent resistances and one capacitance (5R1C)
network model of a building (zone) [29,30] where the thermal-electrical analogy is based on
the similarity between electric current and heat flux, an original thermodynamic model was
built with a resolution to the type of partition (on the passive side) and the many possible
sources of thermal energy supply to the system and dissipation fluxes (Figure 5).

Despite the common opinion among researchers and experts about the great com-
plexity of building the issue of energy modeling, it was assumed that the model prepared
based on many solutions described in the scientific and industry literature [31–34] would
be as functional as possible. That is, it will consider (qualitatively and, if possible, quanti-
tatively) the physical phenomena occurring in the building in a representative way and
will be utilitarian, i.e., operational enough to be used in the process of analysis and creation
without the use of advanced IT tools (e.g., Matlab package) and algorithms that control
the topology of a heat substation, which are used in construction. The thermal model of
external partitions developed by the authors, containing the capacity C, will also allow for
the analysis of dynamic states in the building under changing external conditions (TOUT
temperature).

• The first six heat fluxes, i.e., ΦCH + ΦRES + ΦUSER + ΦSUN + ΦEL + ΦVENT, are treated
in the model as corresponding to current sources, i.e., those whose flux, i.e., current,
depends only on the nominal current efficiency of the source and not on the conditions
in the building or outside of it (external from the perspective of the source). On the
other hand, the thermal energy dissipation QOUT is treated in the model as correspond-
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ing to voltage sources, i.e., those whose flux, current, depends only on the conditions
(temperature) prevailing in the TIN building and outside its TOUT.
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The model uses the concentrated heat capacity C of the partition to write a differential
equation modeling changes in its temperature as a building structure. For example, for the
north wall of the building TWALL_NORTH:

CWALLNORTH ·
dTWALLNORTH

dt = − 1
R 3WALLIN

·
(
TAIRIN − TWALLNORTH

)
·AWALLNORTH

− 1
R 4WALLOUT

·
(
TWALLNORTH − TAIROUT

)
·AWALLNORTH

(1)

where CWALLNORTH represents thermal capacity of the northern wall of the building,
TWALLNORTH represents temperature of the northern wall of the building, and R3WALLIN
and R4WALLOUT represent value of the layer thermal resistance and can be determined by
dividing the thickness with thermal conductivity of the material.

Thermal resistance is the reciprocal of thermal conductance, and this relationship is
described in Equation (2). TAIRIN represents indoor air temperature, TAIROUT represents
outdoor air temperature, and AWALLNORTH represents the surface area of the north wall.

R =
L
k
=

1
C

(2)

where R represents thermal resistance, L represents thickness of layer, k represents conduc-
tivity of the material, and C represents thermal conductance.

This relationship shows that the rate of change, i.e., the derivative of the temperature
of the building structure (average, representative), depends only on the size of the energy
streams dissipated by the building to the environment. Finally, the structure of the entire
building, expressed by the equations relating to its partitions, is described by the following
equations.

• The north wall of the building

CWALLNORTH ·
dTWALLNORTH

dt = − 1
R 3WALLIN

·
(
TAIRIN − TWALLNORTH

)
·AWALLNORTH

− 1
R 4WALLOUT

·
(
TWALLNORTH − TAIROUT

)
·AWALLNORTH

(3)
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• The south wall of the building

CWALLSOUTH ·
dTWALLSOUTH

dt = − 1
R 5WALLIN

·
(
TAIRIN − TWALLSOUTH

)
·AWALLSOUTH

− 1
R 6WALLOUT

·
(
TWALLSOUTH − TAIROUT

)
·AWALLSOUTH

(4)

• The west wall of the building

CWALLWEST ·
dTWALLWEST

dt = − 1
R 7WALLIN

·
(
TAIRIN − TWALLWEST

)
·AWALLWEST

− 1
R 8WALLOUT

·
(
TWALLWEST − TAIROUT

)
·AWALLWEST

(5)

• The east wall of the building

CWALLEAST ·
dTWALLEAST

dt = − 1
R 9WALLIN

·
(
TAIRIN − TWALLEAST

)
·AWALLEAST

− 1
R 10WALLOUT

·
(
TWALLEAST − TAIROUT

)
·AWALLEAST

(6)

• The floor of the building

CFLOOR· dTFLOOR
dt = − 1

R 11FLOORIN
·
(
TAIRIN − TFLOOR

)
·AFLOOF

− 1
R 12FLOOROUT

·
(
TFLOOR − TAIROUT

)
·AFLOOF

(7)

• The roof of the building

CROOF· dTROOF
dt = − 1

R 13ROOFIN
·
(
TAIRIN − TROOF

)
·AROOF

− 1
R 14ROOFOUT

·
(
TROOF − TAIROUT

)
·AROOF

(8)

where Ci represents the thermal capacity of the i-th individual surface of the building, Ti
represents the temperature of the i-th individual surface of the building, Ri represents the
value of the individual layer thermal resistance, and Ai represents the surface of each layer.

The main objectives of identifying energy phenomena, and then building a mathe-
matical energy model based on them, were as follows: analysis of the building’s demand
for heat energy, both in the daily and annual horizon (heating season), and the analysis
of the building’s dynamics, understood as the temperature response of the building to
forcing in the form of changing the external and internal temperature (e.g., increasing the
temperature settings set by the user).

3.3. The Heat Energy Balance in a Building along with the Control Function Correction Based on
the Thermodynamic Model

Overlapping, hardly identifiable, and hardly measurable thermodynamic phenomena
in buildings have the effect that the temperature in the rooms usually significantly exceed
the standard temperature, defined at 20 ◦C, and resulting from the implementation of
the weather control strategy by the local central heating controller. This fact directly
leads to excessive, irrational energy consumption and contributes to progressive, negative
climate processes.

Since the distribution of the temperature field in a homogeneous building partition is
approximately linear (Figure 6), and for layered partitions the resultant heat transfer coeffi-
cient in (W/(m2·K)) is determined, the “external” temperatures of partitions TOUT_WALL_N,
TOUT_WALL_S, TOUT_WALL_W, TOUT_WALL_E, TOUT_FLOOR, and TOUT_ROOF in (◦C), i.e., the
north, south, west, and east walls, as well as the floor and ceilings with the roof, are treated
as the temperature outside the TAIR_OUT building.
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Using the thermodynamic model of the building structures developed by the authors,
a relationship was determined that allowed the assessment of the energy condition of the
building with the use of a distributed temperature measurement system in thermal zones.
In that equation, the heat fluxes Φ have been converted to Q in (W) for easy use by the
control system to balance the thermal energy losses in the building environment by the
volumes of energy volumes needed to be delivered by the supply systems:

CAIRIN ·
dTAIRIN

dt = QCH + QRES + QUSER + QEL + QSUN + QVENT − UWINDOWS·AWINDOWS·(TAIROUT − TAIRIN )
−UDOORS·ADOORS·

(
TAIROUT − TAIRIN

)
− UWALLSOUTH ·AWALLSOUTH ·

(
TAIROUT − TAIRIN

)
−UW LNORTH ·AWALLNORTH ·

(
TAIROUT − TAIRIN

)
− UWALLEAST ·AWALLEAST ·

(
TAIROUT − TAIRIN

)
−UWALLWEST ·AWALLWEST ·

(
TAIROUT − TAIRIN

)
− UROOF·AROOF·

(
TAIROUT − TAIRIN

)
− UFLOOR

·AFLOOR·(TSUBSTRATE − TAIRIN )

(9)

where CAIRIN represents the thermal capacity of air within the room, QCH represents the
power of central heating, QRES represents the power of RES, QEL is the power dissipated
by household appliances, office equipment, and lighting, QSUN represents the solar heat
gain, QUSER represents the power generated by building users, and QVENT is the cooling
power related to ventilation—Ui represents the heat transfer coefficient of the i-th individual
surfaces of the building. TSUBSTRATE represents the average soil temperature—in Poland—it
is equal to 280.75 K.

The presented model has been parameterized to a real multifamily residential building
with the following parameters (Tables 1 and 2).

Verification of the developed thermodynamic model and its calibration for the afore-
mentioned reference building was also carried out using the recognized OpenStudio
collection of software tools, where OpenStudio SketchUp Plug-in has been used for the
graphical aspects of building modeling (i.e., geometry) and EnergyPlus as simulation
engine (Figure 7) and eQuest simulation environments, giving very similar energy results
for the registered process variables and environmental parameters.
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Table 1. Parameters of the reference building.

Parameter Value

Location Warsaw, Poland, Central and Eastern Europe
Building type Multifamily
Climatic zone III

Design outdoor temperature −20 ◦C
Heated area of the building 1209.2 m2

Air changes per hour 3.5
Heated volume 3229.8 m3

Number of floors 5
Number of apartments 31

Number of rooms 155

Table 2. Thermal transmittance for each type of partition in the reference building.

Type of Partition Thermal Transmittance [ W
m2∗ K ]

Interior doors 2.600
Window 1.500

Floor in basement 0.283
Floor on the ground 0.250

Roof 0.185
Ceiling 0.280

Interior wall 12 cm 1.255
Interior wall 15 cm 0.955
Interior wall 30 cm 0.668

Exterior wall 0.240
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The developed and verified thermodynamic model provides important information
that has been used to improve the efficiency of energy supply to the building to ensure
thermal comfort. The first piece of information is to know whether the building is supplied
with the right amount of energy or if too much or too little energy has been supplied. This
information allows us to make the mentioned correction. In addition, if information about
the forecast value of the external temperature is provided to the appropriate inputs of the
model, the volume of energy to be delivered to the building in the assumed time window
will be determined analytically. This information is used as the most important factor of
the developed adjustment.
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By calculating the volume of energy deviating from the assumed thermal comfort, the
value of the slope of the heating curve is changed in a dynamic and follow-up manner;
thanks to which the control is carried out on a principle similar to the concept of power
guards. Regulation is still the responsibility of the local HVAC regulator. To determine
the new value of the slope of the heating curve, information about the demand for energy
in the future is adopted, and the response of the building from the past to the present is
considered as an offset. The new value of the slope of the heating curve is calculated after
the final determination of the energy to be supplied, and then, based on the information
about the flow and return temperature, the desired value of the supply temperature is
calculated based on the recorded outdoor temperature.

The task of the CH system is to supply heat to the building to maintain the set
temperature variable, the so-called thermal comfort in the building, measured in (◦C). But
in terms of the process, it comes down to the compensation of the heat dissipation streams
of the building through the partitions, which is shown in equation no. 9. If the system
supplies more energy than the sum of Q fluxes, the building will be overheated above the
comfort temperature, and if it supplies less, it will not be overheated and get cold. The
measure of this phenomenon is the derivative of the temperatures of the heating zones of
the object, which was normalized over its surface. This process (so-called “weather control”)
is supervised by the automation system, i.e., a dedicated HVAC local controller, whose
task is to adjust the temperature of the TSUPPLY medium by setting the valve appropriately
depending on the external temperature (Figure 8).
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This relationship is determined by the characteristics of the heat exchanger shown in
Figure 9: the lower the outdoor temperature, the higher the so-called “supply” (red curve),
but also the greater the gradient in relation to the temperature of the so-called “return”
(blue curve).

The circulating pump (Variable Speed Drive—VSD) in the reference system was respon-
sible for maintaining the appropriate gradient (TSUPPLY–TRETURN). Hence, the implemented
strategy was a “qualitative and quantitative” regulation. The task of the implemented
correction layer is parallel to the so-called weather regulation tracking correction of excess
heating power reduction from the system in heating zones (room regulation). Implemen-
tation of the change in the settings of the heating curve consists of calculating its new
inclination based on determining the building’s demand for heat energy, which is based on
the developed thermodynamic model of the building and forecasted weather conditions, as
well as measurements from distributed temperature sensors. Regulation based on project
prediction of the facility (building energy audit, node design, selection of exchanger, pipes,
and radiators) is therefore treated as coarse, and “adjustment”, by correcting the parameters
of “coarse” regulation, as precise regulation, i.e., de facto energy optimization. Therefore,
the regulation was finally left to the local regulator and, through the calculations of the
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thermodynamic model based on the weather forecast and the observation of the direction
and dynamics of temperature changes inside the building, the slope of the heating curve
was corrected.
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4. Network Thermal Energy Control and Management System of a Building—A
Case Study

An original multi-level heating installation control system was developed, which
key part is the aforementioned thermal model. The aim of the implemented system is to
minimize the consumption of thermal energy in buildings. The structure of this control
system has been divided into three logical layers (multi-level control), and the system
topology is shown in Figure 10:

• Direct control layer with external temperature compensation (the so-called weather
control): This performs, using dedicated HVAC controllers, a classic control task,
allowing for the non-stationarity of the process, i.e., changes in meteorological condi-
tions over time. In Figure 10, this layer is labeled in an area called “Heating node”,
and the control in this layer is corrected by the parent layers;

• Distributed measurement layer: Thanks to the use of a system of distributed measure-
ment sensors inside each heating zone, it is possible to consider the thermal response
of the building, taking into account additional heat fluxes generated and dissipated
by heating zones (household appliances, users, insolation, etc.). The distributed
measurement layer is labeled in Figure 10 as “Flats”.

• Analytical and correction layer: In Figure 10 marked as “Analytical and correction”.
Based on the calculations from the thermodynamic model of the building, considering
the weather forecast and measurements from the system of distributed temperature
sensors, the correction of the heating curve for the local HVAC controller is worked out.
The purpose of this adjustment is to reduce the consumption of thermal energy while
maintaining thermal comfort. In addition, the system implemented in the analytical
layer allows for the assessment of the energy efficiency of the solution and offers
further optimization potential of the system.
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The issue of assessing the energy efficiency of a building is a non-trivial problem
that requires a special methodology, especially in a situation where there have been some
modifications to the system and the relative effectiveness needs to be compared. The reason
for this is the stochastic non-stationarity of the heating process (no two heating seasons are
the same) and the lack of repeatability of objects (no two buildings are the same). Therefore,
the HVAC industry uses various, often very complex, comparative methodologies that
require certain analytical tools for their effective use [34,35].

In the implemented and presented solution, two comparative strategies were used.
The strategy of the so-called energy benchmarking, where individual circuits were treated
separately, is as follows: CH, DHW, and the entire heating system in (kWh). Each of
them has been properly normalized and parameterized. Energy benchmarking consists of
analyzing the building’s energy consumption and then comparing it with the “previous”
archival efficiency of the building (in the case of significant modernization works), with
similar buildings or modeled simulations of a reference building of a certain standard.
The second, an adopted comparative strategy, referred to as M&V (measurement and
verification) reports, is a process used to measure and verify energy savings resulting
from planned changes in all or part of the energy infrastructure of a specific building or
group of buildings in a defined, disciplined, and transparent manner. The key features
characterizing the M&V reports mentioned in the literature [36] are as follows: accuracy,
uniformity, and methodological transparency. In simple terms, it consists of comparing
energy consumption before and after energy modernization and is based on the basic
formula of the M&V approach:

Savings = (Baseline consumption − Consumption after modernization) (10)

Comparing non-normalized data from invoices or measuring devices only illustrates
the “raw” increase or decrease in consumption over the analyzed period, without consider-
ing the factors affecting consumption. The main purpose of M&V reports is to isolate the en-
ergy effect resulting from the modernization, which is often “blurred” during measurement
by other processes occurring in the analyzed building. Normalization of measurements by
considering external factors that affect energy consumption and are not derived from the
energy efficiency of the process itself reduces this impact. To maintain good measurement
coherence of the applied methodology, the launched network thermal energy management
system used the building’s measurement and process data before running the optimiza-
tion algorithms, which allowed the baseline consumption to be determined on the same
measurement path as after the system modification.
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4.1. Distributed Temperature Measurement System

To allow the acquisition of measurement data from many thermal zones in the building,
which represent its thermal condition and, consequently, thermal comfort, a dedicated
temperature measurement system was developed. It consists of a series of distributed
sensors with a wireless communication interface. The design of the sensors is an original
solution designed by the authors to achieve full wireless both in communication and power
supply. This allows the installation and launch of the temperature measurement system
without additional installation work. Individual sensors communicate with the module
acting as the edge router (ER). Data from temperature sensors are sent to the ER using the
LoRa radio protocol, commonly used in telemetry in buildings. The edge router, which
collects data from many sensors, sends it to the analytical and correction layer of the system
using the MQTT network protocol. The communication diagram is shown in Figure 11.
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Figure 11. Diagram of the communication of temperature sensors with the analytical correction layer
of the system.

Due to the impossibility of supplying dedicated power to the sensors in the apart-
ments, it was decided to use battery power. High-capacity lithium batteries were used.
Considering that building heating is a process burdened with quite high inertia, the hourly
measurement resolution is sufficient. Therefore, the durability of the sensor has been
estimated at about 10 years. The sensors used are shown in Figure 12.
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Figure 12. Wireless temperature and humidity sensor powered by a battery with a LoRa radio
interface.

To provide a redundant data storage system in relation to the commercial SkySpark
3.0.27 system used in this case, it was decided to develop our own database system based
on an MS SQL server and write a dedicated application programming interface (API)
for it. In addition, a dedicated web application has been developed that allows one to
view the values from the sensors, along with the date of the last measurement. Such
duplication of the data acquisition system allows the confirmation of the correct operation
of the distributed temperature measurement system. Figure 13 shows the view of the
web application.
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thermal zones.

4.2. System Architecture

In modern automation systems, multilayer and multi-level control frameworks are
used due to the possibility of implementing various optimization criteria at individual
levels of the control system. This approach also allows for using process variables (raw
data) as information to better control the process and manage resources. Figure 14 shows
the framework of the designed system with individual layers and elements of the system.
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It should be emphasized that raw process data at the DCC (digital local command
controller) level are being changed into useful information in SPC (SuPervisiory Control).
In larger industrial systems, separate software is responsible for the implementation of
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individual layers (classes: SCADA, MES, ERP). The developed control layer of the superior
control system contains many software solutions. It is functionally responsible for the
implementation of tasks related to the system analysis and correction of the regulator’s
operation. The part of the system responsible for logging and acquisition of measurement
data and their graphical presentation is based on the SkySpark environment.

4.3. Software Layer

SkySpark is a comprehensive software platform for connecting, storing, analyzing,
and visualizing data from smart devices and equipment systems. Its automated analytics,
tools, and apps turn data into actionable intelligence, providing improved performance,
reduced downtime, and operational savings.

Using visualization and data processing tools in SkySpark, a clear, legible, and intu-
itive dashboard was developed (Figure 15). It provides basic information about external
temperature, the average temperature in thermal zones, the current load of CH systems,
DHW systems, and total systems in kW, as well as the geolocation of the building.
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As part of the work on the software layer of the system, a report template was prepared
to inform about the consumption of thermal energy by a given facility/building. An
example report is shown in Figure 16. The first graph informs about the normalized
consumption of thermal energy by the facility, divided into CH and DHW. The second
graph in the report is a heat map showing the distribution of heat energy consumption in
the building over time. The red color indicates moments of higher energy consumption.
The third graph in the report is a comparison of the building’s heat energy consumption
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over time with the designated base consumption. The last element of the report is the time
axis on which exceeded ordered power is marked in blue.
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The last and most important element of the superordinate layer of the developed multi-
level control system is a script implemented in Python. It calculates the building’s energy
demand for the next hour based on data from the facility and the proposed proprietary
model of the building as well as the weather forecast. Then, a new slope of the heating
curve is calculated and sent to the controller, which controls the substation. The correction
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of the heating curve is calculated every 1 h. The script was embedded in the ER, which
provides two-way data transmission with devices operating on the technical installation.
The diagram in Figure 17 presents how the script works.
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5. Results and Discussion

As a result of the technical implementation of the described research work, the system
presented in this paper was implemented on a real object. In the case analyzed with a
specific building (description of the parameters of the reference building in Section 3.3),
even though the design of the heating installation was carried out in accordance with
the relevant regulations, standards, and the so-called ‘good practice’ and then installed
and calibrated weather controller, it was not possible to achieve thermal comfort for
building users in the heating substation. This building was usually overheated, which was
additionally associated with higher than required financial outlays for thermal energy, for
example, due to penalties for exceeding the ordered power. After the implementation of
SkySpark software and coupling it with the central heating installation in the facility as well
as the installation of a distributed temperature measurement system inside the building,
the acquisition and logging of measurement data was started—the first stage was with ten
sensors (two for each floor).

In the next stage of the research, the collected data was used to verify the thermal model
of the building and to determine the baseline energy consumption, which was calculated
based on heating degree days, using the functions built into SkySpark. Data collection was
started in 2021, and these data were used to determine the energy baseline. Then, in 2022,
the designed system and its testing sequences began work. Data from the heating node were
logged with a frequency of 1 min—which translates into 1,051,200 measurement samples
for each measurement point over a period of 2 years. Thirty measurement points were
logged. On the other hand, data from temperature sensors were logged with a frequency
of 30 min—which translates into 35,040 samples for each sensor over a period of 2 years.
There were 10 sensors connected to the system. All values are stored in the form of a 32-bit
float variable, which means that the entire data set is approximately 120 MB in size.

They were used to verify energy consumption and introduce a correction layer into
the system. After developing and verifying the model on the specific building mentioned,
a dedicated Python script was prepared, whose task was to correct the slope of the heating
curve to reduce energy consumption in the building while maintaining thermal comfort.

Figures 18–21 show print screens from the analytical layer of the system, based on the
SkySpark software, presenting the current consumption of heat energy in the building (red
line, in kWh, data from heat meters) with hourly resolution and baseline (blue line in kWh)
for several selected days, which were differentiated in terms of weather conditions:

• 16 January

# at baseline: 603 kWh, consumption: 529 kWh, savings: 74 kWh, percentage:
12.27% (Figure 19);

• 4 February

# at baseline: 462 kWh, consumption: 411 kWh, savings: 51 kWh, percentage:
11.04% (Figure 20);

• 7 February
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# at baseline: 515 kWh, consumption: 452 kWh, savings: 63 kWh, percentage:
12.23% (Figure 21);

• 24 March

# at baseline: 307 kWh, consumption: 269 kWh, savings: 38 kWh, percentage:
12.38% (Figure 22).
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Figure 19. Print screen of the daily energy consumption and savings in the reference building on
4 February.

The waveforms from Figures 18–21 clearly show that the actual energy consumption
during the operation of the developed system with the correction layer is noticeably lower
than the values estimated based on historical data, and the red curve most often remains
below the level of the blue curve. It is also clearly visible in Figure 18 that between 3:00
and 10:00 a.m. the actual consumption curve (red) is more stable in terms of the variable
component content. This is the result of considering temperature readings collected at a
real facility in the control procedure because the thermal inertia of this building is a natural
low-pass filter that eliminates fluctuations related to temporary temperature decreases or
process variables measured and calculated by the local process controller. Additionally, in
the same Figure 18, it can be seen that despite the temperature decreasing after 4 p.m. and
a temporary increase in energy consumption, on the red curve it occurs later, it is shorter
and has a larger amplitude. This is the result of the control system considering the activity



Energies 2023, 16, 6830 22 of 27

of building users (presence, switched-on electronics, and household appliances) typical for
a Sunday winter evening.
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Figure 21. Print screen of the daily energy consumption and savings in the reference building on
24 March.

The oscillation visible in Figure 21 between 8:00 and 11:00 a.m. should also be noted.
Such fluctuations can be associated with a lack of available power in the central heating
circuit. This phenomenon is related to the priority of domestic hot water in the morning
hours of a weekday. To effectively identify such phenomena, it is necessary to use dedicated,
full measurement of this type of installation, which additionally enables domain analysis
and detection of anomalies that commonly occur in HVAC installations. Additionally,
Figure 21 shows greater dynamics of changes in actual energy consumption between 2:00
a.m. and 8:00 a.m. and after 6 p.m. It is the result of greater temporary windiness, which
dramatically affects the building’s infiltration and results in an increase in energy demand
to maintain the thermal comfort of the residents.

Presented in Figures 18–21, the energy in the time domain variability curves are
excellent analytical material for detecting various types of system anomalies and verifying
the correctness of operation of the system. However, from a global perspective, the most
key criterion of the quality of operation of the entire system and its optimization potential
is energy consumption over longer time horizons.
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Due to that, the charts in a longer time horizon than the daily one (a monthly outlook)
and the values of estimated (baseline) and real consumption are presented in Table 3.

Table 3. Estimated thermal energy consumption vs. actual in a monthly outlook.

Period/Month Estimated Consumption
(Baseline) [kWh]

Real Consumption
[kWh]

October 2021 12,222.22 10,833.33
November 2021 16,666.67 14,722.22
December 2021 23,888.89 21,111.11

January 2022 22,777.78 20,000.00
February 2022 17,777.78 15,555.56

March 2022 17,222.22 15,277.78

The collected measurement data clearly show the improvement in the efficiency of
the CH system of the reference building at the level of about 12%, which also correlates
with the values necessary to supply energy for each additional degree Celsius of the
temperature in the building, which were estimated by various sources at the level of 5–8%.
After launching the master layer of the control, along with its optimization algorithms, the
average temperature in the reference building oscillated at 21 ◦C (dashboard in Figure 15),
which, compared to the state before optimization at the level of 23 ◦C, is a decrease of
approx. 2 ◦C and indicates the achievement of the previously assumed optimization results.

Figure 22 shows a screenshot that contains the basic proprietary KPIs in the analytical
system developed for the case study. There are three indicators included:

• The first indicator titled Area shows the consumption of thermal energy by the CH
system per 1 m2 of the building. It used energy read from the energy/heat meter in-
stalled in the central heating system, which was normalized in relation to the building
area in m2. This indicator informs about the energy consumption of a given building
over the considered period, most often on an annual basis, expressed in the unit
kWh/(m2 × year). It is a popular indicator used in energy audits and certificates. It
allows for easy classification of a building into a given energy class. Thanks to it,
a comparison of facilities in the same location but with different parameters (area,
number of floors, etc.) can be done.

• The second indicator titled Heating Degree Days shows the energy consumption per 1
heating degree day. It used energy read from the energy/heat meter installed in the
CH system, which was normalized by the heating degree days, which are determined
automatically by the developed analytical tool. This type of indicator is more suitable
for comparing a building or a group of similar buildings among themselves at different
times, where weather variability plays a key role. This is important, especially when
the weather changes dynamically as a result of climate change. An additional purpose
of this KPI may be to compare a building or buildings in the same district before and
after thermal upgrading.

• The third indicator titled Area × Heating Degree Days shows the energy consumption
per 1 m2 of the building multiplied by 1 heating degree day. It used energy read
from the energy/heat meter installed in the CH system, which was normalized by the
heating degree day, which was determined automatically by the developed analytical
tool, in relation to the building area in m2. This indicator, which is a combination of
the previous two, provides the opportunity to compare buildings regardless of their
location and area while maintaining a similar nature of the facility’s use.

To facilitate the interpretation of the obtained result and the assessment of each KPI,
the following labels from A to F were introduced. Label A is the best value corresponding to
low-energy buildings, and label F is the worst value, corresponding to very energy-intensive
buildings. If a more detailed analysis is needed, the user can generate numerical values.
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6. Conclusions and Future Works

This paper presents the algorithmic structure of the multilevel control system based on
the original thermodynamic model of energy consumption in the building. It distinguishes
three areas of control loops in a building with many thermal zones equipped with radiators
with or without thermostatic heads. Each control area has a defined type of implemented
regulation:

• direct control with external (outdoor) temperature compensation performed by the
local controller of the heating substation (heating node), i.e., follow-up control of a
nonstationary process of a stochastic nature;

• adaptive control with zone regulation implemented in the superordinate analytical
layer using temperature measurements carried out by a wireless system of distributed
sensors;

• optimization regulation implemented in the analytical and correction layer in the
form of a thermodynamic model of the building and able to ultimately identify the
immeasurable thermodynamic parameters of the building.

The developed stream thermodynamic model of the building allows for the effective
control of the volumes of supplied thermal energy based on the demand from the building.
In the model developed by the authors, the amount and type of energy sources are irrelevant.
The key aspect is that they are accurately measured to provide the system with appropriate
measurement data on which the algorithms optimizing the operation of the local controller
work are based. The appropriate metering of the facility allows an effective distribution of
thermal energy in any building facility.

To implement this control strategy, an original, dedicated, wireless system of temper-
ature sensors using the LoRa and MQTT communication protocols was used. Empirical
verification was carried out and successfully tested on a real object of a residential building
in Warsaw (Poland).

Implementation of this control concept in the indicated location, in particular the
development of an analytical layer (visualization of key parameters, dashboards, graphs,
and quality indicators developed) and correction layer in that system, allowed for the
reduction of the consumption of thermal energy in the building by more than 12% while
maintaining the thermal comfort of the building. At the same time, it allowed for the
identification of several dysfunctions of the heating system in the hydraulic infrastructure.
In addition, it allowed for an effective response to the growing expectations of the market
that are currently emerging: “demand side and response” (DSR) strategies, according to
which only as much energy should be supplied to the facility as is needed to perform the
objective function. The developed and presented concept fits well into the strategies of
stabilization and minimization of heat network losses, which is particularly important in
the context of the use of unstable generation of renewable energy sources. After the release
of energy markets, the day-ahead market (DAM) is also created, which, however, requires
precise prediction of the energy demand of building facilities.
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It is noteworthy that the commissioned and tested multi-level heating installation
control system, which includes an analytical and correction layer, was realized for an
existing system by extending it with additional functions—it is typical for modern industry
control systems. This makes it possible to scale this solution both in the area of new imple-
mentations and above all in older facilities without disturbing the existing infrastructure,
thereby reducing the enormous costs that would be involved in completely replacing
these solutions. This corresponds to the huge market interest, especially the wide-ranging
thermal modernization, that awaits the real estate market due to the energy transition and
hybrid power or RES solutions.

In opposite to the concepts cited in Section 2 (State of the Art and Related Works),
where most of the proposed MPC-based control strategies or ML/AI models require large
amounts of archival process data collection or increasing system complexity, the presented
solution allows the rapid implementation of energy optimization in the facility. This is due
to the possibility of using the correction function only and almost immediately after the
installation of the system. Of course, it also offers the possibility of extending the analytics
process in the long-term perspective once sufficient data has been collected and further
optimized by anomaly detection and predictive models and, consequently, been integrated
into the growing DAM energy market.

Future research works will address the following issues:

• The development of an alternative to relatively expensive SkySpark environment,
which is more dedicated to the developed system, by adding support for the thermo-
dynamic model to it, etc.

• The development of a DHW control algorithm based on artificial intelligence and
machine learning (AI/ML) models: primarily developing a digital twin using long
short-term memory (LSTM), making a reinforcement learning (RL) on it, and launching
it on a real building facility.

• The development of predictive models of the facility’s energy demand, which will
take into account the building’s thermal capacity and also allow simultaneous control
of multiple sources supplying the building with thermal energy in order to support its
integration with SIDC (Single Intraday Coupling).

• The use of a proposed thermodynamic model of the building for the development
of parameter detection mechanisms, aimed at full identification of the object, by
determining the real building material parameters in relation to catalogue ones and
design data (e.g., building air exchange rate, identification of thermal bridges, removal
of load characteristics by recording the building’s use profiles, etc.).
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Nomenclature

Ti temperature of the i-th element in the building [K]

R thermal resistance
[

K·m2

W

]
C thermal conductance

[
W

m2·K

]
k thermal conductivity

[
W

K·m

]
L thickness of layer [m]

Ci thermal capacity of the i-th element
[

J
K

]
Qi heat power originating from i-th source [W]

Ui heat transfer coefficient of the i-th element in the building
[

W
m2·K

]
Ai surface of i-th layer

[
m2]
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