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Abstract: Many technological advancements in the modern era have made actual use of electrical
power and the constrained operating of power systems within stability limits. Some expeditious
load variations and rising power demands initiate complications in voltage stability and can put
stress on performance, leading to voltage instability. Voltage Stability Indices can be used to perform
voltage stability assessment. This review evaluates various VSIs based on mathematical derivations,
assumptions, critical values, and methodology. VSIs determine the maximum loadability, voltage
collapse proximity, stability margin, weak areas, and contingency ranking. Stability indices can also
specify the optimal placing and sizing of Distributed Generators. Thus, VSIs play a vital role in power
system voltage stability. This review is a comprehensive survey of various indices and analyses their
accuracy in determining the instability of power systems. Voltage stability is a crucial concern in
operating a reliable power system, and the systematic evaluation of voltage stability is essential in a
power system. This review considered and analyzed 34 indices from 138 articles from the literature
for their significant performance in various power system stability problems. Of 33 indices, were
22 derived from transmission line parameters, referred to as line indices, and 12 from bus and line
parameters, referred to as bus indices.

Keywords: power system stability; voltage stability analysis; stability indices; power losses; optimal
placement; weakest bus

1. Introduction

Voltage instability is a crucial phenomenon that effects power systems because it is the
main reason for blackouts and voltage collapse. Some unexpected consequences like an
unexpected increase in load, line outage, and generator tripping may provoke an excessive
load demand in the power system, leading to voltage instability. Consequently, a power
system may be disrupted without appropriate action, resulting in cascading failures and
large-scale blackouts. The notable blackouts around the world have primarily been caused
by voltage instability. From [1], From 1965 to 2005, it can be seen that 22 significant backouts
occurred; out of these 22 blackouts, 11 had voltage instability as a leading cause. Voltage
instability is also known as voltage collapse; moreover, when instability is developing, the
continuity of such events affects the system, resulting in low voltage and even more power
outages [2].

According to an IEEE Power System Engineering Committee, “Voltage stability is
the ability of a system to maintain voltage so that, when increasing load admittance, load
power increases, and so that both power & voltage are manageable”. The consolidation
definition of the IEEE and CIGRE is: “Voltage stability refers to the ability of a power
system to maintain steady voltages at all buses in the system after being subjected to a
disturbance from a given initial operating condition”.
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Power system voltage instability may be due to the inadequacy of the source to deliver
sufficient reactive power or to faulty power transmission lines not transmitting the desired
reactive power. Voltage instability may affect the stability of a wide area or local area,
resulting in the voltage collapse of a whole power system—mainly reliable active power
delivered from the generators and reactive compensators like shunt capacitors. Voltage
instability in a network is most probably the cause of unexpected load demand, transformer
tripping, being over the limit of the generators’ reactive power, or defects in the on-load tap
changing transformers. Consequently, the regular tracking and forecasting of instability
are essential in the power system. In this respect, definite methods for suppressing voltage
instability are:

1. Strengthen the weak bus while planning the power system, like accurately selecting
distributed generators and balancing voltage.

2. Temporarily defending the supply by load shedding or improving the power factor
by shunt capacitor switching.

3. Enhancing the Voltage Stability Margin (VSM) with FACTS devices.
4. Blocking on-load tap changers (OLTCs) to operate the transformer.
5. Build the generation station near to the load centre and reduce the transmission

line length.
6. For executive controllers, make use of system voltage fluctuation controllers, Shunt Com-

pensation, step-up transformer controllers, and Automatic Voltage Regulators (AVRs).
7. For Real-time Performance: Scheduling the generation according to load demand,

evaluating voltage stability, and protecting the load shedding.
8. For safeguarding systems: Instant Load Tap Changer (LTC) control, Contingency of

load demand, and High Voltage Direct Current (HVDC).

Indeed, over the past few decades, the reliability and stability of power systems have
gone through considerable improvements. Stability analysis has evolved from simple static
and transient stability analyses to more sophisticated and comprehensive methods.

Voltage Stability Indices (VSIs) generally measure voltage stability. The stability in-
dices’ performance is essential in analyzing and illustrating the consequences of power
system operation. Furthermore, the indices assist in predicting eventual improvement
and determining long-term advancement. Especially in the last three decades, numerous
techniques and methodologies have been developed for easy stability analysis. The per-
formances of various indices for determining voltage stability have been explained in this
review. For assessing a system’s stability, several indices consider the system impedance.
However, few indices are unconstrained by impedance and performed using the current
and voltage of the system. In real-time operation, it is impossible to determine the accurate
impedance of a system because of troposphere conditions and inadequate knowledge
of the system. Therefore, the accuracy of the impedance-operated indices is repeatedly
accompanied by errors.

A taxonomy of comprehensive characteristics, variations in accuracy, and some pa-
rameters being inaccurate is presented below, as well as the terminology concerning VSIs,
including mathematical derivation, instability conditions, and assumptions of specific pa-
rameters. This taxonomy can serve to make researchers aware of the advancements in the
VSIs, and the respective operations including voltage stability enhancement, strengthening
the weak bus, locating the reactive compensation devices, reducing the cost-effectiveness
and location of FACTS devices, and counteracting the prevention of voltage collapse.

Determining the VSI values for a system is carried out in three modes of operation.
One is the online mode: In this mode of operation, the engineer observes the voltage
stability and operates accordingly to maintain the system’s stability. The statistics used for
this in this paper were composed of mathematical models and power system measurements.
The second mode of the stability indices is the offline mode: In this mode of operation, the
designer gathers the simulated or historical data. The preserved data identify the voltage
instability intensity and voltage collapse and do not contain real-time data on voltage
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instability. The real-time method is the third mode of stability indices, and is obtained
using a Phasor Measurement Unit, Power Flow Analysis, and Artificial Intelligence.

This article aims to thoroughly review and scrutinize numerous Voltage Stability
Indices. This review indicates the limitations, strengths, underlying principles, and ap-
plicability of these indices by sharply examining them. This article provides clarity to
researchers, engineers, and power system operators in choosing suitable stability indices
depending on the particular characteristics of a system and functional needs. Researchers
will gain synthesized knowledge of Voltage Stability Indices, as this article presents the
diverse range of stability indices with mathematical formulations, highlighting their pecu-
liar characteristics and underlying principles. This review supports decision-making for
system operators with the knowledge needed to estimate instabilities and ensure voltage
stability, sustainable energy supply, and grid reliability.

2. Voltage Stability Indices

Voltage Stability Indices are values of an arithmetic sequence adopted for evaluating
voltage stability. The indices specify the accessible and equitable regulation of the sys-
tem’s stability so that voltage levels are within sustainable limits. Indices predominantly
assist power engineers in determining voltage stability, predicting voltage collapse, and
evaluating the significance of system characteristics. This review elaborates on the numer-
ous methodologies for assessing voltage stability. Furthermore, categorizing the different
VSIs in [3–5] as line VSIs, Bus VSIs, and overall VSIs. Jacobian matrix-based indices and
PMU-based indices fall under overall VSIs.

The overall VSIs’ precision is superior compared to the other stability indices. The
overall VSIs are challenging to determine and take more computation time. Line VSIs
obtain easy and simple indices that are reasonable in determining all optimization issues
through the proficiency of these indices and identifying the critical line and weak bus.
These VSIs are derived from a mathematical equation by considering the standard two-bus
concept. With these mathematical derivations, the system examines the stability of various
stability indices. Similar aspects of voltage collapse points determine the VSIs’ formation.
Figure 1 represents an illustration of the interconnected network with a single line in a
standard two-bus model.
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Rearrange Equations (12) and (13) allows us to obtain: 𝑉௥ଶ  − 𝑉௦𝑉௥ ൬cos 𝛿  + 𝑋𝑅 sin 𝛿൰ + 𝑃௥ ቆ𝑅 + 𝑋ଶ𝑅 ቇ  =  0 (14)

Figure 1. Standard two-bus model.

Jacobian matrix-based VSIs specify the scope of system stability, determine the voltage
collapse point, and evaluate the VSM. However, they consume more time for computation,
and in general, mathematical topology variations compel the transformation of the Jacobian
matrix, causing the matrix to need to be again; therefore, they are inconvenient in real-time
applications. Additionally, Jacobian matrix indices tend to increase the operational time of
DG placing and sizing issues. However, the VSIs established by system variables claim
lesser computational time and are acceptable for real-time operations. The detriment of
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these stability indices is that they are less accurate in evaluating the VSM. Consequently,
they are not as accurate in determining the weak line and critical bus. In most applications,
like placement of the DG and sizing issues, VSIs prevail for identifying the weak bus and
critical line or stimulating the deterrents for voltage instability.

Sr = Pr + jQr = Vr I∗ (1)

I =
(

Sr

Vr

)∗
=

(Pr − jQr)

Vr∠− δr
(2)

Vs, Vr: magnitude of bus voltage at sending and receiving bus; Ss, Ps, Qs: apparent,
real, and reactive power at sending bus; Sr, Pr, Qr: apparent, real, and reactive power at
receiving bus; δs, δr: voltage angle at sending and receiving bus; R, X, Z, θ = line resistance,
line reactance, line impedance, and line impedance angle.

Considering the Kirchhoff Voltage Law (KVL), the current equation for two buses is,

I =
Vs∠δs −Vr∠δr

R + jX
(3)

Substituting Equation (3) in Equation (2), we obtain:

Vs∠δs −Vr∠δr

R + jX
=

(Pr − jQr)

Vr∠− δr
(4)

VsVr∠(δ s − δr)−V2
r = PrR− jQrR + jPrX + QrX (5)

Let δs − δr = δ and simplify Equation (5) as:

VsVr∠δ−V2
r = PrR− jQrR + jPrX + QrX (6)

Transforming VsVr ∠δ into a rectangular form, we obtain:

VsVrcos δ + jVsVrsin δ−V2
r = PrR− jQrR + jPrX + QrX (7)

Segmenting Equation (7) into real and imaginary parts, we obtain:

VsVrcos δ−V2
r = PrR + QrX (8)

VsVrsin δ = −QrR + PrX (9)

Readjusting Equations (8) and (9), we obtain:

Pr =
−QrX + VsVrcos δ−V2

r
R

(10)

Qr =
PrX−VsVrsin δ

R
(11)

Substituting Equation (11) in Equation (10) and vice versa, we obtain:

Pr =
−
(

PrX−VsVrsin δ
R

)
X + VsVrcos δ−V2

r

R
(12)

Qr =

(
−QrX+VsVrcos δ−V2

r
R

)
X−VsVrsin δ

R
(13)
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Rearrange Equations (12) and (13) allows us to obtain:

V2
r −VsVr

(
cos δ +

X
R

sin δ

)
+ Pr

(
R +

X2

R

)
= 0 (14)

V2
r + VsVr

(
R
X

sin δ− cos δ

)
+ Qr

(
R2

X
+ X

)
= 0 (15)

For a few VSIs, the line resistance (R) and reactance (X) increase with the impedance
(Z) and impedance angle (θ); therefore, reducing the current equation, Equation (3) is
redefined as:

I =
Vs∠δs −Vr∠δr

Z∠θ
(16)

Substituting Equation (16) into Equation (1), the receiving end’s apparent power
concerning the real and reactive power is:

Pr + jQr = Vr

(
Vs∠δs −Vr∠δr

Z∠θ

)∗
(17)

Assuming δs − δr = δ then Equation (17) is simplified as:

Pr + jQr =
VsVr

Z
∠(θ − δ)− V2

r
Z

∠θ (18)

Equating the real and imaginary parts of Equation (18), we obtain:

Pr =
VsVr

Z
cos(θ − δ)− V2

r
Z

cos θ (19)

Qr =
VsVr

Z
sin(θ − δ)− V2

r
Z

sin θ (20)

Simplifying Equations (19) and (20), we obtain:

V2
r cosθ −VsVrcos(θ − δ) + PrZ = 0 (21)

V2
r sinθ −VsVrsin(θ − δ) + QrZ = 0 (22)

Most of the stability indices were derived mathematically; the quadratic equation’s
voltage discriminant is greater than or equal to zero. The characteristics vary for the index,
so different assumptions are considered for deriving the stability indices.

2.1. Line Voltage Stability Indices
2.1.1. Voltage Stability Load Index (VLSI)

The Voltage Stability Load Index (VLSI) derives from the mathematical derivation [6]
of a standard two-bus system and Thevenin equivalent circuit. Figure 1 presents the voltage
equation considered in this index, obtained from the network. Moreover, we determine
the power flow by performing a power flow analysis directed toward speedy converging.
Considering the square of the sending-end current, receiving-end active and reactive power
with losses, we obtain:

|Is|2 =
P2

s + Q2
s

V2
s

(23)

Pr = Ps − Ploss (24)

Qr = Qs −Qloss (25)
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Ploss =

(
P2

r + Q2
r

V2
r

)
Rs (26)

Qloss =

(
P2

r + Q2
r

V2
r

)
Xs (27)

We then substitute Equations (24)–(27) in Equation (23) to simplify it, resulting in:

|I|2 =

[
Pr +

(
P2

r +Q2
r

V2
r

)
Rs

]2
+
[

Qr +
(

P2
r +Q2

r
V2

r

)
Xs

]2

V2
s

(28)

The analyzed equation is further reduced by equating it to zero and obtaining the
sending end voltage equation:

V2
s = V2

r + 2(PrRs + QrXs) +

(
P2

r + Q2
r

V2
r

)(
R2

s + X2
s

)
(29)

V4
r + V2

s

[
2(PrRs + QrXs)−V2

s

]
+
(

P2
r + Q2

r

)(
R2

s + X2
s

)
= 0 (30)

If the obtained receiving end voltage quadratic equation contains real roots, then the
discriminant is greater than or equal to zero; hence:

8PrQrRsXs − 4V2
r (PrRs + QrXs) + V4

s − 4
(

P2
r X2

s + Q2
r R2

s

)
≥ 0 (31)

4
[
V2

s (PrRs + QrXs) + (PrXs −QrRs)
2
]

V4
s

≤ 1 (32)

Accordingly, L represents the voltage stability load index,

L =
4
[
V2

s (PrRs + QrXs) + (PrXs −QrRs)
2
]

V4
s

(33)

since VsVrcos(δs − δr)−V2
r = PrRs + QrXs & VsVrsin(δs − δr) = PrXs −QrRs

Therefore L =
4
[
VsVrcos(δs − δr)−V2

r cos(δs − δr)
2
]

V2
s

(34)

L =
4
[
VsVrcos(δ)−V2

r cos(δ)2
]

V2
s

(35)

Hence, the value L should be less than 1.0 for the system’s stability. Whenever the
index value is more significant than 1.0, corresponding to Equation (32), the voltage emerges
as imaginary and collapses. To defend the load instability, the load index value must be Li
≤ 0, and if Li is nearer to 1.0, then bus ‘i’ approaches the stability limit.

2.1.2. Line Stability Index (Lmn)

The Line Stability Index is determined in [7] and derived from the voltage quadratic
equations discriminant. Considering this index and Equation (20), we can derive Vr:

Vr =
Vssin(θ − δ)±

{
[Vssin(θ − δ)]2 − 4ZQrsinθ

}0.5

2sinθ
(36)



Energies 2023, 16, 6718 7 of 45

Assuming Zsinθ = x,

Vr =
Vssin(θ − δ)±

{
[Vssin(θ − δ)]2 − 4xQr

}0.5

2sinθ
(37)

The above voltage equation should have real roots to obtain absolute values of Vr in
terms of Qr. Therefore, the following condition is to manipulate the stability of the system.{

[Vssin(θ − δ)]2 − 4xQr

}
≥ 0

4xQr
[Vssin(θ−δ ]2

= Lmn ≤ 1
(38)

Lmn represents the stability index of the line. Voltage collapse is predicted rigorously
depending on the stability index’s value. If the obtained value of Lmn is lesser than the
unity, then the system is in a stable condition; otherwise, if the value is more significant
than the unity, then the system exhausts the stability; moreover, the voltage collapses.

2.1.3. Line Stability Factor (LQP)

The Line Stability Factor (LQP) developed in [8] makes use of a similar theory of the
discriminant of the voltage quadratic equation, primarily from receiving end real power:

Pr = Ps − R
(

P2
s −Q2

s
)

V2
s

(39)

Reorganizing the power equation as R P2
s

V2
s
− Ps + Pr +

(
Pr + R Q2

s
V2

s

)
= 0 allows us to

obtain the roots of Ps:

1− 4
(

R
V2

s

)(
Pr + R

Q2
s

V2
s

)
≥ 0 (40)

From Equation (40), it is clear that the system loses its stability when it violates this
condition. Further, deriving the reactive power is similar to the derivation of active power:

1− 4
(

X
V2

s

)(
Qr + X

P2
s

V2
s

)
≥ 0 (41)

LQP = 4
(

X
V2

s

)(
Qr + X

P2
s

V2
s

)
(42)

Since LQP < 1, the system is stable. Here, for deriving the index, it is assumed that the
lines are lossless (R/X << 1) and neglect the shunt admittance.

2.1.4. Voltage Collapse Proximity Index (VCPI)

The VCPI [9] evaluates the line voltage stability depending on the theory of maximum
power. The analysis assumes a frequent occurrence and varying of the absolute impedance
value by keeping φ constant. With this inference, the performance may not be accurate, but
it is easy to solve. During the operation, the power factor remained constant.

Along with the load demand increase, the current increases with a decrease in Zr,
resulting in a receiving-end voltage drop:

I =
Vs√[

(Zscosθ + Zrcos∅)2 + (Zssinθ + Zrsin∅)2
] (43)

Vr = Zr I =
Vs√[

1 + (Zr/Zs)
2 + 2(Zr/Zs)cos(θ −∅)

] (44)
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Hence, the receiving-end power is Pr = VrIcosφ and Qr = VrIsinφ
Simplifying Equation (44) with that for power, we obtain:

Pr =
(Vs)

2/Zs

1 + (Zr/Zs)
2 + 2(Zr/Zs)cos(θ −∅)

Zr

Zs
cos∅ (45)

Qr =
(Vs)

2/Zs

1 + (Zr/Zs)
2 + 2(Zr/Zs)cos(θ −∅)

Zr

Zs
sin∅ (46)

Correspondingly, the power loss is Pl = I2Zscosθ and Ql = I2Zssinθ.
Substituting the current equation, we then obtain:

Pl =
(Vs)

2/Zs

1 + (Zr/Zs)
2 + 2(Zr/Zs)cos(θ −∅)

cosθ (47)

Ql =
(Vs)

2/Zs

1 + (Zr/Zs)
2 + 2(Zr/Zs)cos(θ −∅)

sinθ (48)

Considering the boundary condition ∂Pr/∂Zr = 0 allows us to calculate the maxi-
mum active power delivered at the receiving end. Hence, this condition results in the
impedance Zr/Zs = 1. The maximum power transfer obtained by substituting this ratio in
Equation (45) is:

Pr(max) =
V2

s
Zs

cos∅
4cos2 (θ−∅)

2

(49)

Similarly, adopting this approach, the following power equation can be derived:

Maximum transferable reactive power Qr(max) =
V2

s
Zs

sin∅
4cos2 (θ−∅)

2

(50)

In line with the maximum active power loss Pl(max) =
V2

s
Zs

cosθ

4cos2 (θ−∅)
2

(51)

In line with the maximum reactive loss Ql(max) =
V2

s
Zs

sinθ

4cos2 (θ−∅)
2

(52)

Considering these maximum limits, Voltage Collapse Proximity Indicators can be
designed as:

VCPI (1) =
Pr

Pr(max)
=

Real power tran f erred to the receiving end
Maximum real power that can be trans f erred

(53)

VCPI (2) =
Qr

Qr(max)
=

Reactive power tran f erred to the receiving end
Maximum reactive power that can be trans f erred

(54)

VCPI (3) =
Pl

Pl(max)
=

Real powerin the line
Maximum possible real power that loss

(55)

VCPI (4) =
Qr

Qr(max)
=

Reactive power loss in the line
Maximum possible reactive power loss

(56)

The system may collapse if the values of the VCPIs are more significant than the unity.
Therefore, VCPI (1) = VCPI (2) and VCPI (3) = VCPI (4), since only active or reactive terms
were considered instead of all proximity indices.
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2.1.5. Voltage Stability Index (Lp)

The line stability index proposed in [10] is a similar mathematical formulation to earlier
line VSIs. Basically, from the active and reactive power equations, i.e., from Equations (19)
and (20), δ can be derived as:

δ = cos−1 V2
s − (PsR + QsX)

VsVr
(57)

Reorganizing Equation (19) and deriving the voltage equation Vr, we obtain:

Vr =
Vscos (θ − δ)±

{
[Vscos(θ − δ)]2 − 4RPr

}0.5

2cosθ
(58)

Hence, the Vr equation should possess real roots for obtaining the absolute values of
Vr expressed in terms of Pr. Accordingly, it is then simplified to be enough to withstand the
following conditions: {

[Vscos(θ − δ)]2 − 4RPr

}
≥ 0 (59)

4RPr

[Vscos(θ − δ)]2
= Lp ≤ 1 (60)

LP is a line stability index that determines the condition of the transmission line and
indicates instability limits. If the calculated value of Lp is more significant to the unity, the
system approaches instability. The voltage collapses when the system exceeds the critical
limits; moreover, the Vr becomes imaginary.

2.1.6. Fast Voltage Stability Index (FVSI)

The Fast Voltage Stability Index is derived in [11] primarily by considering the cur-
rent through the line and then calculating the absolute roots of a receiving-end voltage
(Equation (15)):

Vr =

(
R
X sinδ + cosδ

)
Vs ±

√[(
R
X sinδ + cosδ

)
Vs

]2
− 4
(

X + R2

X

)
Qr

2
(61)

For determining the absolute roots of Vr, the Vr discriminant is greater than or equal
to zero.

4Z2QrX

V2
s (Rsinδ + Xcosδ)2 ≤ 1 (62)

The angular difference δ is minute; thus, δ ≈ 0, Rsinδ ≈ 0, and Xcosδ ≈ X. As a result,
Equation (62) can be simplified as:

FVSI =
4Z2Qr

V2
s X

(63)

The line is in-transit to the instability limit if the FVSI value is adjacent to 1. With
further increases in a stability index value, that line may encounter an unexpected voltage
drop accompanying system collapse.

2.1.7. Voltage Stability- Load Bus Index (VSLBI)

VSLBI evaluates the voltage stability by adopting the PMU [12]. Considering the
maximum power condition, this stability index is subject to a voltage-drop ∆Vr over the
transmission impedance Zr that is equivalent to load bus voltage Vr:

∆Vr = Vr (64)
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Accordingly, to approach the voltage collapse exposure during the constant power
loads, the Voltage Stability Load Bus Index (VLSBI) is represented as:

VSLBI =
Vr

∆V
(65)

If the obtained value of the VSLBI is more significant than the unity, then the system is
considered stable; if the VSLBI is less than 1, then the system is unstable, and the system
may collapse.

2.1.8. Voltage Stability Margin Index (VSMI)

The VSMI, proposed in [13], depends on the correlation between the power transfer
from the line and the angular difference between the sending- and receiving-end buses. To
derive the fundamental equations of real and reactive power, the receiving end voltage is:

Vr = Vs
cos(∅r + δ)

cos(∅r)
(66)

Pr =
1
2

V2
s

X

(
sin(∅r + 2δ)

cos(∅r)
− tan(∅r)

)
(67)

Since tan(∅r) =
Qr
Pr

, considering Equations (66) and (77), the power Pr maximum value
can be calculated for whatever the value of Qr/Pr is. The respective angular differences of the
sending- and receiving-end buses (δ), and the receiving-end voltage (Vr), are expressed as:

Prmax =
1
2

V2
s

X

(
1

cos(∅r)
− tan(∅r)

)
(68)

Vrmax =
cos
(

π
2 +∅r

)
cos(∅r)

Vs (69)

δrmax =
π
2 −∅r

2 for any ratio of Qr/Pr
With the correlation between the voltage stability and angular difference, the voltage

stability margin that is determined depends on what degree of δ is adjacent to δrmax. There-
fore, whatever the operating constraints, the receiving end index can be represented as:

VSMI =
δrmax − δ

δrmax
(70)

The calculated value of the VSMI should be higher than zero to sustain the system’s
stability and protection.

2.1.9. Voltage Collapse Proximity Index (VCPI_1)

The significant motive of VCPI_1 is that, during the voltage collapse, the voltage drop
at the Thevenin impedance equals the load voltage. The proximity index derived in [14]
is denoted as VCPI_1 to prevent confusion from the VCPI notation. An easy arithmetic
prediction indicates that, during the critical situation, the generator phasor voltage ( Vs ) is
double the load phasor voltage, Vr. Hence, for the estimation of the possibility of voltage
instability, VCPI_1 is represented as:

VCPI_1 = Vrcosδ− 0.5Vs (71)

If the VCPI is greater than or equal to zero, then the system is stable, otherwise it is
unstable. In this index, the lines are complicated. However, considering that the sending-
end bus connects to the ideal voltage source, the receiving end with the equivalent Thevenin
impedance is neglected.
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2.1.10. Critical Voltage (Vcr)

The Critical Voltage is an intelligible index that is derived from a single load, an infinite
bus system utilizing the Eigen-value theorem, and load flow equations [15]. In this paper,
it is used for adapting the power factor cosφ to be constant. From the active and reactive
power flow equations, the bus voltage angle δ is eliminated, and the resulting equation is:

V4
r +

[
2Z(Vrcosθ + Qrsinθ)−V2

s

]
V2

r +
(

P2
r + Q2

r

)
Z2 = 0 (72)

Corresponding to favorable circumstances, Equation (72) contains a specific solution;
moreover, the correlation between the Vs, Vr, I vectors is developed as:

Vcr = V+ = V− =
Vs

2cosθ
(73)

The load bus critical voltage is denoted by Vcr (P-V Curve nose point). V+ and V−

are the P-V curves’ upper and lower parts, respectively. Nearer to this, V+ and V− are
superposed values of Vcr. The indices concern the maximum power limit as a stability
limiting point. Evaluating the simple system by the constant MVA load and cosφ power
factor, Equation (72) is:

S2 + 2S
V2

Z
cos(θ −∅) +

V4 −V2
s V2

r
Z2 = 0 (74)

Apparent Power S =
P

cos∅ (75)

To obtain the maximum S, dS/dV is equated to zero. Accordingly:

Vcr =
Vs√

2(1 + cos(θ −∅))
(76)

After the phasor relationship, further reducing Equation (76) allows us to obtain:

Vcr =
E

2cosθ
(77)

2.1.11. Power Transfer Stability Index (PTSI)

The Power Stability Index proposed in [16] is derived with the help of a standard
two-bus Thevenin-equivalent system; here, the slack bus and the load bus were connected
on a single branch, as represented in Figure 2. The current delivery to load and load
power is:

I =
VThev

ZThev + ZL
(78)

SL = ZL I I∗ = ZL
∣∣I∣∣2 (79)

Substituting Equation (78) in (79), we obtain:

SL = ZL

∣∣∣∣ VThev

ZThev + ZL

∣∣∣∣2 (80)

Assuming that ZL = ZL∠ϕ and ZThev = ZThev∠θ, and alternating them into Equation (80),
we obtain:

SL = ZL∠ϕ

∣∣∣∣ VThev
ZThev∠θ + ZL∠ϕ

∣∣∣∣2 (81)
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SL =
V2

ThevZL

|ZThev∠θ + ZL∠ϕ|2
(82)

SL =
V2

ThevZL

Z2
Thev + Z2

L + 2ZThevZLcos(θ − ϕ)
(83)

To obtain the maximum value of the apparent power of the load, the SL is differentiated
and equated to zero, ∂SL/∂ZL = 0.

SLmax =
V2

Thev
2ZThev(1 + 2cos(θ − ϕ))

(84)

The power margin at the load bus distance when it is approaching voltage collapse
is SLmax – SL. If ZL = ZThev,, the power margin is equal to zero; moreover, it indicates no
power transfer and may cause voltage collapse. Conversely, a voltage may collapse if the
ratio of power is:

SL
SLmax

= 1 (85)

Substituting Equations (83) and (84) in Equation (85), the power transfer stability
index is:

PTSI =
2SLZ (1 + cos(θ − ϕ))

V2
s

(86)

The value of the PTSI is determined with Equation (86), considering the load’s power,
impedance, Thevenin Voltage, Thevenin Impedances, and the Angular phase of the load.
The obtained PTSI value lies between 0 and 1. Voltage collapse occurs when the index
value reaches 1.
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2.1.12. Voltage Stability Index (VSI_1)

The stability index predicts the voltage stability at the steady state operation; this
index is proposed in [17]; however, for easy identification, the notation of the stability
index is represented as VSI_1. Initially, this index calculates the maximum active, reactive,
and apparent power transfer. To obtain the receiving-end voltage (Vr), considering the
Equation (19) for active power (Pr) and Equation (20) for reactive power (Qr), we obtain:

Vr =

√
V2

s
2
− (QX + PR)±

√
A (87)

Here, = V2
s

4 − (QX + PR)V2
s − (PX−QR)2, A ≥ 0.
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Transmission lines containing a higher X/R ratio and ignoring the resistance value,
resulting in Pmax, Qmax, and Smax, can be derived as:

Pmax =
QR
X
−

V2
S R

2X2 +
|ZL|Vs

√
V2

S − 4QX

2X2 (88)

Pmax =

√
V4

s
4X2 −Q

V2
s

X
(89)

Qmax =
PX
R
−

V2
S X

2R2 +
|ZL|Vs

√
V2

S − 4PR

2R2 (90)

Qmax =
V2

s
4X
− P2X

V2
s

(91)

Smax =
V2

s [|ZL| − (sin (θ)X + cos (θ)R)]
2(cos (θ)X− sin(θ)R)2 (92)

Smax =
(1− sin(θ)) V2

s

2cos(θ)2X
(93)

The derived maximum powers identified that the maximum power transfer increases
with an increase in the voltage magnitude (Vr) or a decrease in the impedance (ZL). Equiv-
alently, Pmax decreases with an increase in Q, and Qmax decreases with an increase in P.

Pmargin = Pmax − P, Qmargin = Qmax −Q, Smargin = Smax − S (94)

From the maximum powers, the corresponding load margins can be obtained with
Equation (94). Hence, the derived VSI from the obtained load margin is represented in
Equation (95). If the obtained VSI is small, the load bus is adjacent to the stability margin
and the lesser load margin that is available. The VSI equals zero if the load bus reaches its
stability margin point.

VSI = min
(Pmargin

Pmax
,

Qmargin

Qmax
,

Smargin

Smax

)
(95)

2.1.13. Novel Line Stability Index (NLSI)

The NLSI is determined with a similar power transmission approach [18], considering
the quadratic Equations (8) and (9):

Vr =
Vscosδ ±

√
V2

s cos2δ− 4(PrR + QrX)

2
(96)

The discriminant should be greater than or equal to 0 to obtain the absolute value
of Vr.

PR + QX
0.25V2

s cos2δ
≤ 1 (97)

As the angular difference (δ) between receiving and sending ends is usually very small,
cosδ ≈ 1. Subsequently, the Novel Line Stability Index can be represented as:

NLSI =
RsrPr + XsrQr

0.25V2
s

(98)

If the value of the NLSI of any line is adjacent to 1, that line is moving closer to the
stability limit; consequently, the system may collapse. Hence, the NLSI allows us to find
the stability limit, i.e., the index value is lesser than the unity.



Energies 2023, 16, 6718 14 of 45

2.1.14. Stability Index (SI)

For load flow analysis, the quadratic equation is preferable for calculating the sending-
end voltage of a line and can be simplified in general form as:

V4
r + 2V2

r (PR + QX)−V2
s V2

r +
(

P2 + Q2
)
|Z|2 = 0 (99)

Further, the receiving-end line active and reactive power is derived as:

P =

[
−cos(θ)V2

r ±
√

cos2(θ)V4
r −V4

r − dZe
2Q2 − 2V2

r QX + V2
s V2

r

]
/|Z| (100)

Q =

[
−sin(θ)V2

r ±
√

sin2(θ)V4
r −V4

r − dZe
2P2 − 2V2

r PR + V2
s V2

r

]
/|Z| (101)

Therefore, to obtain the absolute value of the active and reactive power, the corre-
sponding equation should satisfy the following:

cos2(θ)V4
r −V4

r − dZe
2Q2 − 2V2

r QX + V2
s V2

r ≥ 0 (102)

sin2(θ)V4
r −V4

r − dZe
2P2 − 2V2

r PR + V2
s V2

r ≥ 0 (103)

Adding both equations, we obtain:

2V2
s V2

r −V4
r − 2V2

r (PR + QX)− |Z|2
(

P2 + Q2
)
≥ 0 (104)

The above equation illustrates that equation values decrease with increased power
and impedance. Moreover, Equation (104) considers a stability index [19].

SI(r) = 2V2
s V2

r −V4
r − 2V2

r (PR + QX)− |Z|2
(

P2 + Q2
)

(105)

Therefore, the classic stability principle determines the stability index for individual
lines of radial distribution networks. The minimum stability index value is the most
vulnerable to collapse. If the index is equal to zero, then the system collapses. Here, also,
neglecting the shunt admittance to determine the stability index will lead to collapse.

2.1.15. Voltage Stability Margin (VSM)

VSM technique [20] is when the admissible rise in load power occurs during the
current operating mode or the critical mode. Considering Figure 1, the voltage (Vs) and
load apparent power (SL) are derived as follows:

Vr =
VsZr[

Z2
r + Z2

0 + ZLZ0cos(θ0 − θr)
]1/2 (106)

Sr =
V2

r Zr[
Z2

r + Z2
0 + ZLZ0cos(θ0 − θr)

] (107)

Concerning the critical point, the load power attains the maximum value and can be
written as:

Scr =
V2

s
2Z0[1 + cos(θ0 − θr)]

(108)

Zr is the available load impedance, and the variation between Zr and Z0 is assumed as
an invulnerability limit. Accordingly, the VSM in terms of impedance is as follows:

VSMZ =
Zr − Z0

Z0
(109)
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The allowable power increases until the stability limit is contingent to a higher degree
on the angle of the load power factor with a similar VSMs. Therefore, it can be enhanced to
signify the margin concerning the load apparent power, VSMs.

VSMs =
Scr − SL

Scr
(110)

Hence, the margin of the apparent load power is derived from the VSM. Two assump-
tions for the stability margin are (i) that the line shunt admittance neglected and (ii) a
constant power factor. The system is unstable when the apparent load power is more
significant than the critical one. Even if the value of the VSM is less than zero, the system
is unstable.

2.1.16. Voltage Reactive Power Index (VQI)

The line index proposed in [21] has a similar methodology to that of Lp. To insert the
relation between the voltage (Vs) and reactive power (Qr) comprised from Equation (19)
into Equation (18), we obtain:

|VrVsYsr|.cos(θ − δ)− |Vr|2|Ysr|.cos(θ)− jQr = |VrVsYsr|∠(θ − δ)− |Vr|2|Ysr|∠θ (111)

|Vr|2 − |VrVs|
sin(θ − δ)

sin(θ)
+

Qr

|Ysr|sin(θ)
= 0 (112)

As the value of δ is negligible and minimized to zero, then the entire term of
(sin(θ − δ)/sin(θ)) is omitted:

|Vr|2 − |VrVs|+
Qr

|Ysr|sin(θ)
= 0 (113)

Replacing the term Yrs sin(θ) with Brs,, the corresponding equation is:

|Vr|2 − |VrVs|+
Qr

|Bsr|
= 0 (114)

Extracting the real roots of the quadratic equation in terms of Vr, we obtain:

Vr =
|Vr| ∓

√
|Vr|2 − 4Qr

|Bsr |
2

(115)

When the discriminant of Vr equates to zero, the respective equation contains one
distinct real root, or two equal roots. Hence, the respective real roots are:

|Vr|2 −
4Qr

|Bsr|
≤ 0 =⇒ 4Qr

|Bsr||Vr|2
≤ 1 (116)

The value of Vr ranges from 0 to 1, illustrating the limitation of real roots as the voltage
stability limits. Moreover, real roots should be less than 1 and greater than 0, or the stability
is affected. Thus, the derived equation evaluates the system stability and identifies the
voltage collapse point as the voltage reactive power index.

VQI =
4Qr

|Bsr||Vr|2
≤ 1

If the obtained value of VQI is nearer to 1, then the system is within stability limits.
Otherwise, a system beyond the stability limits leads to instability. VQI also identifies the
instability point of occurrence and voltage collapse.
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2.1.17. Line Collapse Proximity Index (LCPI)

An improved LCPI was developed in [22] to overcome the limitations of specific
indices [7,8,11] which ignored the line charging reactance while deriving their values. Since
the line charging reactance is a critical factor supporting voltage stability, this proximity
index was derived considering the definite transmission line model as well as the conse-
quences of active and reactive power flows through lines. The definite transmission line
model primarily represents an equivalent circuit of a two-port network considering the
ABCD matrix. Thus, the proposed proximity index is derived from the ABCD matrix.[

Vs
Is

]
=

[
A B
C D

][
Vr
Ir

]
(117)

Hence, the transmission line parameters for a two-port circuit are A, B, C, and D.

A =
(

1 + Z× Y
2

)
, B = Z, C = Y×

(
1 + Z× Y

4

)
, D = A

Receiving-end current : Ir = (Pr − jQr)/V∗r = (Pr − jQr)/Vr∠− δr
(118)

Considering the receiving-end current, the sending-end voltage Vs is derived as:

Vs∠δs = A∠α∗Vr∠δr + B∠β∗ Ir∠00 (119)

A and B are magnitudes, and their corresponding phase angles are α and β, respectively.
Combining the current with the voltage equation, we obtain:

Vs∠δs = A∠α∗Vr∠δr + B∠β∗(Pr − jQr)/Vr∠− δr (120)

VsVr∠δ = A∠α∗V2
r + B∠β∗(Pr − jQr) (121)

Here, δ = δs − δr. Ignoring the imaginary part and considering the real part of the
above quadratic equation, we obtain:

V2
r (Acosα)−Vr(Vscosδ) + (PrBcosβ + QrBsinβ) = 0 (122)

Obtaining the roots of the quadratic equation allows us to obtain:

Vr =
−Vscosδ±

√
(Vscosδ)2 − 4Acosα(PrBcosβ + QrBsinβ)

2Acosα
(123)

It should contain the actual non-zero values of the Voltage equation and the actual
non-zero roots obtained from the voltage equation discriminant.

(Vscosδ)2 − 4Acosα(PrBcosβ + QrBsinβ) > 0 (124)

Therefore, to maintain the system as stable and prevent voltage collapse, the following
conditions should be satisfied:

4Acosα(PrBcosβ + QrBsinβ)

(Vscosδ)2 < 1 (125)

∴ LCPI =
4Acosα(PrBcosβ + QrBsinβ)

(Vscosδ)2 (126)

Therefore, the index value should be less than 1 to maintain the system stability, i.e.,
LCPI < 1. At no load, the LCPI value is zero, and the LCPI value is adjacent to the unity
during the system instability.
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2.1.18. New Voltage Stability Index (NVSI)

The NLSI derived in [23] is a similar concept of the power transmission quadratic
equation represented in Equation (8). Determining the NLSI is similar to the process for
determining Lp. Neglecting δ, Equations (19) and (20) represented as:(

V2
r

)2
+
(

2QrX−V2
s

)
V2

r + X2
(

P2
r + Q2

r

)
= 0 (127)

The Voltage Equation Vr is a second-order equation. The limitation to possessing at
least one solution is:

(
2QrX−V2

s
)2 − 4X2(P2

r + Q2
r
)
≥ 0

2X
√
(P2

r +Q2
r )

4QrX−V2
s
≤ 1

∴ NVSI =
2X
√
(P2

r +Q2
r )

4QrX−V2
s

(128)

Hence, to sustain stability, the value of the NLSI must be less than 1.00 in order
toobtain the NLSI by neglecting the line resistance and line shunt admittances.

2.1.19. Integrated Transmission Line Transfer Index (ITLTI)

An integrated transmission line transfer index depends on the radial topology. The
ITLTI’s purpose is identifying the power transfer; moreover, it identifies the weak line
depending on the transmission line parameters, consequent to the unity, lagging, and
leading power factor states. The transmission line in Figure 1 depicts a constant sending-
end voltage Vs∠δ transferring the power Ss. Hence, the functional ABCD parameters
represent the receiving-end power Sr, Voltage Vr∠δ with the respective power factor angle
θr. Further, the receiving-end complex power is derived as:

Sr = Vr Ir = −
AV2

r
B

∠(β− α) +
VsVr

B
∠(β− δ) (129)

Equivalently, the sending-end complex power is represented as:

Ss = Vs Is = −
AV2

s
B

∠(β− α) +
VsVr

B
∠(β + δ) (130)

Considering the radial transmission line [24], we obtain two-power circles with the
same radius and two different centers. Receiving-end complex power circle polar coordi-
nates are represented in Figure 3 with a variable power angle δ.
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Considering the receiving-end circle and ∆OCR, we obtain:

∠C = ∠δ′ = ∠(β− α)− (β− δ) = ∠(δ− α)
∠O = ∠θ′r = 180−∠(β− α) +∠θr
∠R = ∠∅r = 180−∠δ′ −∠θ′r

Sr
sinδ′ =

VsVr
B

sinθ′r
=

AV2
r

B
sin∅R

(131)

Therefore, the relation between the receiving-end and sending-end voltage can be
derived by Vr =

Vs
A

sin∅r
sinθ′r

. Accordingly, an increased power angle at distinct power factors
decreases the receiving-end voltage. The receiving-end power magnitude is:

Sr =
V2

s
AB

sin(θ′r + δ′)sinδ′

(sinθ′r)
2 (132)

To deliver the maximum power, Sr is partially derived using δ’ and is equated to zero,
which determines the critical value of the power angle.

δr_CR = 90− θ′r
2
+ α (133)

Critical voltage value:

Vr(CR) =
Vs

2A
1

sin θ′r
2

(134)

Maximum Power Transfer:

Sr(max) =
V2

s
4AB

1(
sin θ′2

2

)2 (135)

The maximum limit of the receiving-end power for different power angles is as follows:

Sr = Sr(max)
sin(θ′r + δ′)sinδ′(

cos θ′r
2

)2 (136)

Moreover, the integrated transmission line transfer index (ITLTI) is expressed as:

Sr_index =
sin(θ′r + δ′) sinδ′(

cos θ′r
2

)2 (137)

Hence, the ITLTI determines the system’s stability for all healthy operations. De-
termining the Sr_index with varying power angles, the maximum value should be 1; if it
exceeds 1, the system is unstable. Therefore, the index value is maintained at less than
1. The loadability concerning the critical power angle increased with an increase in the
receiving-end power factor, irrespective of leading or lagging operations. Separating the
active and reactive power of Sr, the active power Pr is expressed as follows:

Pr = −
AV2

r
B

cos(β− α) +
VsVr

B
cos(β− δ) (138)

2.1.20. Critical Boundary Index (CBI)

The Critical Boundary Index derived in [25] considers the active and reactive power
variations and utilizes arithmetical methods to determine the critical boundaries. This
index is preferable because of its high accuracy in predicting system performance and
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analyzing and adding the actual (Equation (8)) and imaginary (Equation (9)) parts of the
power flow equation (Equation (7)).(

PrRsr + QrXsr + V2
r

)2
+ (PrXsr −QrRsr)

2 = V2
s V2

r (139)

(
V2

r

)2
+ 2
(

RsrPr + XsrQr −
V2

s
2

)
V2

r +
(

R2
sr + X2

sr

)(
P2

r + Q2
r

)
= 0 (140)

V2
r = −

(
RsrPr + XsrQr −

V2
s

2

)
±
√

A (141)

Imagining that the intensity of the receiving-end and sending-end voltages is more
significant than zero, and rearranging Equation (141), we obtain the following:

A =

√(
RsrPr + XsrQr −

V2
s

2

)2

− (R2
sr + X2

sr)(P2
r + Q2

r ) (142)

Hence, the above equation examines that the power transmission had limits for a
specific time duration. Those limits are acknowledged as power and voltage stability limits.
These limits are logical only when the magnitude of A is 0. Hence, determining the Qr
when A = 0 is written as follows:

Qr =
±
√

X2
srV4

s + R2
srV4

s − 4X2
srRsrV2

s Pr − 4X3
srV2

s Pr

2R2
sr

+
2XsrRsrPr − XsrV2

s
2R2

sr
(143)

We plot the power stability limit P-Q characteristics with Qr. The P-V characteristic
is the nose curve. The power system stability in Figure 4 includes the unstable and stable
boundaries, starting from a current stable point K (Po, Qo) and reaching a critical boundary
point C (X, Y). Considering the Lagrange Multipliers, Equation (141) simplifies as:

C(X, Y) =
(

RsrX + XsrY−
V2

s
2

)2

−
(

R2
sr + X2

sr

)(
X2 + Y2

)
= 0 (144)

Energies 2023, 16, x FOR PEER REVIEW 18 of 45 
 

 

Hence, the above equation examines that the power transmission had limits for a 
specific time duration. Those limits are acknowledged as power and voltage stability lim-
its. These limits are logical only when the magnitude of A is 0. Hence, determining the Qr 
when A = 0 is written as follows: 

𝑄 ௥ =  ±ට௑ೞೝమ ௏ೞరାோೞೝమ ௏ೞరିସ௑ೞೝమ ோೞೝ௏ೞమ௉ೝିସ௑ೞೝయ ௏ೞమ௉ೝଶோೞೝమ + ଶ௑ೞೝோೞೝ௉ೝି௑ೞೝ௏ೞమଶோೞೝమ    (143)

We plot the power stability limit P-Q characteristics with Qr. The P-V characteristic is 
the nose curve. The power system stability in Figure 4 includes the unstable and stable 
boundaries, starting from a current stable point K (Po, Qo) and reaching a critical boundary 
point C (X, Y). Considering the Lagrange Multipliers, Equation (141) simplifies as: 𝐶(𝑋, 𝑌) = ቀ𝑅௦௥𝑋 + 𝑋௦௥𝑌 − ௏ೞమଶ ቁଶ − (𝑅௦௥ଶ + 𝑋௦௥ଶ )(𝑋ଶ + 𝑌ଶ) = 0  (144)

 
Figure 4. P-Q Characteristics. 

The function f (X, Y) is the length between the current stable point K (Po, Qo) and the 
adjacent point of voltage collapse C (X, Y). The displacement of f (X, Y) is shown as: 𝑓ଶ  =  (𝑋 − 𝑃଴)ଶ + (𝑌 − 𝑄଴)ଶ  (145)

Here, the ΔPik, ΔQik, stability evaluation index, and displacement in the stability curve 
are represented in Figure 4. Further, as shown in Figure 1, the operating point between 
the sending-end and receiving-end transmission line can evaluated by: ∆𝑃௦௥ = 𝑋 − 𝑃଴ &  ∆𝑄௦௥ = 𝑌 − 𝑄଴  𝐶𝐵𝐼௦௥ = ඥ∆𝑃௦௥ଶ + ∆𝑄௦௥ଶ   

(146)

Due to its high-accuracy prediction, this index is preferable. If the index is close to 
zero, it is the worst-stability system. 

2.1.21. Line Voltage Stability Index (LVSI) 
A novel LVSI developed to overcome existing stability indices� drawbacks, LVSI [26], 

is derived from the quadratic voltage equation. This index is also derived considering the 
transmission line ABCD parameters; moreover, the inclusion of line charging capacitance 
and resistance is ignored by existing stability indices. Consequently, this index evaluates 
the voltage sensitivity accurately, subject to all circumstances, and predicts the voltage 
collapse point. The receiving-end active power in terms of transmission line parameters is 
obtained using: 𝑃௥ =  ௏ೞ௏ೝ௖௢௦(ఉఋ)஻ − ஺௏ೝమ ୡ୭ୱ(ఉିఈ)஻   (147)

Figure 4. P-Q Characteristics.

The function f (X, Y) is the length between the current stable point K (Po, Qo) and the
adjacent point of voltage collapse C (X, Y). The displacement of f (X, Y) is shown as:

f 2 = (X− P0)
2 + (Y−Q0)

2 (145)



Energies 2023, 16, 6718 20 of 45

Here, the ∆Pik, ∆Qik, stability evaluation index, and displacement in the stability curve
are represented in Figure 4. Further, as shown in Figure 1, the operating point between the
sending-end and receiving-end transmission line can evaluated by:

∆Psr = X− P0 & ∆Qsr = Y−Q0

CBIsr =
√

∆P2
sr + ∆Q2

sr
(146)

Due to its high-accuracy prediction, this index is preferable. If the index is close to
zero, it is the worst-stability system.

2.1.21. Line Voltage Stability Index (LVSI)

A novel LVSI developed to overcome existing stability indices’ drawbacks, LVSI [26],
is derived from the quadratic voltage equation. This index is also derived considering the
transmission line ABCD parameters; moreover, the inclusion of line charging capacitance
and resistance is ignored by existing stability indices. Consequently, this index evaluates
the voltage sensitivity accurately, subject to all circumstances, and predicts the voltage
collapse point. The receiving-end active power in terms of transmission line parameters is
obtained using:

Pr =
VsVrcos(βδ)

B
− AV2

r cos(β− α)

B
(147)

Rearranging the power equation according to a quadratic equation of voltage is
obtained as:

V2
r −

VsVrcos(β− δ)

Acos(β− α)
+

PrB
Acos(β− α)

(148)

The derivation of the voltage concerning the active power to obtain the sensitivity is
shown as:

dVr

dPr
=

−B
2Vr Acos (β− α)−Vscos(β− δ)

(149)

Hence, the sensitivity should be negative to maintain the system’s stability.

−B
2Vr Acos (β− α)−Vscos(β− δ)

< 0 (150)

Vscos(β− δ)− 2Vr Acos(β− α) < 0 (151)

Further simplifying Equation (151), the stability index can be shown as:

LVSI =
2Vr Acos(β− α)

Vscos(β− δ)
> 1 (152)

It is highly stable if the index value is 2 at no load. If the index value is 1 at the
maximum load, it is a collapse point. Therefore, the system to maintain the stability index
value must be greater than the unity.

2.1.22. New Line Voltage Stability Index (BVSI)

The index BVSI derived in [27] depends on the power transmission approach. Consid-
ering Equation (14), the quadratic equation can be rearranged as follows:

RV2
r −VsVr(Rcosδ + Xsinδ) + Pr

(
R2 + X2

)
= 0 (153)

Deriving the quadratic equation roots, we obtain:

Vr =
Vs(Rcosδ + Xsinδ)±

√
(Vs(Rcosδ + Xsinδ))2 − 4R(Pr(R2 + X2))

2R
(154)
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For determining the absolute and non-zero values of Vr, the discriminant is made
greater than or equal to 0:

(Vs(Rcosδ + Xsinδ))2 − 4R
(

Pr

(
R2 + X2

))
≥ 0 (155)

BVSI =
4RPrZ2

(Vs(Rcosδ + Xsinδ))
≤ 1 (156)

Therefore, the index value is less than the unity for the system to be at the stability
limit, such that the index value lies between 0 and 1. If the BVSI value exceeds 1, the
corresponding line encounters a voltage drop, and the system may collapse. The BVSI line
ignores the shunt admittance and the effects of reactive power on stability.

2.2. Bus Voltage Stability Indices

The Bus Voltage Stability Indices evaluate the transmission bus’s voltage stability and
do not derive the weak characteristics of the potential voltage issues across the system.
Therefore, Bus VSIs are unable to be utilized for determining weak performances.

2.2.1. L-Index

The L-Index [28] is derived from the power flow and standard two-bus system and
obtains a detailed analysis. The L index determines peculiar characteristics of power
system susceptibility, measuring significant active power, restructuring weak areas or
buses, predicting voltage collapse, and identifying instability. Considering the matrix Fij of
an ith column and jth row, and elements obtained from the Y matrix, αL, and αG are the
load bus and generator bus. The linear transmission system represents a Hybrid matrix (H).∣∣∣∣VL

VG

∣∣∣∣ = H.
∣∣∣∣ IL

VG

∣∣∣∣ = ∣∣∣∣ZLL FLG

KGL YGG

∣∣∣∣.∣∣∣∣ IL

VG

∣∣∣∣ (157)

Here, VL, IL: Voltage vector, Current vector at load nodes; VG, IG: Voltage vector,
Current vector at generator nodes; ZLL, FLG, KGL, YGG: H submatrices. By partial inversion,
the H is obtained from the Y-matrix. For any load node j, j ∈ αL, and the corresponding
voltage equation Vj is:

Vj = ∑i∈αL
Zji.Ii + ∑i∈αG

EjiVi (158)

V2
j + VojV

∗
j =

S+∗
j

Y+
jj

(159)

Substituting the equivalent voltage Voj, admittance Yjj
+, and power transferred Si

+:

Voj = −∑i∈αG
FjiVi (160)

Y+
jj =

1
Zjj

(161)

Hence, Sj
+ contains two parts:

S+
j = Sj + Scorr

j (162)

Scorr
j =

∑i ∈ αL
i 6= j

Z∗ji
Z∗jj

.
Si
Vi

.V j (163)
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The exceptional characteristic of Equation (159) is that its formation is similar to the
admittance equation. Dissimilarities exist between the equivalent voltage Voj and power
transferred Sj. The voltage Voj varies slightly, not remaining as a constant value, since the
generator voltage remains mostly constant at varying loads. Adopting these limitations
can evaluate and regulate local indicators, and Lj can allow us to design for every node j
corresponding to the line.

Lj =

∣∣∣∣∣1 + Voj

V j

∣∣∣∣∣ =
∣∣∣∣∣ S+

j

Y+∗
jj V2

j

∣∣∣∣∣ = . . . .. (164)

Under stable operations, the Lj ≤ l condition should never disobey any node j. There-
fore, the global indicator L represents the stability of the entire subsystem, expressed as:

L = MAX
j∈αL

{
Lj
}

L = MAX
j∈αL

∣∣∣∣∣1−
∑

i∈αG
FjiVi

V j

∣∣∣∣∣ (165)

Here, a series of load nodes is αL, and a series of generator nodes is αG. If the L index
value is 0, the system is stable; if the value is 1, the system is approaching instability.

2.2.2. Voltage Instability Proximity Index (VIPI)

The proximity index derived in [29] for estimating instability depends upon coordinat-
ing various load flow solutions and instability. The VIPI is a scalar index that analyses the
stability margin, considering the angle separating the critical and specified-value vectors.
The power flow equation in terms of rectangular coordinates is as follows:

Ys = Y(x) (166)

Here, Ys is the specified value; x = (e1, f1, e2, f2, . . . , en, fn)
T ; ei = Bus voltage real

value; fi = Bus voltage imaginary value. Assume two types of voltage vectors (Figure 5):
x is the operating solution, and x* is the fictitious solution; comply with the uniform
specified-value vector. Employing critical vector (a) and deflection vector (b), x and x* can
be represented as x = a + b, x* = a − b. Further simplifying them, a = x+x∗

2 , b = x−x∗
2 .

As this proximity index is the angle separating critical vector Y(a), and specified value
vector Ys, the VIPI is as follows:

VIPI = θ = cos−1 YT
s Y(a)

‖Ys‖.‖Y(a)‖ (167)

Here, θ is the angle separating two vectors; critical vector Y(a) is in the space of
node specification.
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2.2.3. Voltage Collapse Proximity Index (VCPIBUS)

VCPIBUS, proposed in [30], is derived out of the standard power flow equation, and
considering a network’s voltage phasor measurement and admittance matrix determines
the VCPI at every bus. The complex power at bus k of an N bus network is represented as:

S∗k = |Vk|2 − (|Vk|cosδk − j|Vk|sinδk)

∑N
m = 1
m 6= k

(∣∣∣∣V′m∣∣cosδ′m + j
∣∣V′m∣∣sinδ′m

∣∣)
Ykk (168)

The term V′m in the above equation is expressed as:

V′m =
Ykm

∑N
j=1
j 6=k

Ykj
Vm (169)

Hence, the right-hand term in Equation (168) is complex in the form of a − jb. Let the
two equations contain two unknown terms (Vk, δ).

f1(|Vk|, δ) = |Vk|2 −∑N
m = 1
m 6= k

∣∣V′m∣∣|Vk|cosδ (170)

f1(|Vk|, δ) = ∑N
m = 1
m 6= k

∣∣V′m∣∣|Vk|sinδ (171)

A partial derivative matrix is attained by simplifying two equations for evaluating
the unknowns with the Newton-Raphson Methodology. During the voltage collapse, the
matrix determinant is equal to 0, which results as:

|Vk|cosδ

∑N
m=1
m 6=k
|V′m|

=
1
2

(172)

Further simplifying Equation (172), the voltage collapse prediction index (VCPI)
determined at bus k is:

VCPIkthbus =

∣∣∣∣∣∣∣1−
∑N

m=1
m 6=k
|V′m|

Vk

∣∣∣∣∣∣∣ (173)
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Therefore, the above equation is the voltage collapse condition for bus k. The VCPI
value fluctuates between 0 and 1, where 0 represents a stable system, and 1 represents
voltage collapse.

2.2.4. S Difference Criterion (SDC)

The S Difference Criterion (SDC) [31] needs a protective relay to perform arithmetic
derivation and utilizes the successive evaluation of apparent power (S) at the relay point.
During the voltage instability environs, the inflation of sending-end power flow delivers
the transmission losses. Consequently, the rise in the sending-end apparent power does
not afford a rise in receiving-end power. It specifies that ∆S = 0 at the relay point during
the voltage instability. Hence, the transfer of apparent power to the receiving end is:

S(k)
j = V(k)

j I(k)∗ji (174)

Considering the change in a time period ∆t, the time interval changes to tk = tk + ∆t. A
respective rise in apparent power is as follows:

S(k+1)
j = S(k)

j + ∆S(k+1)
j =

(
V(k)

j + ∆V(k+1)
j

)
.
(

I(k)ji + ∆I(k+1)
ji

)∗
= S(k)

j + ∆V(k+1)
j I(k)∗ji + V(k)

j ∆I(k+1)∗
ji + ∆V(k+1)

j ∆I(k+1)∗
ji︸ ︷︷ ︸

≈0

(175)

Here, the term ∆V(k+1)
j ∆I(k+1)∗

ji is very small and can be ignored.

∆S(k+1)
j = ∆V(k+1)

j I(k)∗ji + V(k)
j ∆I(k+1)∗

ji = 0 (176)

1 +
∆V(k+1)

j I(k)∗ji

V(k)
j ∆I(k+1)∗

ji

= 1 + aejϕ = 1 + a(cosϕ + jsinϕ) = 0 (177)

Thus, the SDC is a positive real value; then, considering the magnitude of Equation (177),
we obtain:

SDC =
∣∣∣1 + aejϕ

∣∣∣ =
∣∣∣∣∣∣1 +

∆V(k+1)
j I(k)∗ji

V(k)
j ∆I(k+1)∗

ji

∣∣∣∣∣∣ (178)

Intending to achieve voltage collapse, the value of ∆S = 0, and correspondingly, the
SDC equates to 0. The relay operates if the SDC value is below a predetermined threshold.

2.2.5. Impedance Stability Index (ISI)

The ISI bus stability index depends on Tellegen’s rule, an index derived in [32]
made simple in evaluating Thevenin’s variables. Let a bus r with a complex load (Sr)
and impedance (Zr) be linked to a power system; the remaining system is expressed as
Thevenin’s equivalent with the variables E and Zth. Let the current equation be:

Sr/Vr = Ir* = ((E − Vr)/Zth)* (179)

Vr(E − Vr)* − SrZth* = 0 (180)

Two voltage solutions empower the phasor of Equation (180) with a power Sr; if the
two solutions are equal, it allows maximum power transfer.

Vr = (E − Vr)* (181)
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Equation (181) is fundamental to a local voltage stability approach that conveys
predetermined consequences through circuit theory.

|Zr| = |Zth| (182)

The system delivers the maximum power when the load-impedance magnitude equals
Thevenin’s impedance magnitude. The adjacent Thevenin network N̂ possesses an identical
analysis to the base network N. Hence, the derivation is similar to putting a hat (ˆ) on every
term, which signifies the adjoint network parameters. The divergence order of Tellegen’s
theorem is equivalent to the following:(

Î∗r ∆Vr − V̂r∆Ir

)
= 0 (183)

Here, ∆Vr and ∆I∗r Express the advancement of the complex voltage and current at
bus ‘r’ regarding the Vr and Ir* base values. The adjacent network load impedance Ẑr is
described as a ratio of phasor voltage V̂r to phasor current Îr.

Ẑr =
∣∣Ẑr
∣∣ = ∣∣V̂r/ Îr

∣∣ (184)

The load impedance specifies that it is the base case; moreover, it is determined at an
instant earlier than that of the network that is regulated to power disturbances.

Ẑr = |Vr/Ir| (185)

For determining the Thevenin’s impedance, the current Î∗r equation is substituted in
Equation (183) from Equation (179).((

Ê− V̂r
)
/Ẑth

)∗∆Vr − V̂r∆ Î∗r = 0 (186)

Ẑ∗th =
((

Ê− V̂r
)∗/(V̂r∆ Î∗r

))
∆Vr (187)

Similarly, from Equation (181), the condition for the maximum power transfer of
adjacent network can be expressed as:

V̂r =
(
Ê− V̂r

)∗ (188)

Analyzing Equations (187) and (188), during the system collapse point, the equivalent
Thevenin’s impedance is expressed as:

Ẑ∗th = ∆Vr/∆I∗r (189)

Ẑth = ∆V̂∗r /∆Ir (190)

However, the above two equations are conjugate with each other; for discarding the
conjugate values, Thevenin’s impedance absolute value is as follows:

Ẑth =
∣∣Ẑth

∣∣ = |∆Vr/∆Ir| (191)

The contingency during the regular loading is:

Ẑr � Ẑth (192)

During the commencement of voltage instability, the dissimilarities among these
impedances converge to 0. Moreover, at that instant of collapse, the impedances are
identical, i.e., Ẑth = Ẑr.

|∆Vr/∆Ir| = |Vr/Ir| (193)



Energies 2023, 16, 6718 26 of 45

This index precisely determines Thevenin’s impedance by evaluating the advancement
in voltage and current following the base-case exposure to disturbances. Furthermore,
the load impedance is evaluated through the ratio of the voltage to the current. Using
Equations (192) and (193), a modest regulated impedance stability index (ISI) for identifying
the voltage stability margin is:

ISI =
(
Ẑr − Ẑth

)
/Ẑr (194)

Further simplifying by substituting the impedances in terms of voltage and current,
the stability index derives as:

ISI = 1− |Ir∆Vr|/|Vr∆Ir| (195)

2.2.6. Voltage Stability Index (VSIBUS)

The VSI bus index relies on system elements to identify the distance between the
operating and collapse points. This index [33] derives from power flow equations that are
similar to the assumptions of the SDC. Let ‘i’ be one local bus of the system. The complex
load power of bus i is:

Si = Si∠θi = (Pi + jQi) = Vi I∗i (196)

The complex bus voltage is Vi = Vi∠δi, and the complex load current is Ii = Ii∠(δi − θi).
Employing Taylor’s theorem, the interrelation among the advancement difference between
Vi and Ii as a consequence of advancement evolution in Si is expressed as:

∆Si =
∂Si
∂Ii

∆Ii +
∂Si
∂Vi

∆Vi + higher order terms (197)

Meanwhile, ignoring the higher-order terms,

∆Si = Vi∆Ii + Ii∆Vi (198)

Usually, if the load increments, there is a corresponding increase in load current and
decrease in load voltage. This means that, if the value of ∆Si is positive, Current ∆Ii is
positive and the ∆Vi Voltage is negative. Although the bus reaches a critical point or
voltage collapse, adding additional load on a bus might not be able to raise the apparent
power Si of the load due to rapid decrement in voltage in contrast to the current increment.
Going through this case converges ∆Si to zero. Accordingly, the power ∆Si through the
voltage-stability limit is expressed as:

0 ≤ 1 +
(

Ii
Vi

)(
∆Vi
∆Ii

)
(199)

Considering that the power of Equation (199) is made to α (>1.0), an actual value, it
determines almost the same level of linear characteristics. Therefore, excluding the general
loss, the voltage stability index at the ‘i’ bus is as follows:

VSIi =

[
1 +

(
Ii
Vi

)(
∆Vi
∆Ii

)]α

(200)

Hence, at no load, the VSI varies from 1, and at voltage collapse, the value varies to 0.

2.2.7. ZL/ZS Ratio

The ZL/Zs ratio index proposed in [34] depends on a similar technique to the ISI.
The correspondence index is the load bus impedance (ZL) ratio to Thevenin’s impedance
(Zs). The voltage stability margin was generally evaluated from different scenarios. The
evaluation of the stability margin depends on the determination of the voltage stability. For
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an equivalent circuit, the derivation of the apparent load power concerning load admittance
is as follows:

dS
dY

=
V2
[
1− (ZSY)2

]
1 + (ZSY)2 + 2ZSYcosβ

(201)

Whereas Y = 1/ZL, dividing both sides of the equation with V2:

dS∗

dY∗
=

1− (ZSY)2

1 + (ZSY)2 + 2ZSYcosβ
(202)

While dS*/dY* = (Y/S) (dS/dY), thenthe Equation (202) together evaluates (ZL/Zs):

ZL
ZS

=
M + 1

−Mcosβ +
[
(Mcosβ)2 −M2 + 1

]0.5 (203)

Here, M = (dS*/dY*), and the relevance between ZL/ZS and M relies upon the angle
β. The estimation of β is a phase angular difference between the source and the load,
i.e., β = ϕS − ϕL. The definite value of ϕS operates on the existent form of the system.
The parameter M is determined by evaluating the derivative of the apparent load power
to admittance:

M =

(
dS∗

dY∗

)
=

(S2 − S1)(Y2 + Y1)

(S2 + S1)(Y2 − Y1)
(204)

Here, S and Y refer to the load power and admittance, respectively. Moreover, suffixes
1 and 2 refer to the starting of a change (time, t1) and completion of the change (time, t2),
respectively. The variation between the two-time measurements needs to be around 500
ms. If the index value remains above 1, it is a reliable condition.

2.2.8. Equivalent Node Voltage Collapse Index (ENVCI)

The index ENVCI depends on the ESM (Equivalent System Model) and local voltage
phasors [35]. The ENVCI has numerous advantages like accurate evaluation and modeling;
moreover, this index is convenient for performing real-time and online operations. The
outgoing power at node N of a single-line equivalent model (Figure 6) should perform the
consequent equation of plain power flow.

Pn + jQn =
→
Vn.

→E k −
→
Vn

Zkn

∗ (205)

Let the phasor voltage equations for two nodes of a single-line equivalent network in

terms of rectangular coordinates be
→
E k = ek + j fk and

→
Vn = en + j fn, then the correspond-

ing line impedance is Zkn = Rkn + jXkn. Separating the real terms and imaginary terms of
the power flow equation, we obtain:

PnRkn + QnXkn = en(ek − en) + fn( fk − fn)
PnXkn −QnRkn = fken − ek fn

(206)
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Hence, the power flow equation, Equation (206), is crucial for determining the phasor
voltage at the receiving node, describing the system’s performance. In contrast, the phasor
voltage of the sending node is known. Whenever the respective ESMs of all equivalent
lines possess an arithmetical solution of the receiving node, signifying that they contain
every node voltage of the system, at that instant, the system should possess a complete
power flow solution; moreover, this should influence the voltage stability. The system’s
stability relies on evaluating Equation (206) at every node. The evaluation of Equation (206)
can be examined by the Jacobina matrix singularity:

J =
[

ek − 2en fk − 2 f n
fk −ek

]
(207)

det(J) = 2(eken + fk fn)−
(

e2
k + f 2

k

)
= 0 (208)

Therefore, Equation (208) specifies a novel stability index that is known as the Equiva-
lent Node Voltage Collapse Index:

ENVCI = 2(eken + fk fn)−
(

e2
k + f 2

k

)
(209)

The ENVCI expression in terms of polar coordinates is:

ENVCI = 2EkVncosθkn − E2
n (210)

Determining the ENVCI requires only the phasor voltage of two nodes. Every node
contains ESM. The system converges to a collapse point if the ENVCI of a minimum of one
node is approaching 0; the respective node is the weak node that induces system instability.

2.2.9. Power Stability Index (PSI)

The power stability index [36] was developed to identify the optimal position of the
Distributed Generator (DG), including critical buses that are nearer voltage collapse. This
index derives from a standard two-bus system, which is stable within the unity margin.
Let the power flow in a standard two-bus system without DG be:

SL = PL + jQL = Vr I∗r (211)

Vr = Vr − IrZ (212)
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where

Ir =
(PL)− j(QL)

V∗r
(213)

Now, with DG, the current Ir concerning the active power and reactive power support
are expressed as:

Ir =
(PL − PG)− j(QL −QG)

V∗r
(214)

Combining Equations (212) and (214), and writing real and imaginary terms separately,
we obtain:

PL − PG =
|Vr||Vs|

V∗r
cos(θ − δs + δr)−

|Vr|2

Z
cos(θ) (215)

QL −QG =
|Vr||Vs|

V∗r
sin(θ − δs + δr)−

|Vr|2

Z
sin(θ) (216)

Rearranging Equation (215), we obtain:

|Vr|2 −
|Vr||Vs|cos(θ − δ)

cos(θ)
+

Z(P L − PG)

cos(θ)
= 0 (217)

Hence, Equation (217) is in a quadratic form in terms of Vr. When stable, the node
voltage must contain real roots, i.e., the discriminant is more significant than zero, and the
index derives as:

PSI =
4Rij(PL − PG)

[|Vi|cos(θ − δ)]2
≤ 1 (218)

If the PSI value is less than 1, the system is stable; if the value is nearer to zero, the
system is more stable. Hence, the PSI determines the optimal location of the DG as the
calculated value of the PSI for each line patterned from maximum to minimum value. The
optimal location of the DG is at the line-end with a maximum value of the PSI.

2.2.10. Voltage Deviation Index (VDI)

The Voltage Deviation Index proposed in [37] determines the voltage deviation’s real
value compared to 1 per unit. Assuming an N-bus system, the total VDI is the addition of
all N buses’ voltage deviation index.

VDI j =
∣∣1−Vj

∣∣ (219)

VDIT = ∑N
j=1

∣∣1−Vj
∣∣ (220)

2.2.11. Simplified Voltage Stability Index (SVSI)

An advanced SVSI proposes [38] to evaluate the system’s stability. This SVSI depends
on the Relative Electrical Distance (RED) concept, which considers identifying the conve-
nient generator to a particular load bus; moreover, the relation of electrical parameters for
enhancing the performances.

• Relative electrical distance (RED)

The concerned system, the interrelation among the current (I), Generator bus voltage
phasor (V), and the load buses (L) represented in the form of an admittance matrix can be
shown as: [

IG
IL

]
=

[
YGG YGL
YLG YLL

][
VG
VL

]
(221)
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Rearranging Equation (221), we obtain:[
VL
IG

]
=

[
ZLL FGL
KGL YGG

][
IL
VG

]
(222)

FLG = −|YLL|−1|YLG| represents a composite matrix, which indicates the association
between the voltages of the source and load buses. The REDs determined from the matrix
FLG are shown as:

RLG = [A]− abs[FLG] = [A]− abs
(
|YLL|−1|YLG|

)
(223)

Here, the size of matrix A is (n-g) X g, the total number of buses is represented by n,
and the total generator count is denoted by g. Matrix A is a particular matrix in that all
elements are 1, i.e., a matrix of ones. The data obtained from matrix RLG are considered
rather than path algorithms for determining the electrical distance from the generator bus
to the load bus. Subsequently, after identifying the shortest distance of the generator to
a particular load with the RLG matrix, the Thevenin impedance voltage drop ∆Vi can be
estimated with:

∆Vi = ∑
nj−1
b=1

∣∣∣∣→Vb −
→
Vb+1

∣∣∣∣ ∼= ∣∣∣∣→Vg −
→
V i

∣∣∣∣ (224)

Vl and Vg are the phasor voltages at the load bus and closest generator. While an
increase in demand for power reaches the maximum loading point in one particular bus or
various buses in the system, some buses may experience high voltage drops. This process
illustrates the potential of voltage collapse and comprises the formation of the SVSI in
terms of a correction factor β.

β = 1− (max(|Vm| − |Vl |))2 (225)

The derived correction factor is proportionate with higher variations between the
voltage magnitude of bus m and bus l, which can be determined directly by measuring the
PMU during the power system analysis, considering particular operating conditions. Thus,
the SVSI is as follows:

SVSIi =
∆Vi

β×Vi
(226)

Suppose the obtained value of the proposed index is near the unity. In that case, the
system considers the voltage instability on these terms: the Thevenin impedance voltage
drop equals the voltage of the load bus.

2.2.12. P-Index

The P-index [39] evaluates the distance to collapse and measures the load shedding.
The P-index is derived from a standard two-bus system, shown in Figure 1. The load at
the receiving end bus is Pr + jQr, and Vr is the voltage magnitude. The equivalent load
admittance is Gr − jBr,

Gr =
Pr

V2
r

, Br =
Qr

V2
r

(227)

Let ∆Pr, ∆Qr be an incremental increase in load without varying the power factor. The
equivalent increment in admittance is ∆Gr, ∆Br. The voltage magnitude changed by an
amount of ∆Vr, is typically negative; therefore, the updated bus voltage is Vr + ∆Vr. The
corresponding active power variation is as follows:

∆Pr = (Vr + ∆Vr)
2(Gr + ∆Gr)−V2

r Gr

= (Vr + ∆Vr)
2∆Gr + (2Vr + ∆Vr)Gr∆Vr

(228)
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The substantial consequences of the two terms in Equation (228) are: the primary term
is positive and describes the power attained because of the additional load ∆Gr, while the
secondary term is negative and is the power wasted on the original load Gr because of
the voltage drop ∆V. Because of these opposite terms, the overall active power gained
is balanced. At the stability limiting point, these two terms diminish, and the overall
increment in power is zero.

The P-index bus stability index depends on the ratio of two terms in Equation (228),
i.e., the ratio of power lost to power gained. When ∆V is negative for positive ∆Gr, a minus
sign is added to make the index positive.

P-index = − (2Vr + ∆Vr)Gr

(Vr + ∆Vr)
2 .

∆Vr

∆Gr
(229)

In the limiting case, such as ∆Gr, ∆V→ 0,

P-index = −2Gr

Vr
.
dVr

dGr
(230)

Although dVr/dGr is often not defined in terms of network terminology, it is simple to
do so in terms of the power and voltage sensitivity of the system. Provided that dVr/dGr:

dVr

dGr
=

dVr

dPr
.
dPr

dGr
(231)

Thus, differentiating the power, Pr = Vr
2 Gr is as follows:

dPr = V2
r dGr + 2V2

r GrdVr (232)

Or:
dPr

dGr
= V2

r + 2VrGr
dVr

dGr
(233)

Substituting Equation (233) in Equation (231), we obtain:

dVr

dGr
=

dVr

dPr

(
V2

r + 2VrGr
dVr

dGr

)
(234)

Further simplifying Equation (234), it is reduced as:

dVr

dGr
=

V2
r

dVr
dPr

1− 2VrGr
dVr
dPr

(235)

Substituting Equation (235) in the P-index Equation (230), we obtain:

P-index =
−2VrGr

dVr
dPr

1− 2VrGr
dVr
dPr

(236)

Expressing Equation (236) in terms of active power, we obtain:

P-index =
−2 Pr

Vr
× dVr

dPr

1− 2 Pr
Vr
× dVr

dPr

(237)

Therefore, the P-index is expressed in terms of power and voltage sensitivities. When
dV/dPr = ∞, the theoretical value of the stability index is 1.0 at the stability limit. The
stability limit varies from 0 (no load) to 1.0 at the collapse point of the system.
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3. Summary

The Voltage Stability Indices that are preferred in power system analysis are derived
in detail in this paper. Our review of stability indices examined the overall parameters of
voltage stability analysis, including the voltage stability margin, stability indices, identify-
ing voltage collapse proximity, and the maximum loadability. This comprehensive review
features the significance of definite stability assessment and specifies the effectiveness and
vulnerability of various bus and line Voltage Stability Indices.

The line stability indices, like the VSLI, Lmn, LQP, LP, FVSI, NLSI, VQI, and NVSI,
and the bus stability indices like the L-Index, Voltage Instability, and VCPI, are derived
from the power flow in a standard two-bus system. In contrast, the stability indices like
the VCPI, PTSI, VSI_1, VSM, SDC, and PSI are determined by considering the maximum
power transfer and maximum power losses. At the same time, stability indices like the SI,
LCPI, LVSI, and BVSI derive from the quadratic voltage equation—the overall objectives of
the listed stability indices are expressed in Figure 7.
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The VSLI stability index depends on the load reactive power demand ratio to the
available reactive power. It helps to determine the critical points and identifies the load bus
nearer to the collapse point. The Lmn stability index is online monitoring that predicts the
voltage collapse; the reliability test on the IEEE 24 bus system results in an accurate voltage
collapse prediction. It also identifies the stressed lines and weak areas that are exposed to
voltage collapse; moreover, it allows for flexible operation. The LQP is a static indicator
that performs faster, evaluates stability, and determines the origin of voltage collapse.

The VCPI is a proximity index that determines the range of the collapse point; this
index depends upon the systems’ generation and load characteristics and identifies ex-
posure to voltage collapse. The VCPI is a method for the real-time prediction of voltage
collapse. This proximity index illustrates the collapse position and is an alarming tool for
preventing system collapse. LP performs voltage stability assessment in a radial distribu-
tion system. It predicts instabilities easily when changing the load. The FVSI can determine
the collapse point, weakest bus, critical line, and maximum loadability. The VSLBI is used
for local monitoring of threshold voltage collapse and emergency management during
voltage-sensitive loads. The VSLBI operates within a small stability margin and maintains
reactive reserve power. The VSMI presents data about weak locations, evaluates the voltage
stability margin, and maintains stable voltage levels during load variations. Moreover, the
VSMI depends on the relation between voltage stability and angular difference between the
receiving- and sending-end buses. VCPI_1 is an online voltage stability evaluation index
that depends on power transmission lines and identifies the weakest transmission lines by
distinguishing the minor power outage buses, including the electrical distance.
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The Critical Voltage (Vcr) specifies the minimum voltage where the system performs
away from voltage collapse; the system is unstable if the Jacobian power flow matrix is
singular. In Vcr, the Jacobian power matrix is a static voltage stability index specifying the
range of the voltage stability limit. The PTSI is an essential technique that forecasts dynamic
voltage collapse, calculates the effect of adding additional equipment like generators or
transmission lines, and determines the weak points in the system. VSI_1 is a novel online
stability index for predicting steady-state voltage stability. Coordinated with the network
simplification method, it presents the stability margin of every load bus, sequentially
determining the buses which are vulnerable to voltage collapse.

The NLSI performs by varying the active and reactive power and evaluates the voltage
stability more accurately than other indices that vary only the reactive power. Moreover,
the NLSI evaluates the voltage collapse point, specifies the order of transmission lines
based on loadability, and considers the consistency of wind and solar power output and
the response time of the system. The SI identifies the most vulnerable bus that is exposed
to voltage collapse in the radial distribution system, is easily implemented for load flow
analysis, and does not need extra parameters. The VSM is the variation between the
minimal permissible voltage and absolute voltage at a particular bus; it determines the
loss of voltage contribution during the voltage collapse. The VSM can efficiently prevent
voltage collapse from voltage crisis, and can be measured by PV and QV curves. The VQI
is an effective technique that determines the critical bus, detects instability in large-scale
systems, and determines the distance of the collapse point.

The LCPI combines the influence of the proportional flow of active and reactive
power with ABCD parameters, determines the consequences of different power system
arrangements, and specifies the most sensitive lines. The NVSI evaluates the voltage
stability effectively by varying the active and reactive power, determining the weakest
bus and sensitive line, and utilizes the Reactive Power Sensitivity theory. The ITLTI
was first derived for radial transmission networks and subsequently adapted for larger
systems. The ITLTI contains extended integrated significance; moreover, it is probably
a better resolution for online stability assessment and specifies the weakest line and the
specific data about a critical voltage instability range. The CBI operates with the Lagrange
Constant Computational Method (LCM); the main motive of this index is to determine the
critical boundaries and voltage stability with lesser parameters. Varying the active and
reactive power predicts voltage stability margin precisely with better accuracy. The LVSI
determines the stability margin by considering the transmission line (ABCD) parameters
and is expressed in terms of MVA. The LVSI can determine the voltage collapse point
and critical lines, and involves only the information on the phasor bus voltage. The BVSI
forecasts the voltage security level, considering various operating conditions and identifies
the sensitive lines that are nearer to stability. This index can identify the capability of the
bus to place a single DG and size effectively; moreover, it can accurately identify the critical
lines and weakest bus.

The L-index in online testing depends on the eigenvalues of the Jacobian matrix of a
network; these eigenvalues determine the gap between the voltage collapse point and the
current operating point. Moreover, the L-index measures stability linearly, and non-linear
behavior may not be measured thoroughly. The VIPI determines very sensitive buses that
are exposed to voltage instability and finds the possible precautions for preventing voltage
collapse; the VIPI depends on the relation between the instability and various load flow
solutions. The VCPI is a real-time prediction that determines the system’s proximity to
voltage collapse, which is evaluated by analyzing the present voltage and voltage levels
at the point of collapse and utilizing the magnitude of voltage and angle; the admittance
matrix forecasts the voltage collapse. The SDC’s utilization in the protection algorithm for
voltage collapse depends on the local bus phasor of the voltage and current at every line’s
relay point. The relay operation is local to voltage collapse, and the overall rise in apparent
power is because of transmission losses to the supply.



Energies 2023, 16, 6718 34 of 45

The ISI calculates the system’s stability; this index illustrates the ratio of variation in
system impedance to load impedance. The ISI is a local stability index that is derived using
Tellegen’s theorem and adjoint network. The VSIBUS is a simple index which identifies
the distance to the collapse point with the help of local data like the magnitude of voltage
and load current, and thoroughly examines the influence of line tripping, reactive power
limits, and non-linear variation in the load. The ZL/ZS measures the derivation of apparent
power concerning admittance, quickly calculating both the power and admittance results
in switching the impedance load tap-changing of a transformer. The SVSI utilizes the data
of present operating conditions combined with phasor voltage measurement. The SVSI is
easily accessible and less computationally derived.

P-index calculation is simple. It involves the system model, nodal power, and only
the single datum of system states. The only computation performed is Jacobian matrix
inversion, which can be attained smoothly. Therefore, the P-index is appropriate for online
voltage stability analysis. Mainly, the load shedding is evaluated by the P-index. Instead of
system-wide shedding, the method makes use of single-load shedding.

The Stability index’s concept, assumptions considered during derivation, mathematical
equation, condition for index stability, objective, and some references are represented in
Tables 1 and 2 of the line Voltage Stability Indices and bus Voltage Stability Indices, respectively.

Figure 8 represents the number of articles published on the line and bus Voltage
Stability Indices in the last decade. It shows an eventual rise in research in Voltage Stability
Indices to enhance voltage stability and supply the desired power under various load
conditions. Table 3 represents some distinct characteristics of Voltage Stability Indices that
are the optimal location of the DG and sizing of the DG, as well as dependency on VSI.
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Table 1. Line Voltage Stability Indices.

VSI Concept Assumption Equation Condition for Stability Objective References

VSLI
(1995)

Power flow in a transmission
line of a two-bus system.

Shunt admittance
is ignored. VSLI =

4[VsVrcos(δ)−V2
r cos(δ)2]

V2
s

Stable: VLSI < 1
Unstable: VLSI > 1

Identify the critical buses
near voltage collapse. [40–42]

Lmn
(1998)

Power flow in a transmission
line of a two-bus system.

The effect of active power is
ignored, and the shunt
admittance is
approximately zero.

Lmn = 4xQr
[Vssin(θ−δ ]2

Stable: Lmn < 1
Unstable: Lmn > 1

Online monitoring that
predicts the voltage collapse
and identifies the
stressed condition.

[43–45]

LQP
(1998)

Power flow in a transmission
line of a two-bus system.

Y ≈ 0 &
R/Z << 1 LQP = 4

(
X

V2
s

)(
Qr + X P2

s
V2

s

) Stable: LQP < 1
Unstable:
LQP > 1

Performs faster, evaluates
the static voltage collapse. [46–48]

VCPI
(1998)

Maximum Power loss &
Maximum Power transfer in a
Transmission Line.

Constant Power Factor
Constant Shunt admittance
is ignored.

VCPI (1) = Pr
Pr(max)

Pr(max) =
V2

s
Zs

cos∅
4cos2 (θ−∅)

2

VCPI (2) = Qr
Qr(max)

Qr(max) =
V2

s
Zs

sin∅
4cos2 (θ−∅)

2

VCPI (3) = Pl
Pl(max)

Pl(max) =
V2

s
Zs

cosθ

4cos2 (θ−∅)
2

VCPI (4) = Qr
Qr(max)

Ql(max) =
V2

s
Zs

sinθ

4cos2 (θ−∅)
2

Stable: VCPI < 1
Unstable: VCPI > 1

Determines the range of the
collapse point, which
depends upon the systems’
generation
load characteristics.

[49–52]

Lp
(2001)

Power flow in a transmission
line of a two-bus system.

Shunt admittance is
ignored, and the effect of
reactive power.

Lp = 4RPr
[Vscos(θ−δ)]2

Stable: Lp < 1
UnstableLp > 1

Voltage stability assessment
in a radial distribution.
Simple index with higher
accuracy.

[53–56]

FVSI
(2002)

Power flow in a transmission
line of a two-bus system.

Shunt admittance is ignored
and sinδ ≈ 0, cosδ ≈ 1,
Rsinδ ≈ 0, Xcosδ ≈ X.

FVSI = 4Z2Qr
V2

s X

Stable: FVSI < 1
Unstable:
FVSI > 1

Determines collapse point,
weakest bus, critical line,
and maximum loadability.

[57–60]

VSLBI
(2003)

During the maximum power
conditions, the voltage drop in
impedance equals load
bus voltage.

Thevenin equivalent
impedance connected to the
sending end bus is ignored.

VSLBI = Vr
∆V

Stable: VSLBI > 1
Unstable:
VLSBI < 1

The Access to voltage
collapse is local monitoring,
watchful, and emergency
control during
voltage-sensitive load.

[61,62]

VSMI
(2004)

VSMI considers the relation
between the angular difference
of voltage and maximum
power transfer.

The shunt admittance
neglected VSMI = δrmax−δ

δrmax

Stable: VSMI > 0
Unstable:
VLMI < 0

Evaluate stability margin
and determine weak
locations.

[63–66]
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Table 1. Cont.

VSI Concept Assumption Equation Condition for Stability Objective References

VCPI_1
(2005)

The voltage drop across the
Thevenin impedance is equal to
the load; at the collapse point.

Thevenin equivalent
impedance connected to the
sending end bus is ignored.

VCPI_1 = Vrcosδ− 0.5Vs
VCPI_1 ≥ 0: Stable
VCPI_1 < 0: Unstable

Online evaluation index.
Identify the weakest lines
by distinguishing the minor
power outage buses
with distance.

[67,68]

Vcr
(2006)

The load flow equations and
Eigenvalue theorem.

Constant Power factor
and load.

Vcr =
E√

2(1+cos(θ−∅))

Vcr =
E

2cosθ

The system is unstable if the
Jacobian power matrix is
singular

Specifies the minimum
voltage where the system
performs away
from collapse.

[69,70]

PTSI
(2006)

Maximum Power loss and
maximum power transferable
through a line are limited.

Shunt admittance
is ignored. PTSI = 2SL Z(1+cos(θ−ϕ))

V2
s

Stable: PTSI < 1
Unstable:
PTSI > 1

Predicts the dynamic
voltage collapse and
calculates the effect of
adding additional
equipment.

[71–74]

VSI_1
(2006)

Maximum Power loss and
maximum power transferable
through a line are limited.

The resistance of line and
shunt admittance is
ignored.

VSI = min
( Pmargin

Pmax
,

Qmargin
Qmax

,
Smargin

Smax

) Stable: VSI_1 > 0
Unstable:
VSI_1 < 0

Predicts steady-state
voltage stability, determines
the stability margin of every
load bus.

[75,76]

NLSI
(2007)

Power flow in a transmission
line of a two-bus system,
“Critical Clearing Time” (CCT).

The minimal angular
difference between
receiving and sending
voltage and the shunt
admittance is ignored.

NLSI = Rsr Pr+Xsr Qr
0.25V2

s

Stable: NLSI < 1
Unstable: NLSI > 1

By varying active and
reactive power, evaluating
the collapse point, Rank
transmission lines.

[42,77,78]

SI
(2007) Voltage Quadratic Equation. The shunt admittance is

ignored.
SI(r) = 2V2

s V2
r −V4

r −
2V2

r (PR + QX)− |Z|2
(

P2 + Q2) Stable: SI 6= 0
Unstable: SI = 0

Predict the most vulnerable
bus exposed to collapse in
the radial
distribution system.

[79–81]

VSM
(2009)

Maximum Power loss and
maximum power transfer in a
transmission line.

Constant power factor and
shunt admittance is
ignored.

VSMZ = Zr−Z0
Z0

Scr =
V2

s
2Z0 [1+cos(θ0−θr)]

Stable: VSM > 0
Unstable:
VSM < 0

Determining the loss of
voltage, VSM can efficiently
prevent voltage collapse.

[82–85]

VQI
(2010)

Power flow in a transmission
line of a two-bus system.

Zero angular difference and
shut admittance are
ignored.

VQI = 4Qr
|Bsr ||Vr |2

≤ 1
Stable: VQI < 1
Unstable: VQI > 1

Determines the critical bus,
detects the instability in
large-scale systems, and the
distance of the
collapse point.

[86–89]

LCPI
(2012) Voltage Quadratic Equation. The transmission lines

model is like π model. LCPI = 4Acosα(Pr Bcosβ+Qr Bsinβ)

(Vscosδ)2

Stable: LCPI < 1
Unstable: LCPI > 1

Combines the influence of
the relative flow of reactive
and active power flow
with ABCD.

[90–93]
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Table 1. Cont.

VSI Concept Assumption Equation Condition for Stability Objective References

NVSI
(2013)

Power flow in a transmission
line. Reactive Power Sensitivity
(RPS).

The Shunt admittance and
line resistance are ignored. NVSI =

2X
√
(P2

r +Q2
r )

4Qr X−V2
s

Stable: NVSI < 1
Unstable: NVSI > 1

Evaluate the voltage
stability effectively by
varying the P & Q,
determining the weak bus
and sensitive line.

[94–97]

ITLTI
(2016)

ABCD parameters, the power
factor of the receiving end, and
the power angle between the
receiving and sending ends.

Two power circles with two
distinct centers but identical
radius.

Sr_index =
sin(θ′r+δ′)sinδ′(

cos θ′r
2

)2

Stable: ITLTI < 1
Unstable: ITLTI ≥ 1

For radial transmission
networks and subsequently
adapted for larger systems,
the Weakest line.

[4,98]

CBI
(2018)

Active and Reactive power
changes.

Negligible system
impedance, linearized
power flow model.

CBIsr =
√

∆P2
sr + ∆Q2

sr
Stable: CBI > 1
Unstable: CBI = 0

Operates with Lagrange
Constant Computational
Method (LCM); Determines
the critical boundaries and
voltage stability with lesser
parameters.

[99–102]

LVSI
(2018)

Voltage Quadratic Equation,
ABCD Parameters.

line’s resistance and
charging capacitance are
ignored.

LVSI = 2Vr Acos(β−α)
Vscos(β−δ)

Stable: LVSI > 1
Unstable: LVSI < 1

Evaluate the stability
margin considering the
ABCD parameters
expressed in MVA.

[103–105]

BVSI
(2022) Voltage Quadratic Equation.

Line shunt admittance and
the reactive power’s effects
are ignored.

BVSI = 4RPr Z2

(Vs(Rcosδ+Xsinδ))

Stable: BVSI < 1
Unstable: BVSI > 1

Optimal location and sizing
of distributed generations. [27]

Table 2. Bus Voltage Stability Indices.

VSI Concept Assumption Equation Condition for Stability Objective References

L–Index
(1986)

Power flow equation solution,
Eigen Values.

All generator voltages
remain constant. L = MAX

j∈αL

∣∣∣∣1− ∑i∈αG
FjiVi

V j

∣∣∣∣ Stable: L-Index < 1
Unstable: L-Index > 1

Identify the critical points of
the system. [106–108]

VIPI
(1989) Power flow equation solution.

steady-state condition,
system impedance is
negligible.

VIPI = θ = cos−1 YT
s Y(a)

‖Ys‖.‖Y(a)‖

The operational solutions
estimate critical points and
a proximate fictitious
solution.

The potential voltage
instability problems and the
efficient control approach
for avoiding instability.

[109–112]

VCPI
(2004) Power Flow Equation. It utilizes offline and online

measurement. VCPIkthbus =

∣∣∣∣∣∣1−
∑N

m=1
m 6=k
|V′m|

Vk

∣∣∣∣∣∣
Stable: VCPI < 1
Unstable: VCPI > 1

The system’s proximity to
voltage collapse. [113–116]

SDC
(2004)

Maximum Power Transfer
Theorem.

Minimal values, such as a
change in voltage at
receiving, are ignored.

SDC =

∣∣∣∣∣1 + ∆V(k+1)
j I(k)∗ji

V(k)
j ∆I(k+1)∗

ji

∣∣∣∣∣ SDC > 0: Stable
SDC < 0: Unstable

Used to protect voltage
collapse depends on local
bus phasor current and
voltage at every line’s
relay point.

[117–119]
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Table 2. Cont.

VSI Concept Assumption Equation Condition for Stability Objective References

ISI
(2006)

Maximum transferred when
Thevenin impedance’s
magnitude equals the load
impedance’s amplitude.

Constant system topology. ISI =
(
Ẑr − Ẑth

)
/Ẑr

ISI = 1− |Ir∆Vr |/|Vr∆Ir |
ISI > 0: Stable
ISI < 0: Unstable

Calculates the stability of
the system. [120–123]

VSIBUS
(2007)

The rise in sending apparent
power no longer yields a rise in
receiving line power.

Minimal values, such as a
change in voltage at
receiving, are ignored.

VSIi =
[
1 +

(
Ii
Vi

)(
∆Vi
∆Ii

)]α The VSIBUS value lies
between unity and zero

Identifying the distance to
the collapse point with the
help of local voltage.

[124,125]

ZL/ZS Ratio
(2007)

Maximum transferred when the
magnitude of Thevenin
impedance is equal to the
amplitude of the load
impedance.

730 ≤ φs ≤ 870

ZL
ZS

= M+1

−Mcosβ+[(Mcosβ)2−M2+1]
0.5

M =
(

dS∗
dY∗

)
= (S2−S1)(Y2+Y1)

(S2+S1)(Y2−Y1)

Stable : ZL
ZS

Ratio > 1

Unstable : ZL
ZS

Ratio < 1

ENCVI is accurate in design
and measuring and simple
in real-time
implementation.

[110,126,127]

ENVCI
(2009)

Equivalent system model (ESM)
& Equivalent local network
model (ELNM).

Consider the effects of the
local network and the
system outside the local
network.

ENVCI =
2(eken + fk fn)−

(
e2

k + f 2
k
) Stable: ENVCI > 0

Unstable: ENVCI < 0

Optimal placement depends
on ESM and considers only
local voltage phasors.

[4,128–130]

PSI
(2012)

Maximum power transfer
theorem.

DG depends on the most
critical bus. PSI =

4Rij(PL−PG)

[|Vi |cos(θ−δ)]2

Stable: PSI < 1
Unstable: PSI > 1

DG and sizing for
distribution networks. [110,131,132]

VDI
(2012)

Negligible phase angle
deviations.

The real value of the
deviation of the bus voltage. VDIT = ∑N

j=1
∣∣1−Vj

∣∣ 0: Perfect voltage regulation
1: worst case voltage
regulation.

Optimal placement of DG
and sizing for distribution
network.

[133–135]

SVSI
(2014)

During the maximum Power,
the load bus voltage equals the
impedance voltage drop across
the line.

The voltage at the nearest
generator to the load bus
equals the Thevenin load
voltage.

SVSIi =
∆Vi

β×Vi

Stable: SVSI < 1
Unstable: SVSI > 1

Uses the data of present
operating conditions
combined with phasor
voltage measurement.

[136–138]

P-Index
(2017)

The ratio of
power loss to
power gained.

For incremental increase,
the power factor is
unchanged.

P-index =
−2 Pr

Vr
dVr
dPr

1−2 Pr
Vr

dVr
dPr

At stability limit when
dVr/dPr = ∞, the value
would be 1

Dynamic voltage stability
assessment and load
shedding purposes.

[39]

Table 3. Characteristics of Stability Indices.

Characteristic Stability Indices

Optimal placement of DG & DG sizing Line VSIs, Bus VSIs except for SDC, VSIbus, ISI, and ZL/ZS ratio
Impedance dependent VSI VSLI, L VCPI_1, VSLBI, ISI, SDC, VSIbus, ZL/ZS ratio

Independent VSI VSMI, SI, LCPI, VCPIBUS, NLSI, VCPI, NVSI, SVSI, FVSI, Lmn, LQP, Lp, VIPI
Reduce Power Losses Line VSIs, Bus VSIs
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4. Conclusions

Voltage stability indices are essential numerical parameters for measuring and evalu-
ating stability points in the power system network. These indices’ significant roles help
detect instability points early, preventing systems from voltage collapse and power out-
ages, minimizing the actual power losses, and enhancing the system’s overall efficiency.
The evaluation of these indices indicates the power system operators’ performances of
a transmission system. Further, the stability of a system can improve through proper
design, reactive power compensation, and optimal power flow. This article discusses the
mathematical modeling of 34 line and bus stability indices. The significance of these indices
for different power system problems with suitable objectives is also discussed with the
help of suitable works from the literature, around 138. This article may be attractive to
a researcher who has started researching power system stability analysis, the placement
of reactive power compensators, and DG placement for stability enhancement. The main
intention of this review is to summarize and highlight how crucial it is to choose suitable
stability indices to preserve systems’ reliability and stability. Developing various stability
indices for effective utilization in sustaining the instabilities across various operational
scenarios has been undertaken.

The VSIs review various elements and perspectives and derive from the concepts of
maximum power transfer through a line (VCPI, PTSI, VSI_1, VSMI), solution of voltage
equation (VQIline, VSLI, L-index, SI, VCPIbus LCPI, FVSI, Lmn, Lp, LQP, NVSI, NLSI), P-V
Curve (SDC, SI, VIPI), and maximum power transfer theorem (SDC, VSIbus, ISI, ZL/ZS,
VCPI_1, VSLBI, SVSI). Most VSIs which correspond to the voltage equation concept should
have a solution. A few VSIs neglect the sending-end bus Thevenin impedance (VCPI_1,
VSLBI), and few VSIs consider bus Thevenin impedance to be extremely sensitive for a
minute variation in parameters of two consecutive measurements (VSIbus, SDC, ZL/ZS
ratio, and SDC).

In the procedure to enhance the efficiency and minimize the operational time of DG
placement and sizing issues, the primary phase considers the simple line and bus VSIs, and
the secondary phase considers the bus and overall VSIs operating with improved efficiency.
This review article mainly focuses and presents information on the significant measurement
of line and bus stability indices for maintaining the voltage and reactive power in a power
system network.

Furthermore, this review can assist in choosing the desired stability index for a given
scenario. The main findings of this paper can be highlighted as follows:

• The power system stability analysis;
• A comprehensive review of 34 Voltage Stability Indices derived mathematically;
• Voltage Stability Indices evaluated the sizing and placement of distributed energy

sources;
• Various power system issues and their corresponding application of Voltage Stability

Indices were presented;
• The corresponding data: name, mathematical calculation, concept, assumptions, con-

dition for stability, and objective for each VSI are listed;
• This review article supports researchers, power system operators, and engineers

regarding stability indices.
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120. Gümüş, T.E.; Emiroglu, S.; Yalcin, M.A. Optimal DG allocation and sizing in distribution systems with Thevenin-based impedance

stability index. Int. J. Electr. Power Energy Syst. 2023, 144, 108555. [CrossRef]
121. Cuffe, P.; Milano, F. Validating Two Novel Equivalent Impedance Estimator. IEEE Trans. Power Syst. 2018, 33, 1151–1152.

[CrossRef]
122. Sadeghi, S.E.; Akbari Foroud, A. A new approach for static voltage stability assessment in distribution networks. Int. Trans. Electr.

Energy Syst. 2019, 30, 1–21. [CrossRef]
123. Stefan, P.; Herwig, R. Voltage stability monitoring methods for distribution grids using the Thevenin impedance. CIRED—Open

Access Proc. J. 2017, 2017, 1535–1539.
124. Zhou, Q.; Guan, Y.; Liu, Y.; Zhao, Z. A novel online local voltage stability monitoring approach based on clustering analysis. Int.

J. Electr. Power Energy Syst. 2021, 132, 106807.
125. Pan, J.; Dong, A.; Fan, J.; Li, Y. Online Static Voltage Stability Monitoring for Power Systems Using PMU Data. Math. Probl. Eng.

2020, 2020, 1–8. [CrossRef]
126. Alzaareer, K.; Saad, M. Real-Time Voltage Stability Monitoring in Smart Distribution Grids. In Proceedings of the International

Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 24–26 November 2018.
127. Lee, Y.; Han, S. Real-Time Voltage Stability Assessment Method for the Korean Power System Based on Estimation of Thévenin

Equivalent Impedance. Appl. Sci. 2019, 9, 1671. [CrossRef]
128. Wang, Y.; Wang, C.; Lin, F.; Li, W.; Wang, L.Y.; Zhao, J. A new transfer impedance-based system equivalent model for voltage

stability analysis. Int. J. Electr. Power Energy Syst. 2014, 62, 38–44. [CrossRef]
129. Akhil, P.; Atul, M.; Prabhakar, K.; Kothari, D.P. Assessment on various node voltage stability indices—A review. In Proceedings

of the International Conference on Smart Technologies for Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017.
130. Nagendra, P.; Datta, T.; Halder, S.; Paul, S. Power System Voltage Stability Assessment Using Network Equivalents-A Review. J.

Appl. Sci. 2010, 10, 2147–2153. [CrossRef]
131. Xinglong, W.; Zheng, X.; Zheren, Z. Power Stability Analysis and Evaluation Criteria of Dual-Infeed HVDC with LCC-HVDC

and VSC-HVDC. Appl. Sci. 2021, 11, 5847.
132. Xu, Z.; Xu, Z.; Xiao, L. Analysis and assessment standards of power stability of multi-send HVDC systems. J. Eng. 2018, 2019,

748–753. [CrossRef]
133. Alam, M. Determination of Power System Contingency Ranking Using Novel Indices. Recent Advances in Power Systems. In

Lecture Notes in Electrical Engineering; Gupta, O.H., Sood, V.K., Malik, O.P., Eds.; Springer: Singapore, 2022; Volume 812.
134. Mehebub, A.; Shubhrajyoti, K.; Sankar, T.S.; Sumit, B. Determination of Critical Contingency Based on L-Index and Impact As-

sessment on Power System. In Smart Energy and Advancement in Power Technologies; Springer: Berlin, Germany, 2022; pp. 583–596.

https://doi.org/10.1016/j.epsr.2020.106916
https://doi.org/10.1080/20421338.2018.1461967
https://doi.org/10.1016/j.compeleceng.2022.107743
https://doi.org/10.1016/S0142-0615(97)00035-5
https://doi.org/10.1002/eej.10128
https://doi.org/10.1109/59.387918
https://doi.org/10.1016/j.epsr.2007.03.012
https://doi.org/10.1186/s41601-019-0142-4
https://doi.org/10.1016/j.ijepes.2022.108555
https://doi.org/10.1109/TPWRS.2017.2768223
https://doi.org/10.1002/2050-7038.12203
https://doi.org/10.1155/2020/6667842
https://doi.org/10.3390/app9081671
https://doi.org/10.1016/j.ijepes.2014.04.025
https://doi.org/10.3923/jas.2010.2147.2153
https://doi.org/10.1049/joe.2018.8398


Energies 2023, 16, 6718 45 of 45

135. Khunkitti, S.; Boonluk, P.; Siritaratiwat, A. Optimal Location and Sizing of BESS for Performance Improvement of Distribution
Systems with High DG Penetration. Int. Trans. Electr. Energy Syst. 2022, 2022, 6361243. [CrossRef]

136. Rodríguez Lopez, D.K.; Perez-Londoño, S.; Rodriguez-Garcia, L. Optimal under voltage load shedding based on voltage stability
index. Ing. E Investig. 2016, 36, 43–50.

137. Shabir, M.; Nawaz, S.; Vijayvargiya, A. Voltage Stability Enhancement Using SVC in PSCAD Software. In Innovations in Electrical
and Electronic Engineering. Lecture Notes in Electrical Engineering; Favorskaya, M.N., Mekhilef, S., Pandey, R.K., Singh, N., Eds.;
Springer: Singapore, 2021; Volume 661.

138. Akbarzadeh Aghdam, P.; Khoshkhoo, H. Voltage stability assessment algorithm to predict power system loadability margin. IET
Gener. Transm. Distrib. 2020, 14, 1816–1828. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2022/6361243
https://doi.org/10.1049/iet-gtd.2019.0230

	Introduction 
	Voltage Stability Indices 
	Line Voltage Stability Indices 
	Voltage Stability Load Index (VLSI) 
	Line Stability Index (Lmn) 
	Line Stability Factor (LQP) 
	Voltage Collapse Proximity Index (VCPI) 
	Voltage Stability Index (Lp) 
	Fast Voltage Stability Index (FVSI) 
	Voltage Stability- Load Bus Index (VSLBI) 
	Voltage Stability Margin Index (VSMI) 
	Voltage Collapse Proximity Index (VCPI_1) 
	Critical Voltage (Vcr) 
	Power Transfer Stability Index (PTSI) 
	Voltage Stability Index (VSI_1) 
	Novel Line Stability Index (NLSI) 
	Stability Index (SI) 
	Voltage Stability Margin (VSM) 
	Voltage Reactive Power Index (VQI) 
	Line Collapse Proximity Index (LCPI) 
	New Voltage Stability Index (NVSI) 
	Integrated Transmission Line Transfer Index (ITLTI) 
	Critical Boundary Index (CBI) 
	Line Voltage Stability Index (LVSI) 
	New Line Voltage Stability Index (BVSI) 

	Bus Voltage Stability Indices 
	L-Index 
	Voltage Instability Proximity Index (VIPI) 
	Voltage Collapse Proximity Index (VCPIBUS) 
	S Difference Criterion (SDC) 
	Impedance Stability Index (ISI) 
	Voltage Stability Index (VSIBUS) 
	ZL/ZS Ratio 
	Equivalent Node Voltage Collapse Index (ENVCI) 
	Power Stability Index (PSI) 
	Voltage Deviation Index (VDI) 
	Simplified Voltage Stability Index (SVSI) 
	P-Index 


	Summary 
	Conclusions 
	References

