
Citation: Lee, S.-H.; Kwon, J.-W.;

Kwon, B.-I. Improving Efficiency of a

Pole-Changing Vernier Machine

Considering Residual Magnetic Flux

Density. Energies 2023, 16, 6707.

https://doi.org/10.3390/en16186707

Academic Editor: Terence O’Donnell

Received: 18 August 2023

Revised: 12 September 2023

Accepted: 18 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Improving Efficiency of a Pole-Changing Vernier Machine
Considering Residual Magnetic Flux Density
Sung-Hyun Lee , Jung-Woo Kwon and Byung-Il Kwon *

Department of Electrical and Electronic Engineering, Hanyang University, Ansan 15588, Republic of Korea;
tjdgus9417@hanyang.ac.kr (S.-H.L.); jwkonwis@hanyang.ac.kr (J.-W.K.)
* Correspondence: bikwon@hanyang.ac.kr; Tel.: +82-31-400-5165

Abstract: This paper presents the efficiency improvement of a pole-changing vernier machine (PCVM)
by considering the residual magnetic flux density (Br) of low coercivity force (LCF) permanent
magnets (PMs). The PCVM operates in two modes: vernier machine (VM) mode and permanent
magnet synchronous machine (PMSM) mode, achieved through pole-changing. Pole-changing
involves reversing the magnetic flux direction of LCF PM to alter the number of rotor pole pairs.
By changing the number of rotor pole pairs, the PCVM operates as a VM mode at low speeds,
providing high torque, and as a PMSM mode at high speeds, offering high efficiency. To achieve this,
a combination of high coercivity force (HCF) PM and LCF PM is utilized in a single structure. The
magnetic flux direction in the LCF PM is determined by Br, and the highest efficiency is achieved
when Br reaches its maximum value |Brm|. This paper focuses on improving efficiency by obtaining
Brm in VM mode and −Brm in PMSM mode through the design process. Additionally, finite element
analysis (FEA) is employed to compare the performance of the improved model, which considers Br,
with that of the conventional model, designed without considering Br. The improved model achieves
higher Br values in each mode compared to the conventional model, resulting in increased torque
density. Consequently, this leads to improved efficiency.

Keywords: efficiency improvement; pole-changing; residual magnetic flux density; vernier machine;
permanent magnet synchronous machine

1. Introduction

Permanent magnet synchronous machines (PMSMs) have gained significant attention
due to their high torque density and efficiency [1–3]. However, the constant airgap flux
of permanent magnets (PMs) presents a challenge for the operation of the machine over
a wide speed range [4]. Designing a machine solely for low-speed operation results in
decreased efficiency at higher speeds due to high iron losses. Conversely, optimizing for
high-speed operation leads to lower efficiency and torque at low speeds as the magnetic
flux density decreases due to high copper losses [5,6].

Vernier machines (VMs) have emerged as a viable option for low-speed, high-torque
applications like wind turbines. VMs offer a magnetic gear effect that provides high
torque density and efficiency at low speeds [7–9]. The VM generates a back electromotive
force (B−EMF) approximately 1.5–3 times larger than that of a typical PMSM, resulting
in substantial torque even at low speeds. As a result, VMs allow for compact size and
high efficiency in the low-speed range [10–13]. However, VMs typically have a higher
number of pole pairs compared to conventional PMSMs, resulting in increased core losses.
These losses escalate as the speed rises, leading to decreased efficiency at high speeds.
Consequently, VMs have primarily been studied and optimized for low-speed applications,
limiting their advantages [14,15].

Efforts have been made to apply the concept of pole-changing, based on the memory
machine principle [16–19], to VMs to combine the advantages of high torque at low speeds
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from VMs and high efficiency at high speeds from PMSMs within a single machine struc-
ture [20–23]. One such development is the pole-changing vernier machine (PCVM) [20],
where pole-changing is achieved by utilizing both low coercivity force (LCF) and high
coercivity force (HCF) PMs on the rotor. By reversing the magnetic flux direction of the LCF
PM, the number of rotor poles can be altered, enabling the PCVM to operate as a VM at
low speeds, providing high torque, and as a PMSM at high speeds, offering high efficiency.
Consequently, the PCVM exhibits high efficiency across a wide speed range. A PCVM with
high efficiency across a wide speed range can offer significant advantages in applications
with wide speed ranges and multiple loads, such as washing machines and electric vehicles
(EVs) [24–26].

However, previous studies [20] focused primarily on proposing the pole-changing
topology under the ideal assumption that the residual magnetic flux density (Br) of the
LCF PM would reach its maximum value, |Brm|. Consequently, the efficiency of the
conventional PCVM model, designed without considering Br of the LCF PM, decreased
across the wide speed range due to low magnetic flux density when Br of the LCF PM
failed to attain Brm or −Brm in each mode.

This paper aims to enhance the efficiency of the PCVM by improving the magnetic
flux density through design considerations for Br of the LCF PM. Section 2 presents an
overview of the PCVM structure, the operating principles of its two modes achieved
through pole-changing, and the pole-changing process based on variations in Br of the LCF
PM. Section 3 selects the design parameters for the PCVM, considering Br of the LCF PM,
and determines the range of these parameters. The final values of the design parameters
are obtained through the pole-changing process within the established range. In Section 4,
the improved model is validated to achieve Brm in VM mode and −Brm in PMSM mode.
The efficiency improvement is then verified by comparing the performance of the improved
model, designed with consideration of Br of the LCF PM, with that of the conventional
model, designed without such consideration. Finally, Section 5 concludes the paper.

2. Operating Principle and Pole-Changing Process
2.1. Structure of PCVM

The PCVM structure, as depicted in Figure 1, comprises 36 slots with concentrated
three-phase armature windings in the stator slots. To achieve pole-changing, two types
of PMs with different coercivities, namely HCF PMs and LCF PMs, are utilized. In the
consequent pole structure, half of the HCF PMs and LCF PMs are replaced with an iron
pole [27]. Pole-changing is accomplished by reversing the magnetic flux direction of the
LCF PM, thereby altering the number of rotor pole pairs.
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2.2. Operating Principle of Two Modes

Figure 2 shows the 12-segment structure of PCVM and indicates the magnetic flux
direction of PMs with arrows.
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The VM mode operates based on the principle described in Equation (1), which utilizes
the magnetic gear effect.

Zr = Zs ± p (1)

Here, Zr represents the number of rotor pole pairs, Zs is the number of stator slots, and
p denotes the number of armature winding pole pairs. As shown in Figure 2a, the PCVM
operates in VM mode when the magnetic flux direction of HCF PM and LCF PM is the
same. This condition is achieved by satisfying Equation (1) with Zs = 36, Zr = 24, and
p = 12.

The PMSM mode operates based on the principle described by Equation (2), where
torque is generated through the interaction between rotor pole pairs and armature winding
pole pairs.

Zr = p (2)

As depicted in Figure 2b, the PCVM operates in PMSM mode when the magnetic
flux directions of the HCF PM and LCF PM are different. This condition is achieved by
satisfying Equation (2) with Zr = 12, p = 12, due to the pole-changing that results in a
different direction of the LCF PMs.

2.3. Pole-Changing Process Using Br of the LCF PM

Figure 3 illustrates the flowchart of the pole-changing process using Br of the LCF PM,
while Figure 4 represents the B−H curve of the LCF PM. The process begins by applying a
current pulse for magnetization to obtain a positive value of Br in the LCF PM. Furthermore,
Br of the LCF PM changes according to the magnetization process, as indicated by the green
line on the B−H curve in Figure 4. The Br value is calculated using finite element analysis
(FEA). If Br falls within the range of “0 < Br ≤ Brm”, the PCVM operates in VM mode, as
depicted in Figure 2a. If Br is not within the specified range, the magnetization process is
repeated by returning to the application of current pulses for magnetization, as indicated
in the flowchart in Figure 3.

Next, a current pulse is applied for demagnetization to obtain a negative value of
Br in the LCF PM. Br of the LCF PM changes according to the demagnetization process,
represented by the orange line on the B−H curve in Figure 4. The Br value is calculated
using FEA. If Br falls within the range of “−Brm ≤ Br < 0”, the PCVM operates in PMSM
mode, as shown in Figure 2b. If Br is not within the specified range, the demagnetization
process is repeated by returning to the application of current pulses for demagnetization,
following the flowchart in Figure 3.
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3. Design That Considers Br of the LCF PM
3.1. Conventional Model without Considering Br

The conventional model focused primarily on proposing a pole-changing topology,
assuming an ideal condition where all areas of the LCF PM exhibit either Brm or −Brm, as
shown by the B−H curve in Figure 4. However, this design overlooked the Br of the LCF
PM, resulting in reduced efficiency due to lower torque density when the Br of LCF PMs fell
along the recoil line, such as B′r or −B′r in Figure 4. The specifications of the conventional
model, designed without considering Br of the LCF PM, are summarized in Table 1.
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Table 1. Design specifications of conventional model.

Item Unit Value

Rotor outer diameter mm 300
Stator outer diameter mm 265

Air gap length mm 1
Number of slots -- 36

Rotor pole pairs (VM mode) -- 24
Rotor pole pairs (PMSM mode) -- 12

HCF/LCF PM coercivity kA/m 650/318
HCF/LCF PM remanence T 0.87/0.7

3.2. Selection and Range of Design Parameters

Designing with consideration of the Br of LCF PM during the pole-changing process
can improve efficiency by achieving Brm in VM mode and −Brm in PMSM mode. As
seen in Figure 3, a current pulse is applied to achieve |Brm|. However, the magnitude of
the current pulses is limited by the inverter capacity. For the research objective of high
efficiency over a wide speed range in applications such as washing machines and EVs, an
inverter capacity of 55 kW was adopted in this study. The magnitude of the current pulses
is <100 A due to current limitations imposed by the inverter capacity.

To obtain Brm or −Brm within the limited magnitude of the current pulse, specific de-
sign parameters were chosen, and their ranges were determined. These design parameters
were identified based on previous research [28], which investigated the impact of design
parameter variations on the current pulse magnitude. The selected design parameters
include stator tooth width, LCF PM width, and LCF PM height. The stator tooth width
governs the flux path for current pulse magnetization and demagnetization, while the LCF
PM width and height correspond to the regions where these processes occur. Consequently,
increasing the stator tooth width and decreasing the LCF PM width and height lead to a
reduction in the current pulse magnitude [28,29].

Figure 5 depicts the magnitude of the current pulse with variations in the design
parameters. Feasible ranges for the design parameters were determined as shown on the
x-axis in Figure 5a–c, considering manufacturing constraints, slot fill factor, and prevention
of PM scattering. In Figure 5, the effect of a single design parameter on the current pulse
magnitude is examined while keeping the other design parameters constant. For example,
in Figure 5a, when the stator tooth width changes, the LCF PM width and height remain
constant. The values at which the design parameters are kept constant are as follows: The
stator tooth width is set to its maximum value of 10 mm, while the LCF PM width and
height are set to their minimum values of 12 and 2 mm, respectively. These settings are
chosen to minimize the current pulse magnitude, as explained earlier. Furthermore, since
magnetization current pulses are typically larger than demagnetization pulses [30], the
current pulses shown on the y-axis in Figure 5 represent the magnitude of the magnetization
current pulse.

As a result, the range of the design parameters is determined based on a maximum
current pulse magnitude of 100 A due to current limitations imposed by the inverter
capacity. In Figure 5, a current pulse size of 100A has been represented by a red dashed
line to indicate the limitation on current pulse magnitude. Additionally, current pulse
magnitudes based on design parameters are depicted as blue dots. In Figure 5a, the design
parameter range for the stator tooth width is determined as 8–10 mm, with the condition
that the magnitude of the current pulses is less than 100 A. In Figure 5b, the design
parameter range for the LCF PM width is determined as 12–18 mm, with the condition that
the magnitude of the current pulses is less than 100 A. Additionally, in Figure 5c, the design
parameter range for the LCF PM height is determined as 2–4 mm, with the condition that
the magnitude of the current pulses is less than 100 A.
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3.3. Determining the Final Values of Design Parameters

Figure 6 depicts a flowchart illustrating the process of determining the final values
of the design parameters according to the pole-changing process and the range of the
design parameters. In this process, as described in Section 2, the magnitude of the cur-
rent pulses is limited, and the objective has been modified from achieving Br to Brm for
efficiency improvement.
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The flowchart is explained in three parts: the magnetization process, the demagnetiza-
tion process, and the determination of the final values of design parameters. Initially, the
minimum value from the range of each design parameter is selected as the initial value.
The stator tooth width is set to 8 mm, the LCF PM width is set to 12 mm, and the LCF PM
height is set to 2 mm. Subsequently, the magnetization process is performed by applying a
current pulse limited to 100 A. If any region of the LCF PM fails to achieve Brm, the values
of the design parameters within their respective ranges are adjusted, and the magnetization
process is repeated. Next, the demagnetization process is conducted by applying a current
pulse limited to −100 A. If any region of the LCF PM fails to attain −Brm, the values of the
design parameters are modified again within their respective ranges, and the magnetization
process is repeated. Finally, a combination of design parameter values that satisfies both
the magnetization and demagnetization processes is derived. The combination of design
parameter values that achieves the highest efficiency in each mode is selected from the
derived combinations. In this manner, the design for the VM and PMSM modes with the
highest efficiency is completed in the PCVM. This design, considering Br, improves the
efficiency of each mode, enabling high efficiency over a wide speed range.

The final values of the design parameters for the conventional and improved models
are summarized in Table 2.

Table 2. Final values of the design parameters.

Parameter Unit Conventional Improved

Stator tooth width mm 7 9
LCF PM width mm 17 16
LCF PM height mm 5 4

4. Performance Evaluation
4.1. Confirmation of Brm with the Pole-Changing Process

To confirm that Br of the improved model’s LCF PM obtains Brm in VM mode and
−Brm in PMSM mode, FEA was performed using JMAG Version 22 to apply a current
pulse of the pole-changing process and calculate Br in each mode. It has been verified in
numerous studies [31,32] that the commercial software JMAG provides values that are
highly consistent with experimental results.

The LCF PMs are located as indicated in Figure 7a. Furthermore, a current pulse is
applied to magnetize the LCF PMs in the opposite direction, resulting in a change in the
magnetic flux direction of all LCF PMs. The Br value of the LCF PM changes along the
magnetization process, as shown by the green line on the B−H curve in Figure 4, where its
value is “0 < Br ≤ Brm”. Consequently, as shown in Figure 7b, the machine operates in
VM mode. The LCF PMs move at a mechanical angle of 15◦ and then are fixed, as shown
in Figure 7c. Moreover, a current pulse is applied for demagnetization in the opposite
direction to the magnetization of the LCF PMs, changing the Then, a current pulse is applied
for demagnetization in the opposite direction to the magnetic flux direction of the LCF PMs.
The Br value of the LCF PM changes along the demagnetization process, as shown by the
orange line on the B−H curve in Figure 4, where its value is “−Brm ≤ Br < 0”. Therefore,
as shown in Figure 7d, the machine operates in PMSM mode.

As shown in Figure 7a,c, a magnetic field of approximately 0.7 T affects all regions
of the LCF PM in the magnetic flux density distribution. Therefore, it was confirmed that
the design considering Br for efficiency improvement was completed since the LCF PM
has Brm in the VM mode and −Brm in the PMSM mode. Furthermore, it can be confirmed
that the magnetic flux direction of the LCF PMs has changed by observing the alteration of
the flux lines depicted in Figure 7b,d. Therefore, the number of rotor pole pairs changes,
confirming that pole-changing is complete.
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4.2. Comparison of Performances

The performance of the improved model designed considering the Br of LCF PM was
compared with the conventional model designed without considering the Br of LCF PM.
The B−EMF comparison of the conventional and improved models of the PCVM during
VM and PMSM modes is shown in Figure 8. Figure 8a shows that B−EMF in VM mode
is 51.6 Vrms in the conventional model and 77.5 Vrms in the improved model. Figure 8b
shows that B−EMF in PMSM mode is 40.7 Vrms in the conventional model and 58.3 Vrms
in the improved model. Therefore, the B−EMF of each mode was improved by design,
considering the Br of LCF PM.
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The output torque comparison of the conventional and improved models of the PCVM
during VM and PMSM modes is shown in Figure 9. Figure 9a shows that the torque in VM
mode is 12.7 Nm in the conventional model and 21.8 Nm in the improved model. Figure 9b
shows that the torque in PMSM mode is 10.5 Nm in the conventional model and 16.4 Nm
in the improved model. Therefore, the torque of each mode was improved by design,
considering the Br of LCF PM.
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To compare the magnetic flux density distribution in the VM mode of the improved
model shown in Figure 7b with the conventional model, it is presented in Figure 10.
Figure 10a shows that the LCF PM could not obtain Brm because the design considering
the Br of LCF PM was not performed. Figure 10b shows that the LCF PM has a high
magnetic flux density by obtaining a Brm because the design considering the Br of LCF PM
was performed.
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To compare the magnetic flux density distribution in the PMSM mode of the improved
model shown in Figure 7d with the conventional model, it is presented in Figure 11.
Figure 11a shows that the LCF PM could not obtain a −Brm because the design considering
the Br of LCF PM was not performed. Figure 11b shows that the LCF PM has a high
magnetic flux density by obtaining a −Brm because the design considering the Br of LCF
PM was performed.
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To confirm the efficiency improvement through the design, considering the Br of LCF
PM, the efficiency of each mode is calculated. The efficiency is calculated using Equation (3).

η =
Pout

Pout + Pc + Pi
× 100% (3)

where Pout, Pc , and Pi are the output power, copper loss, and iron loss, respectively. The
efficiency of the VM mode calculated using Equation (3) is 86.9% for the conventional
model and 90.7% for the improved model. Furthermore, the PMSM mode is 92.5% for the
conventional model and 94.9% for the improved model.

Table 3 presents a performance comparison of the conventional and improved models.
As shown in Figures 8 and 9, it is observed that the improved model for each mode shows
enhanced performance compared to the conventional model under the same operating
conditions. The improved model achieved higher torque density by obtaining Brm in the
VM mode and −Brm in the PMSM mode, considering the design with Br. Moreover, when
operating in PMSM mode, the number of rotor pole pairs is reduced by half compared
to VM mode due to pole-changing. This reduction in pole pairs leads to a decrease in
iron losses, thereby enhancing efficiency at high speeds. The improved model and the
conventional model have the same current conditions, so they have the same copper losses.
In the improved model, as a result of considering Br in the design process, there was a
slight increase in iron losses due to the increase in stator tooth width compared to the
conventional model. Nevertheless, the substantial increase in Br significantly enhances
torque density. Therefore, the efficiency of the improved model is enhanced by having
a high magnetic flux density in each mode as the design considering the Br of LCF PM
is performed.

Table 3. Performance comparison of conventional and improved model.

Item Unit Conventional Improved

Machine mode -- VM PMSM VM PMSM
Speed rpm 300

B−EMF V 51.6 40.8 77.5 58.3
Terminal voltage V 104.2 65.6 141.4 86.8
Average torque Nm 12.7 10.5 21.8 16.4

Copper loss W 6.9 6.9 6.9 6.9
Iron loss W 53.4 19.8 62.9 20.7

Efficiency % 86.9 92.5 90.7 94.9

5. Conclusions

In this study, a design considering the Br of LCF PMs was used to improve the effi-
ciency of the PCVM. To verify the efficiency improvement, the efficiencies of the improved
model, designed considering the Br of the LCF PM, and the conventional model, designed
without considering the Br of the LCF PM, were compared in each mode. In VM mode, the
efficiency of the conventional model was 86.9%, while the efficiency of the improved model
was 90.7%. This represents a 3.8% increase in efficiency compared to the conventional
model. In PMSM mode, the efficiency of the conventional model was 92.5%, while that of
the improved model was 94.9%. This corresponds to a 2.4% increase in efficiency compared
to the conventional model.

The improved model, in the design process that considered Br, resulted in a slight
increase in iron losses compared to the conventional model due to the increase in the stator
tooth width. However, the substantial increase in Br significantly enhances torque density.
The improved model increased torque density by obtaining Brm in VM mode and −Brm
in PMSM mode through the design considering Br. When operating in PMSM mode, the
number of rotor pole pairs is reduced by half compared to VM mode due to pole-changing.
This reduction in pole pairs decreases the frequency at high speeds, resulting in reduced
iron losses and further enhancing efficiency. Therefore, PCVM achieved high torque in
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VM mode at low speeds and high efficiency in PMSM mode at high speeds, owing to the
design considerations of LCF PM’s Br. This improved efficiency across a wide speed range.

PCVM has been proposed previously, but research on this relatively new structure
has not been extensively conducted. This study has contributed to improving the effi-
ciency of PCVM by carefully considering the characteristics of LCF PM. PCVM used only
two operating points: low speed and high speed. Future research can expand into ap-
plications that utilize multiple loads in wide speed ranges, similar to EVs, allowing for
performance improvement.
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