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Abstract: The maritime sector is among the most polluting industrial sectors in the world. To
oppose this and following the global trend towards carbon neutrality, the International Maritime
Organization (IMO) introduced the objective to reduce the CO2 emission of vessels by the year
2030 of 40% and at the same time the European Union will introduce the maritime sector into the
ETS system. Therefore, there is a need to reduce the emissions of the working vessels, and this can
be accomplished through the Carbon Capture and Storage (CCS). There are many possible CCS
technologies that can be applied to vessels: the one that has already been studied the most is the
ammine scrubbing of the exhaust gasses. In parallel, other technologies have been proposed to
reduce volume and energy needs, which are the Molten Carbonate Fuel Cells (MCFCs), membrane
technologies, fixed bed absorption processes and limestone. The review shows how, depending on
the used vessel type, the technology to be used may vary, and proposes some preferential options for
different applications. The obtained results can be of relevant importance in the present context of
energy transition promoting immediate retrofitting to respond to the urgent request for intervention.

Keywords: on-board carbon capture; CO2 emission; maritime sector; ammine scrubbing; molten
carbonate fuel cells; membrane; absorption; limestone

1. Introduction

CO2 has a major role in global emissions and climate change [1] as it is produced
globally in almost all industrial activities. This makes the reduction of this kind of emission
very important to mitigate the effects its increase can have on the ecosystem [2].

Although it seems like the CO2 emissions could be slowing down their rate of growth,
when looking at emission data after the post-pandemic industrial boom [3], the trend
shows a steadily increase in recent years [4]. It also has to be noted that yearly data still
have a high degree of uncertainty [5], and therefore trusting the long-term trend is far
more appropriate.

The introduction of new and improved technologies that have the objective to reduce
the effects of CO2 production are being developed at a fast rate, some of the most promising
ones being the carbon capture and storage technologies, which are receiving a huge boost
in terms of the amount of research performed and interest from the industry even from an
economical point of view [6–8].

The reduction of CO2 in the maritime sector is receiving a lot of attention lately
following the release of the International Maritime Organisation (IMO) plan of action
for the CO2 reduction that points towards carbon neutrality in the year 2050 and a 40%
reduction that must be reached in the maritime sector until 2030 compared to 2008 [9–11].
As can be seen in Table 1, the maritime transportation sector is responsible for around 2% of
the total amount of CO2 produced [3] globally yearly, and containers, oil tankers and bulk
carriers accounted for about 50% of CO2 emission from international shipping in 2018 [12].
The IMO strategy time plan is divided in three periods [13]:
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• Short-term, which includes the initial study of the possible CO2 reduction solution;
• Mid-term, where the best measures are selected;
• Long-term, where selected measures are developed in order to achieve the reduction target.

Table 1. Reassuming table of the CO2 emissions globally and in the maritime sector [3].

1990 2005 2020 2021

Total global CO2 emissions
[Mton CO2] 22,717 30,161 35,960 37,857

CO2 emissions from maritime
sector

[Mton CO2]
370.99 571.64 667.04 699.72

Percentage of marine sector
impact referred to the global 1.63 1.89 1.85 1.84

Short-term measurements can be divided into two categories: operative and technical
approaches. Different technical and operative criteria are developed to achieve carbon
neutrality on board, such as, respectively, Energy Efficiency Existing Ship Index (EEXI) for
existing ships and Energy Efficiency Design Index (EEDI) for the new ships. EEXI limits
the CO2 emitted per unit of transport supply, modifying the speed to maintain the highest
possible efficiency, and the amount depends on the type and capacity of the ship [14]. A
younger ship has higher environmental efficiency than the existing one, so its design is
improved through EEDI [12].

Furthermore, Europe introduced stricter rules about control of the emission values [15],
meaning that a strong push to an emission-neutral future is inevitable to keep the maritime
sector competitive both in terms of emissions and economically, seeing their possible
introduction into the Emission Trading Scheme (ETS) system in Europe in 2022 [16]. As of
today, this measure is provisional, but if this agreement will be adopted, in 2024 Europe
will become the first jurisdiction to put an explicit carbon price on the maritime sector [17].
The ETS system is a carbon market proposed by the EU to reduce emissions, incentivizing
those industry actors who invest into emission reduction with the possibility to sell their
shares of CO2 emissions, while the ones who decide to not invest can still operate but must
buy these shares, making the operating costs higher [18].

There are different ways to reduce the emission of CO2 in vessels including the
implementation of more efficient and innovative propulsion systems [19,20], the use of
carbon-free fuels [21–25], the application of more efficient heat recovery units [26,27], or
the CCS [28], which will be addressed in this review.

The field of CCS is one of the possible options that can be used to retrofit vessels
without the need to change the whole internal combustion unit for the onboard energy
demand [29], therefore being able to reduce the cost connected to the implementation of the
IMO regulations, as older vessels can still be used without the need for heavy investments.
The idea of applying CCS on the flue gasses of internal combustion engine vehicles is very
appealing [30], yet the space connected with such a system might not always be available,
i.e., inside cars. The problem of space is present in vessels as well, but the few spaces that
can be found still allow for some CCS systems on board. In this sector, the established
technology, amine solvent scrubbing, occupies, in terms of scrubbing and CO2 storage,
about 1–2% of the total volume available in the ship [31].

Today, ship-based carbon capture is still promoted by a few projects, such as Ever-
LoNG [32], aimed to increase the Technology Readiness Level (TRL) of prototypes to be
applied on ships fuelled with Liquified Natural Gas (LNG), and few scientific articles
are available as maritime applications are still quite rare and just under evaluation. For
example, Figure 1 compares the number of publications concerning carbon capture in the
last ten years focused, respectively, on the maritime sector and on the industrial sector
more generally. However, it can also be observed that the topic of maritime carbon capture
has gained increasing interest in recent years.
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Moreover, both on a European level but also locally in Italy, projects that are centred
around the downstream storage or utilization of captured CO2 are being funded and are
seeing success [33–35]. This means that while this review is focused on the application of
CCS on vessels, CO2 can be used or stored in further steps, something that makes this even
more interesting on an industrial level.

Aim of the Review

The first aim is to evaluate the major CCS techniques that can be applied onboard,
looking at the main strong and weak points that each technology has to offer and taking a
look at how the captured CO2 can be stored. The removal efficiency was looked at in order
to see whether the technologies are viable to stay inside the new limits imposed by 2030.

To accomplish this, literature research was coupled with opinions from industrial
players in the field of on-board CCS, trying to interest both the academic and industrial
worlds, bringing the attention of scientific research to this issue and helping shipowners to
direct their choices.

Reassuming, the main aims of this work are:

• An overview of the CCS technologies that could be applied for on board usage;
• A brief description of the systems that might be used in these cases;
• A collection of the available literature data;
• A comparison of vantages and disadvantages of the more promising solutions with

respect to different types of vessels.

2. Different Carbon Capture Techniques

The capture is the first part of the Carbon Capture and Storage (CCS) technology that
needs to be analysed. The capture step determines the reduction of the CO2 and therefore
the reduction of Global Warming Potential (GWP) connected with the use of a technology.
The choice of the technology must be made considering many parameters:

• GWP reduction capacity: The IMO regulations mentioned before, having the impo-
sition to reduce by 40% the output of CO2 by 2030, is the first limit that needs to be
respected. Looking over this limited goal, the real objective being 2050 zero emissions,
means that the more the technology can capture, less likely it is that a new change will
have to be made soon on the vessel, making it more future proof.

• Volume: What sets the maritime application aside from other CCS applications that can
be applied in other industrial fields, i.e., in the energy production [35], are the reduced
spaces that are available for the implementation of the technology, as previously
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mentioned. Therefore, these technologies must be very space efficient and able to be
applied in an already existing system.

• CO2 purity: The output concentration of the captured CO2 is also interesting when
looking at possible applications that it might find later in its lifecycle, as there are
obviously different ideas on how to handle the captured quantities of CO2 [36]. The
one way could be to store the CO2 in depleted natural gas reservoirs [37,38], but on
the other hand it could also be interesting to reuse the captured CO2, i.e., to favour
synthetic fuel production [39,40]. On-board applications are the best-case solution and
will be discussed later.

• Energy needs: CCS systems themselves need energy to work properly, causing the
need to look at how much energy the system needs and how this affects the energy that
can already be generated on board with the auxiliary motors that are being used [41].
A consideration must be made, looking at the fact that if a technology is too energy
hungry, the growth in terms of energy might be compensated by burning more fuel
and in producing more emissions, therefore if the system needs more energy the
effective reduction in terms of CO2 can be found as

CO2 e f f ective capture = CO2 total capture − CO2 produced to supply the CCS system

The existent energy generation on board, in different cases, is not able to supply this
need, so it is necessary to introduce new generation systems, but it is not always feasible or
it is too expensive.

The main capture technologies, such as Solvent Scrubbing, Molten Carbonate Fuel
Cells, Calcium Hydroxide to limestone reaction, Membrane, Fixed Bed adsorption and
desorption, and Ionic Liquid, will be described in the following chapters as they differ from
land-based processes [42].

The main issues, when comparing to the same system used in land-based processes,
are common for all technologies. First of all, as already mentioned, in maritime applications
the space is an issue that is of primary importance, also because these systems are often
added on to already existing vessels and therefore need to be worked in close to the engine
bay, where space utilization is already exasperated. This problem concerns not only the
technologies as such, but also the storage of the degraded materials and captured CO2.
Generally, this issue is not so critical in land-based processes, where the storage facilities
can be expanded at will. Also, the discharging of these materials is more critical with
respect to land cases, where transportation is easier thanks to piping or vehicles, while still
not neglectable. In addition to this, many of the CCS technologies use chemicals to work
correctly, which need to be produced or regenerated, typically using a plant separate to the
CCS system. The coupling of these systems in the land-based industry can be accomplished,
as far as the space allows it, while this cannot always be carried out for marine applications,
therefore another weak link in the CCS application on board can be the need for the loading
of raw chemicals. All these aspects entail both a physical issue, as the unloading and
loading processes need to be implemented, and a logistical one, as not all harbours are or
will be able to provide such services and the routes will need to be adapted to accommodate
this issue [43].

Another important aspect that has to be considered is the safety concerns, still re-
garding both storage and utilization of the chemical intermediates needed for the single
processes. This issue is of a different relevancy when looking at the different technologies.
The absorption-based processes use solvents and need special recipients for these, but the
storage itself does not cause concern, as do the solid chemical-based reactions, were the
real issue stems from the space. Much more problematic is the application of the MCFC as
it uses hydrogen, typically coming from reforming or cracking processes (e.g., methane or
ammonia). This means that there is the necessity for fuel storage and treatment on board
and that during the operation hydrogen is used in molecular form. In land-based applica-
tions, the safety conditions are easier to respect, while on board a ship, the monitoring of
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the system will need to be refined to compensate for an evident impossibility of redundant
physical safety measures.

The stability of the system is also a criticality when it comes to the difference in
application in land- and maritime-based CCS applications. In land applications, the system
integration grants the system inherent stability as it is anchored to the ground. In maritime
applications, the CCS system it anchored to the vessel, which itself is in motion thanks
to the waves and varying atmospheric conditions, this can be of concern for the different
system, as it can change the fluid dynamics of the used liquid chemicals. For example,
in absorption processes the motion can cause preferential pathways to be formed inside
the columns making the system less efficient, while in MCFC systems can affect molten
carbonate distribution, even if component capillarity should mitigate the effects. This
means that in maritime application stabilizing systems might need to be put in place to
compensate this issue.

Finally, operating conditions could also be affected by constraints of opportunity,
like reduce temperature or pressure to reduce energy consumption on board as well as
minimize risks.

On the basis of the above considerations, the study of carbon capture systems in
land-based applications can help to understand the functioning principles and evaluate
the maritime applicability, but the importance of furthering research in the specific field of
on-board use cannot be understated, as the issues at hand need to be taken into account.

2.1. Solvent Scrubbing

Scrubbing the post-combustion gasses with solvents can be used, as it allows for a high
efficiency separation with a successive purification step, which allows for the recovery of
the solvent that can then be reused [44]. This technique is already well proven in absorption
from flue gasses on land [45], where it still presents some limitation connected to the high
energy requirements given by the regeneration process of the solvent [46]. In maritime
applications, there are also other limitations connected with the usage of this technique
being the height of the column, which is limited by the volumes that can be used on
board. Considering that for on-shore applications a height of around 25 m is given for the
absorbing bed [47], and the head and bottom of the column are still to be added, the height
can exceed 50 m [48].

The scrubbing process works like a normal scrubber does, feeding the flue gasses
from below and using liquid form solvents to extract the CO2 from the current through
an adsorption process, allowing the CO2-free current to exit on top, and separating the
CO2-rich solvent current, which will be sent into a separation unit, where the CO2 will be
released from the solvent, which can then be reused [49]. The released CO2 can be further
elaborated depending on the desired storage or usage. The mechanism can be seen visually
in Figure 2.
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The reaction that occurs depends on the solvent choice. In maritime applications,
the main criteria to select the solvent are kinetic, degradation, corrosion, toxicity and
energy penalty [50]. There are different possible solvents; the most common ones are
MonoEthanolAmina (MEA), NH3 and MethylDiEthanolAmine (MDEA), while in research
studies DiIsoPropanolAmine (DIPA), which has less energy to regenerate and is less cor-
rosive [51], and MDEA with piperazine (PZ) as promoter, this addition allows lower
degradation and higher kinetic rates [52], were proposed. To achieve better results in terms
of regeneration, different studies propose a pressure reduction (1 bar to 0.2 bar), which
leads to an acceleration of the desorption kinetics; in particular it boosts desorption of
about 16% at 363 K to about 70% at 323 K [53].

MEA-based technologies, being the most established ones on an industrial scale [54],
different reaction mechanisms have been proposed [55–59] that describe how the CO2
is captured by the solvent, but in the literature are also present a reaction mechanism
for DiEthanolAmine (DEA) and TriEthanolAmine (TEA) [60]. Reassuming the results
described in the afore mentioned articles, the main mechanism for primary and secondary
amine is as can be seen in the following reactions:

CO2 + R1R2NH → R1R2NH+CO−2 (1)

R1R2NH + R1R2NH+CO−2 → R1R2NH+ + R1R2NCO−2 (2)

where R represents a substituent attached to the amino nitrogen and Equation (1) represents
the formation of zwitterion, which in reaction (2) transfers a proton to a non-ionized amine,
forming the corresponding carbamate. The mayor problem connected with MEA is its
high energy cost for the regeneration, as it is a water-based solvent [60]. The first step (1)
determines the rate, while the second one (2) takes place instantaneously.

Regarding tertiary amines, reaction (3) shows their mechanism by the formation of a
protonated amine and a bicarbonate anion.

R1R2R3N + CO2 + H2O → R1R2R3NH+ + HCO−3 (3)

The mechanisms shown are typically happening at room temperature, while the
reverse reactions being the desorption and regeneration of the solvent are made at 110 ◦C
and at atmospheric pressure [58].

A possible other solution to optimize the regeneration process with a reducing cost
and energy requirements is to work with a vacuum process. The reduction of the pressure
of the system favours the release of the dissolved component, and therefore less energy is
needed, about 9–15% less than the conventional MEA regeneration process, which requires
high temperatures to work. Using this technology, the regeneration process was performed
at 75 ◦C and 20 kPa [61].

As far as ammonia goes (NH3), different possible mechanism have been observed [62],
where the most promising one seems to be the one using aqueous ammonia, with the
reaction happening as follows:

CO2(g) + NH3(aq) + H2O(l)→ NH4HCO3(aq) (4)

As with the case before, the working temperature for the adsorption is room tempera-
ture, while for regeneration of the solvent the operating temperature is 80 ◦C [63].

To install this system, some external systems are also required, those being the reboiler
for the solvent regeneration and heat exchangers between the CO2-rich and the CO2-poor
streams coming from the two towers. The regeneration process is very energy hungry, typi-
cally the objective is to minimize the energy needed by pushing for very high temperatures
for short times, as to reduce the solvent thermal destruction to a minimum [64].

As can be seen in Figure 2, in the first column, the exhaust is already being released,
yet the second column is necessary to allow for the regeneration of the solvent inside
the system, meaning that the system always requires two columns, otherwise the used
solvent has to be discharged at the port and a fresh load has to be loaded on, which can
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be a problem, seeing that this can cause the vessel to need to stop in ports that have the
capabilities to accomplish this.

Depending on the choice of solvent that is being used, the efficiency for the process can
be very different, as can be seen in Table 2, where several simulated systems are analysed. It
is important to remember that depending on the fuel purity that is being used the efficiency
also changes.

Table 2. Removal efficiency for different types of solvents as a CCS technique (the values presented
are derived from simulations).

System Solvent CO2 Capture Efficiency Amine Temperature
Regeneration Research

Cargo Diesel vessel MEA at 35%w 73% - [48]

Cargo Diesel vessel with diesel
gas turbine MEA at 35%w 90% - [48]

LNG fuelled vessel MEA at 30%w 87% 120 ◦C [65]

Cargo Diesel vessel NH3 at 3.5 to 4.1%w 75% 132 ◦C [66]

LNG fuelled vessel NH3 at 4 to 10%w 90% - [67]

LNG and Diesel fuelled vessels MDEA at 22%w and
Pz at 8%w

12% by 2030
35% by 2040
68% by 2050

- [68]

Using Key Performance Indicator (KPI), it is possible to compare different solvents,
which can be used in this technology, as illustrated in Table 3.

Table 3. KPI for different solvents in solvent scrubbing technology (5 = good performance, 1 = bad
performance) [69].

Primary Amine Secondary Amine Tertiary Amine NH3

Maturity 5 5 4 4

Energy penalty 2 3 3 4

CO2 loading 3 3 4 3

OPEX 2 2 2 4

Where maturity indicates the technology level; energy penalty is a parameter that
evaluates the energy loss that the integration of the CCS system on board gives to the
system as a whole and it also takes into account the penalty given by increasing the capture
rate; CO2 loading is a measure of the concentration of CO2 required in the inlet stream for
amines to work correctly; OPEX, as known, indicates the operational expenditure.

2.2. Molten Carbonate Fuel Cells

While molten carbonate fuel cells (MCFCs) are already studied in an established
manner for CCS purposes in different fields like the steel industry [70] or energy generation
from natural gas [71] or coal [72], with systems being applied in development phase or
during retrofitting [72], the application in the maritime field is under study and still in
development [73]. The advantage stemming from this kind of system is that the MCFCs
can have an energy co-generation and CO2 separation starting from burnt gases with low
CO2 concentration, like motor flue gas [74]. These characteristics make it a competitive
system compared with other technologies, which have low efficiency, with flue gas having
a low CO2 concentration and, in addition, allows it to have a positive energy output [75].

Molten carbonate fuel cells work at high temperatures (around 650 ◦C) using typically
nickel-based electrodes and molten carbonates (of Li, Na and/or K) as electrolytes inside a
lithium aluminate matrix [76]. The high temperatures allow the electrolytes to stay fluid
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and move through the matrix as cations CO3
2−. Furthermore, the passage of CO3

2−, which
becomes oxidized to CO2, allows the CO2 to be selectively separated from flue gas [77].
Operating pressure is in the range 1–8 atm [78], but, even if higher pressure increases
performance, for maritime applications the atmospheric pressure is preferable to simplify
the balance of the plant and avoid safety problems. The working principle can be seen in
Figure 3, even though the details of the mechanism are still being researched [79–81].
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Figure 3. MCFC working principle. On the left side the anode, on the right side the cathode, both
typically nickel based. In the centre part (blue in the figure), the carbonate-based electrolyte, which is
supported by a lithium aluminate matrix, allows the ions to pass through one electrode side to the
other. The outside circuit allows the flow of the electrons to close the system.

The main reactions that occur in this system are different according to the side of the cell.
At the anode side, the oxidation of hydrogen results in the following reaction [82]:

H2 + CO2−
3 → H2O + CO2 + 2e− (5)

while at the cathode side, the oxygen is reduced:

1
2

O2 + CO2 + 2e− → CO2−
3 (6)

Making the complete reaction:

H2 +
1
2

O2 + COcat
2 → H2O + COan

2 (7)

In addition, secondary reactions, based on the migration of hydroxide ions from
cathode (9) to anode (8), are involved in this system due to the presence of water on the
cathode side [83]:

2OH− + H2 +
1
2

O2 → 2H2O + 2e− (8)

H2O +
1
2

O2 → 2OH− (9)

Overall reaction:
O2 + H2 → H2O (10)

Experimental tests demonstrate that these parallel reactions produce electricity, thanks
to the ion transportation, but it reduces the CO2 capture efficiency because the ions that are
transported are not only CO3

2−, but also OH− [84].
There may also be other reactions that can cause problems for the process, for example

the Boudouard reaction [85] that can be activated by the presence of CO formed by the
water shift reaction. By adding enough vapour, it is possible to inhibit such Boudouard
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reactions, reducing the amount of carbon depositing itself on the electrode, and therefore
favouring long-term durability [86].

As far as maritime application goes, as mentioned before, the case studies are still very
limited [87], and the found data are resumed in Table 4. It has also to be mentioned that
the MCFC needs to stay at high temperatures to work correctly, meaning that this must be
considered when looking at its application because it is necessary, for example, to keep the
cells warm also when the vessel stops in the port [73]. This issue is easily overcoming for
ship having high size because, when propulsion generators are closed, the auxiliar be kept
opened for ship-service, so MCFC is still powered.

Table 4. Reassuming table of the main applications of MCFC and their reduction efficiency (the
values presented are derived from simulations).

Application Efficiency Reference

LNG 85% [88]

Diesel 85% [88]

Furthermore, the application of such a system on board would require some attention
when looking at the implementation of it. Firstly, as is evident when looking at the above
seen Figure 3, this system uses hydrogen, which must be either stored or produced on board
the vessel itself. The first option, being the storage on board, can be problematic because
of different reasons, mainly connected with safety and the volumes required to keep the
storage at the right temperature and pressures [88]. This is the reason why the second
choice of an on-board production can be much more appealing. The production can usually
be performed through a reforming process of either methanol [89] or methane [90]. It is also
important to look at the purity of the entering exhaust from pollutant like SOx, which can
influence the cell itself depending on its concentration and the operating conditions [91].

MCFC cells have also been proposed in the past for maritime applications on board
with objectives other than CCS, some of them being the substitution of the propulsion
unit with an MCFC system, like in the Viking Lady ship. This makes it one of the most
environmentally friendly vessels being used today [92]. Other theoretical studies applied
this power substitution on tanker ships in order to analyse the possibility to reduce the emis-
sions using an MCFC system fed directly by natural gas and water internally reformed [93].

2.3. Calcium Hydroxide to Limestone Reaction

The objective of this technology is to use the reaction of calcium hydroxide with CO2
that produces calcium carbonate, which is also called limestone and is stable in water.

Ca(OH)2(s) + CO2 (g)→ CaCO3(s) + H2O (11)

This reaction is exothermic and therefore favoured at low temperatures [94]. The main
factors that influence the carbonation capacity are space velocity, grain size, presence of
moisture and chemical composition of the CO2 stream [95].

The stable solid product CaCO3 can then be discharged into the sea without causing
any harm [96,97]; in fact, in theory, it is even possible to reduce the effect of sea acidification
by using the obtained limestones [98]. This might still require some further regulations, as
even though limestone is stable, there are not yet any regulations around this topic, show-
casing the speed at which the CCS technologies are evolving relatively to the regulatory
environment.

Another chemical process, starting from sodium hydroxide, allows CO2 adsorption
and consequently limestone production [99]:

CO2 (g) + 2NaOH (l)→ Na2CO3(l) + H2O (12)
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Na2CO3(l) + Ca(OH)2(s)→ CaCO3(s) + 2Na2OH (13)

Both reactions are exothermic.
Starting from industrial test, by reducing the flow rate of the exhaust gas, fed in the

scrubber inlet, and some design parameters, CO2 capture increases from about 20–30% to
60% [100].

There are several advantages from this technology, which should not be underesti-
mated: no requirements for the storage tank compared to CO2 storing in gaseous or liquid
form; the possibility to sell the product, whose price usually fluctuates from 20 to 50 $/ton,
as “blue-CaCO3” ; the possibility to discharge the product into the sea with environmental
benefits; easier technology and process.

However, there are some issues connected with this technology, firstly being the space
required to stock the reactants (3.19 kgCaCO3/kgCO2 considering the single Calcium
Hydroxide system, while by the addition of the overall system efficiency, with limestone
calcination being an energy-intensive process, the carbon penalty is about 44.9%, [101]) so
that the cargo ships already dedicated to the transport of materials could be the preferable
type of vessel for this CCS solution.

A second issue with this technology is that usually the calcium hydroxide is obtained
through calcium oxide, which in turn is obtained through the heating of limestone that
causes the opposite reaction of the CCS technique to happen [102,103]:

CaCO3 → CO2 + CaO (14)

CaO + H2O→ Ca(OH)2 (15)

As can be seen from (15), the production of calcium hydroxide itself produces carbon
dioxide, therefore, if the CO2 is not abated at the production site, the CCS net CO2 abatement
is negative, as some CO2 is also produced for heating the system [101].

2.4. Membrane

This technique is proposed for LNG-fuelled vessels, as the outcoming flue gasses
have the right amounts of CO2 and O2 for this system to work correctly (in terms of mole
fractions: CO2 ≈ 0.03 and O2 ≈ 0.16, [104]). It operates by selectively permeating CO2,
while letting the rest of the gas through. This has the huge advantage connected to the
reduced dimensions and the cost, when comparing it to the ammine systems, which are in
essence the most established Onboard Carbon Capture and Storage [104].

This technology could be developed in two different ways: Membrane Gas Separator
or Membrane Contactor. The first system is constituted by a dense membrane and the
selectivity is determined by the membrane material, while the second one has a porous
membrane and a solvent, used to absorb CO2, which characterised the selectivity. The
feed composition is the key to comparing these two systems: in the first case, a high CO2
concentration (up to 40 mol%) is required to have a good efficiency, while in the second
case, this parameter does not influence the overall efficiency [105]. For this reason, in
maritime CO2 capture, MC application is preferred to MSG application. Figure 4 shows the
schematic representation of the membrane-separation MC process.

Obliviously, in MC, the membrane materials should be hydrophobic in order to avoid
the wetting of the membrane. MC should have high chemical and thermal stability and high
porosity. In addition, the liquid concentration affects the efficiency of CO2 absorption [106].

The most common microporous membrane from polymeric materials are PolyTetraFlu-
oroEthylene (PTFE), PolyPropilene (PP), and PolyVinilDeFluoride (PVDF). The first one
has better performance in terms of hydrophobicity than the other materials, but it is more
expensive. PP is the cheapest material, but it is less hydrophobic than the other polymers,
which contain fluorine; for this reason, the middle way between affordability and material
characteristics is PVDF [105].
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During the last few years, ceramic materials have also been studied for this application.
The main issue with the latter material is that they must be processed to achieve the
hydrophobicity and the right specific surface area, so they have a lower TRL in comparison
with the polymeric category [107].

2.5. Fixed Bed Adsorption and Desorption

The use of potassium carbonate in fixed beds seems to be a good alternative, as it
can chemically bind the CO2 into potassium bicarbonate [108]. This unit should be placed
after the SO2 scrubbing that is necessary and already widely applied and can work at
low temperatures (around 50 ◦C) as the absorption process is exothermic. The reaction is
generally written as [109]

CO2 + H2O + K2CO3 ↔ 2 KHCO3 (16)

The bed is then regenerated at around 150–200 ◦C releasing almost pure CO2 that can
then be stored as desired [110]. Figure 5 represents both steps of the process.
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Alternatively, a fixed bed based on hollow fibres based on alumina supported CaO can
be used, where the reversible reaction of calcium carbonate is used to capture CO2 [111] on
the fixed bed and then released again [112]. The reaction is the opposite of the one seen in
(14) and (16).

Both techniques use a reversible chemical reaction to separate the hot stream of flue gas
from CO2, and they then regenerate the bed to be able to reuse it. While very simple, this
technique can suffer from typical adsorbing bed problems, being poisoned by pollutants
and aging, which are already studied processes [113].
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2.6. Ionic Liquids

If the previous technologies have been already taken into consideration for maritime
applications, at least in theoretical feasibility analyses, instead there are no similar studies
on Ionic Liquids (ILs) to the authors’ knowledge. These solvents, organic or inorganic and
constituted by anions and cations, could be a further option.

ILs are liquid at temperatures below 100 ◦C, have high thermal stability and, compared
with other solvents, have higher CO2 selectively, because the molecules that possess the
electric quadruple moment have higher solubilities than the other [114]. On the other hand,
they have high viscosity, which implies an increasing of operative costs, in terms of energy
requirements, like pumps and mass transfer rates [115].

There are different ILs, which have several methods to capture CO2. In order of
prominent techniques: imidazolium carboxylate, amino acids and aprotic heterocyclic. The
first category has higher CO2 selectivity, but shows high viscosity [116]. The amino acid
ILs have a good CO2 capture, but the high viscosity causes the reduction of the reaction
rate [117]. In order to overcome this issue and to improve the CO2 absorption, a possible
solution is the functionalized Ionic Liquids, called Task Specific ILs, which are improved by
the addition of suitable moieties into conventional ILs. Usually, these liquids have lower
volatility, so their regeneration is accomplished by heating at 80–100 ◦C, for several hours
under vacuum [118]. In addition, TSILs, on one hand, are considered environmentally
friendly, due to their low vapor pressure, non-flammability and high stability, on the other
hand, the addition of moieties has a key role in terms of toxicity [119]. The most common
groups used to functionalize ILs could be cationic or anionic, imidazolium, pyridinium, py-
rolidinium, phosphonium, ammonium or tetrafluoroborate, lactate, hexafluorophosphate,
respectively [120]. The last category, aprotic heterocyclic ILs, has great CO2 adsorption,
with high reaction rate and high decomposition temperature, but presents high heats of
absorption [107].

In order to reduce the cost-effective and the regeneration, encapsulated ILs in hy-
drophobic polymeric materials are developed. This configuration shows 3.05 kgCO2 /kgILs
at working conditions of 25 bar as pressure and room temperature, using 1-hexyl-3-
methylimidazolium bis (trifluoromethylsulfonyl) imide as ILs [121].

It is interesting to note that the system solution is very similar to the one seen for
amine absorption as they both use a similar principle; however, it must be noted that the
TRL for the two technologies is significantly different (for the amine-based system TRL is 9,
while for ILs it is 2–3 [122]).

3. Discussion of the Results

The main key performance indicators are summarised in Table 5 referring to the
discussed technologies.

Table 5. Different capture techniques with the fuel exhaust gasses they can treat, efficiency and
specific duty required to operate them. (The values presented are derived from simulations) (* For
the MCFC system, the duty is negative as the system is able to provide energy instead of needing it,
the control volume).

Technology Fuel CO2 Reduction Specific Duty
(MJ/ton CO2) References

MEA Diesel 73–90% 3.77–3.85 [48]

NH3 Diesel 75% 4.2–4.5 [66]

MEA LNG 87% - [66]

NH3 LNG 90% 2.7–3.4 [67]

MCFC
Diesel 85% −3441 *

[87]
LNG 85% −3441 *

Calcium hydroxide Diesel/LNG - - [97]
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Table 5. Cont.

Technology Fuel CO2 Reduction Specific Duty
(MJ/ton CO2) References

Membrane Contactor - 90–96% - [123]

Fixed bed
(K2CO3–sorbent) Diesel 43% - [110]

Fixed bed
(hollow fibre) -

-
(No efficiency was
given, just capacity

per unit of fibre
5.1 mg-CO2cm−1)

- [112]

Ionic liquids - 85–90% - [124]

It is important to remember that LNG is a cleaner fuel when it comes to pollutants
than its diesel counterpart [125], but in economic terms it still makes sense to evaluate the
diesel, because the jump to LNG costs cargo space and diesel is still considered the most
cost-efficient fuel [25].

After having reviewed several technologies, it becomes clear that each one of those
has its own peculiarity that can show advantages or disadvantages depending on the
application. An in-depth analysis has been carried out on the three most developed
technologies to better understand the level of applicability of each one in the maritime
sector. The analysis has been performed on 6 type of ships that differs one from the other
for several aspects such as typical route, space availability for the onboard installation of
new technologies and so on. The ships analysed in this study are: cruise, ferry, LNG carrier,
bulk carrier, tanker and container.

In order to analyse these aspects, an applicability score has been considered as a sum
of eight factors, each of those with a different weight depending on the specific technology
considered, targeting 100 as the maximum achievable score, as illustrated in the Table 6.

Table 6. Weight of the parameters that were analysed given in order to be able to elaborate a fair
comparison between them.

Factors
Weight

MCFC Calcium Hydroxide MEA

Route-length 10% 15% 25%

Route-planning 15% 10% 15%

Space availability 20% 15% 20%

Maintenance 5% 5% 5%

Reagent/fuel transportation capability 5% 20% 5%

Public opinion 5% 10% 5%

Technology cost 20% 5% 5%

Levelized capturing cost 20% 20% 20%

Each factor is then affected by a multiplier (from 0 to 1) that, being ship-type specific,
characterizes how the specific factor is impacting on the specific ship-type.

The factors that have been considered are the following:

• Route length: The longer the route is, the more complex the technology implementation
is, in terms of reagents or CO2 to be stored, driving the dimension of the equipment.

• Route-planning: Having a fixed trading scheme facilitates the logistics for the reagents
or CO2 supply and handling while unplanned voyages make it more complex, especially
if trading is carried out in remote locations as typically happens for merchant vessels.
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• Space availability: Space is one of the main challenges, especially talking about retrofit.
Optimize the performances is always one of the main topics during the development
of a new technology, but space constraints are indubitably impacting on the possibility
of installing a system on board a ship. Even if for certain ships the available space
could be considered more or easier to be used, the loss of cargo capacity must be
considered and the trade-off carefully evaluated.

• Maintenance: The impact that maintenance has cannot be considered as much as
others but is still worth evaluating. Maintenance is to be considered not merely in
terms of cost for it but also in terms of personnel capability and availability and
passenger ships are typically better structured then others in this aspect.

• Reagent/fuel transportation capability: Similarly to space availability, this factor can
have a huge impact depending on the ship type. However, the weight this factor has
varies among the different technologies depending on the actual necessity of carrying
reagents or fuel in big quantities.

• Public opinion: It is worth considering the public opinion on the evaluation, even
if with minimal impact, being an important driver for shipowners, especially for
passenger ships. Some technologies can be seen more environmentally friendly or
more advanced than others, resulting in being more appealing for public opinion.

• Technology cost: Seen mainly as the capex for the technology implementation, this
can be a driver for certain maritime segments (cost of the technology implementation
compared with the ship value).

• Levelized capturing cost: This is indubitably one of the main drivers for the technology
implementation. This parameter considers capex, opex, amortization, additional
income or expenditures from CO2 handling, carbon taxes or credits over the remaining
ship-lifetime period and allows us to better compare the different technologies with
the most objective analysis.

The choice of indexes that were used is illustrated in Table 7, while the applications
for different vessels are available in Appendix A.

Table 7. Applicability factor for several CCS technologies.

Applicability Factor Weight Multiplicator

Route-length

1–2 days 1 week 2 weeks or more

MCFC 15% 1 0.9 0.8

Limestone 5% 1 0.8 0.8

Amine 25% 1 0.7 0.5

Route-planning

Fixed routes Planned in advance Not planned

MCFC 15% 1 0.8 0.7

Limestone 10% 1 0.8 0.7

Amine 15% 1 0.7 0.5

Space
availability

Space available w/o
cargo loss

Space available
w/cargo loss Little space available

MCFC 20% 1 0.9 0.8

Limestone 20% 1 0.6 0.4

Amine 20% 1 0.6 0.4

Maintenance

Crew
available Mid crew available Little crew available

MCFC 5% 0.7 0.7 0.7

Limestone 5% 1 1 1

Amine 5% 1 0.9 0.8
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Table 7. Cont.

Applicability Factor Weight Multiplicator

Reagent/fuel
transportation capability

Space available w/o
cargo loss

Space available
w/cargo loss Little space available

MCFC 5% 1 0.9 0.8

Limestone 25% 1 0.6 0.2

Amine 5% 1 0.8 0.6

Public
opinion

Good Neutral Bad

MCFC 5% 1 0.6 0.4

Limestone 10% 1 0.6 0.4

Amine 5% 1 0.6 0.4

Technology cost

Expensive ship Mid-level ship Cheap ship

MCFC 15% 0.8 0.7 0.6

Limestone 5% 0.8 0.8 0.8

Amine 5% 0.9 0.8 0.7

Levelized capturing cost

High Mid Low

MCFC 20% 0.6 0.8 0.8

Limestone 20% 0.6 0.8 1

Amine 20% 0.6 0.8 1

Results are shown, in terms of applicability score, in Figure 6.

Energies 2023, 16, x FOR PEER REVIEW  16  of  27 
 

 

 

Figure 6. Graphical representation of the results obtained through the weighted method mentioned 

above. 

A detailed economic analysis would be useful to refine the results, but it would re‐

quire an industrial experience still lacking in the maritime sector which, for example, pre‐

sents peculiar engineering  issues  for  technology  implementation on board, so  that  just 

general economic assessments not based on real cases are available in the literature so far 

[126]. Experience on industrial sites on land suggests costs for abatement of CO2 ranging 

from 0.5 up to 3 EUR per kg of removed CO2 to even negative values in certain solutions 

that imply the sale of CO2 combined with the production of additional energy, depending 

on the application contexts [127–129]. In any case, CCS can allow very low costs in com‐

parison to alternative solutions. For example, the IEA (International Energy Agency) esti‐

mated that the exclusion of CCS as a carbon mitigation tool for the power sector would 

increase the costs of emissions mitigation by around 3.5 USD by 2050, a 70% increase in 

mitigation  costs  if  only  alternative  solutions,  including  renewables, were  instead  em‐

ployed over that time [130,131].   

Finally, storage technology can be as varied as the capture technologies themselves, 

depending on many factors. Some of these parameters are, for example, the intended use 

of the captured CO2 and the available spaces. There are three main options when it comes 

to the storage: liquefied, compressed, and as solid compounds. The most energy efficient 

technique is to liquefy the CO2 [132], but this still this does not mean that it does not have 

its problems when  looking at the energy efficiency of the system and the cargo  loss by 

installing a liquefaction system [133]. Liquefaction is very useful as it allows for a huge 

reduction in volumes (about 1/550 times [127]) and therefore requires less storage space 

[134], which is already very limited in vessels. In particular, cruise ships have very tight 

spaces, while cargo ships have more space at their disposal, even though using the space 

for the CO2 storage would take away from possible space for cargo itself. The real problem 

here resides in the temperature drop that is needed for the liquefaction, connected with a 

discrete pressure increase, from the pressure of CCS, usually 1.2–3.5 bar, to the pressure 

of liquefaction, which for this application is 15 bar [135]. This can be a burden and add to 

the energy needs of the CCS system. This choice  is usually  implemented when  the ob‐

tained CO2  is very pure, as residues of air can cause  the  liquefaction process to be  less 

energy efficient [136]. Different ways to  liquefy  the CO2 on‐board were  found, and the 

results can be seen in the Table 8.   

Figure 6. Graphical representation of the results obtained through the weighted method mentioned
above.

A detailed economic analysis would be useful to refine the results, but it would require
an industrial experience still lacking in the maritime sector which, for example, presents
peculiar engineering issues for technology implementation on board, so that just general
economic assessments not based on real cases are available in the literature so far [126].
Experience on industrial sites on land suggests costs for abatement of CO2 ranging from
0.5 up to 3 EUR per kg of removed CO2 to even negative values in certain solutions that
imply the sale of CO2 combined with the production of additional energy, depending on
the application contexts [127–129]. In any case, CCS can allow very low costs in comparison
to alternative solutions. For example, the IEA (International Energy Agency) estimated
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that the exclusion of CCS as a carbon mitigation tool for the power sector would increase
the costs of emissions mitigation by around 3.5 USD by 2050, a 70% increase in mitigation
costs if only alternative solutions, including renewables, were instead employed over that
time [130,131].

Finally, storage technology can be as varied as the capture technologies themselves,
depending on many factors. Some of these parameters are, for example, the intended
use of the captured CO2 and the available spaces. There are three main options when it
comes to the storage: liquefied, compressed, and as solid compounds. The most energy
efficient technique is to liquefy the CO2 [132], but this still this does not mean that it does
not have its problems when looking at the energy efficiency of the system and the cargo
loss by installing a liquefaction system [133]. Liquefaction is very useful as it allows for a
huge reduction in volumes (about 1/550 times [127]) and therefore requires less storage
space [134], which is already very limited in vessels. In particular, cruise ships have very
tight spaces, while cargo ships have more space at their disposal, even though using the
space for the CO2 storage would take away from possible space for cargo itself. The real
problem here resides in the temperature drop that is needed for the liquefaction, connected
with a discrete pressure increase, from the pressure of CCS, usually 1.2–3.5 bar, to the
pressure of liquefaction, which for this application is 15 bar [135]. This can be a burden
and add to the energy needs of the CCS system. This choice is usually implemented when
the obtained CO2 is very pure, as residues of air can cause the liquefaction process to be
less energy efficient [136]. Different ways to liquefy the CO2 on-board were found, and the
results can be seen in the Table 8.

Table 8. Reassuming table of the main liquefaction techniques.

Liquefaction Technique Reference

Compression to 100 bars, reaching supercritical state [137,138] even considering impurities.
High temperatures through compression [139] and therefore integration into the heat

exchange system.
[48]

Ethane-propane liquefaction cycle [104]

Use of external cooling (meaning that CO2 and the cooling gas are not in direct contact)
typically using ammonia, no high pressures. An external circuit to cool the ammonia again

is present.
Internal cooling unit, use of high pressure and heat exchange with water, and then an

expansion causing cooling.

[137]

When looking at the specific case of LNG powered Internal Combustion Energy
(ICE), it is possible to reduce the necessary volume needed for the storage by inserting
the separated CO2 inside the LNG tanks, as the two materials do not mix. The CO2
is pressurised into a dense phase (15 bar), which is usually less energy costly then a
complete liquefaction, and in these conditions the cost is almost 7% lower than the 7 bar
pressure liquefaction case [138]. Dense phase CO2 has the behaviour of a fluid and a gas at
the same time and is the most used phase when looking at land-based applications like
piping [140,141]. The CO2 that will be present inside the tank will not cause problems to
the LNG itself, as there will be no mixture between the two phases because the CO2 is
much lighter than LNG. By doing this, another storage unit can be avoided, even though
some studies showed that the use of this tank might not cover the entire volume needed to
collect the amount of CO2 that is being collected [65].

Some of the technologies that were presented above already include the storage in the
capture step [99], like the limestone formation through carbon hydroxide. This has some
advantages, as there is no need to work with the CO2 after the capture step, yet the problem
is the storage, because storing the solids is much more difficult, in terms of volume. In the
Table 9, the main advantages and disadvantage of each storage technique were reassumed.
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Table 9. Main advantages and disadvantages of the different CO2 storage techniques.

Storage System Space Cost Risk

Liquefied CO2
Small volumes thanks to the passage

to liquid phase
High operative costs due to high

pressure and low temperature
Danger for the operators due to

high pressure and low temperature

Dense phase CO2

Space requirements higher respect to
the liquified solution, but space can be

recovered reusing depleted
LNG tanks

Lower operative costs respect to
the liquified solution, but further

storage facilities might
be required

Reduced risks respect to the
liquefied solution due to less critical
working conditions, but pressure is

still high

Chemically bound CO2

Small volumes necessary for the final
product, but chemical compound

storage has to be considered

Main costs related to the
regeneration of the chemicals

No risk related to the stability of the
chemical CO2 bond

However, even though the CO2 will be collected with the objective of storing or reusing
it in on-land applications, this does not mean that it is not possible to find applications
for the CO2 even on board. While there are no studies still showing that CO2 specifically
collected with CCS can be used for these reasons, CO2 can be used as a flooding agent to
suffocate fire in the vital parts of the ship, for example, the engine bay [142]. There are
many other utilisation technologies, and most of them are still being researched and have
yet to find their footing in the industry, but it cannot be excluded that one day they can be
used as on-board applications [143–145].

4. Conclusions

The On-board Carbon Capture and Storage (OCCS) technologies are very promising
when it comes to reaching the IMO regulations, as using the CCS systems it is possible to
retrofit even vessels using still very heavy fossil fuels like diesel with integrated cleaning
systems obtaining good results. It should also be mentioned that the CCS technologies
have a fundamental rule in order to save the Carbon Credits (currently, the price, according
to European Union Allowance, is about 100 USD/tonCO2 [146]).

The most established technology is the use of ammine scrubbers, but the other tech-
nologies presented show a fast growth in research interest and technological advancements.

Therefore, it is difficult to evaluate which CCS technique is the best one without
looking at the whole system that must be treated, starting from the incoming fuel and the
space that can be used, and the desired outputs. In the maritime field, moreover, specific
variables come into play when evaluating the most suitable CCS system, such as the vessel’s
route in terms of both length and the level of industrialization and CO2 supply of the port
areas where it docks. These variables are directly related to the type of vessel.

From a first analysis on the three main capture technologies analysed in this article
(ammine adsorption, calcium hydroxide and MCFC), the ammines show an interesting
utilization for ferries, calcium hydroxide lime technology has potential good results with
bulk carriers and the MCFC technology has advantages for cruise and LNG carriers.

These assessments may undergo variations soon depending on the developments of
the laws around carbon transportation and storage work on an international scale [147].
When looking at the main question of this review as to how these technologies might be
able to provide an answer to the IMO regulations, this can be clearly answered positively as
all the above-mentioned technologies are able to reduce the emission enough to respect the
legislation. Yet, the main issues are not with respecting these limits, but with the intrinsic
limitation that comes from a maritime application, like the volumes needed both for the
capture and the storage system, which still require the technologies to be optimised to
reach the right compromise between space and abatement efficiencies. Furthermore, the
need for unloading stations of the captured CO2 is another challenge. Still, seeing as the
industry is pushing in these regards, as seen in the projects mentioned in the introduction,
and the papers that are being published, the prospective of the CCS technologies as an
answer to the new limitations is surely viable.

Reassuming, the main results of the work are
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- Research in this field is still without real applications, but is attracting increasing attention;
- There are numerous possible CCS technologies that have already been tested on land

and appear promising on board;
- There are some intrinsic limitations to the on-board environment for system installa-

tions, mainly related to space and safety;
- The choice of the appropriate CCS systems on board depends on the type of vessel;
- Molten Carbonate Fuel Cells could be applied satisfactorily on all ships, but amines

would be preferable for ferries and lime for cargoes.

5. Future Work

As highlighted by the results of the review, CCS technologies have a great potential
to aid in the future direction of a decarbonised maritime sector. Both already established
technologies (solvent scrubbing, molten carbon fuel cells, calcium hydroxide to limestone
reaction and fixed bed adsorption and desorption), but also newly ones (membranes, ionic
liquids), are receiving more and more attention, as highlighted by the increase in works in
these years, even if still low in absolute numbers. Authors are working on the technological
development of some of these possible solutions and hope to be able to make a significant
contribution soon.

Although decarbonising is the most immediate way of staying inside the newly
imposed limitation to the emissions provided by the legislators, in the long run, to reach
the objective of net zero emissions by 2050, there will be a need to couple CCS with both
efficient and economical renewable energy storage and production systems [148–150].

It is important to remember that, while single technology solutions might appear
viable, a broader approach to the issue at hand can be beneficial to reach the final objective
of net zero emissions.
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Abbreviations
Acronym reassuming table:

CCS Carbon Capture and Storage
DIPA DiIsoPropanolAmine
DEA DiEthanolAmine
EEDI Energy Efficiency Design Index
EEXI Energy Efficiency Existing Ship Index
ETS Emission Trading Scheme
GWP Global Warming Potential
ICE Internal Combustion Engines
IMO International Maritime Organisation
LNG Liquefied Natural Gas
KPI Key Performance Indicator
MC Membrane Contactor
MDEA Methyl DiEthanolAmine
MEA MonoEthanolAmine
MGS Membrane Gas Separator
OCCS On-board Carbon Capture and Storage
TEA TriEthanolAmine
TRL Technology Readiness Level
TSILs Task Specific Ionic Liquids
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Appendix A
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Cruise
MCFC X X X X X X X X

Limestone X X X X X X X X
Amine X X X X X X X X

Ferry
MCFC X X X X X X X X

Limestone X X X X X X X X
Amine X X X X X X X X

LNG
Carrier

MCFC X X X X X X X X
Limestone X X X X X X X X

Amine X X X X X X X X

Bulk
Carrier

MCFC X X X X X X X X
Limestone X X X X X X X X

Amine X X X X X X X X

Tanker
MCFC X X X X X X X X

Limestone X X X X X X X X
Amine X X X X X X X X

Container
MCFC X X X X X X X X

Limestone X X X X X X X X
Amine X X X X X X X X
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