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Abstract: This study investigated the correlation between the degree of disorder of the post-hydrogen
plasma treatment (HPT) of the intrinsic hydrogenated amorphous silicon (a-Si:H(i)) and the device
characteristics of the a-Si:H/c-Si heterojunction (HJ) solar cells. The reduction in the degree of
disorder helps to improve interface defects and to enhance the effective carrier lifetime of the a-
Si:H/c-Si heterojunction. The highest effective minority carrier lifetime of 2.08 ms was observed
in the film with the lowest degree of disorder of 2.03. The devices constructed with HPT a-Si:H(i)
having a lower degree of disorder demonstrated higher device performance in terms of open-circuit
voltage (Voc), fill factor (FF), and subsequent conversion efficiency. An a-Si:H(i) with a lower degree
of disorder (2.03) resulted in a higher Voc of 728 mV and FF of 72.33% and achieved a conversion
efficiency of up to 20.84% for the a-Si:H/c-Si HJ silicon solar cell.

Keywords: passivation; a-Si:H(i) thin film; post-hydrogen plasma treatment; silicon heterojunction
solar cell

1. Introduction

Silicon heterojunction (SHJ) solar cells with crystalline silicon (c-Si) and hydrogenated
amorphous silicon (a-Si:H) layers have received much attention due to their high conversion
efficiency and low process temperature, which results in less degradation and a better
temperature coefficient [1]. Recently, SHJ solar cells with interdigitated back contacts
have shown record efficiency, as reported by Kaneka, at 26.7% [2]. Surface passivation
is an important step toward achieving high conversion efficiency in the SHJ solar cells.
The defect density (Dit) at the a-Si:H/c-Si heterointerface affects the open-circuit voltage
(Voc), fill factor (FF), and subsequent conversion efficiency (η) of the SHJ solar cells [3–5].
Currently, the most common passivation methods include the deposition of the a-Si:H layer
on both sides of c-Si surfaces via plasma-enhanced chemical vapor deposition (PECVD) or
hot wire chemical vapor deposition to passivate the c-Si surfaces [6–8]. The passivation of
the c-Si surface by the a-Si:H thin layer is primarily due to the hydrogenation bonding that
occurs at the silicon dangling bonds, thereby reducing the interface Dit [9]. Generally, a
high density of a-Si:H thin layer can be obtained using PECVD, in which the a-Si:H layer
formation occurs at a low pressure [10,11]. A high density of Si epitaxial growth must be
prevented during a-Si:H deposition on the c-Si substrate. The a-Si:H is grown in a dense
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state, and the passivation property could be improved by the H2 plasma treatment to avoid
epitaxial formation. Descoeudres et al. suggested that three short silane plasma steps with
an additional short H2 plasma treatment after each silane step can help suppress charge
carrier recombination at surface dangling bonds on the c-Si surface [12]. Yet, this three-step
treatment with H2 is not a robot process; hence, it is hard to employ in mass production.
Mews et al. reported that post-deposition hydrogen plasma treatment on passivation in
a-Si:H/c-Si interfaces can also help to achieve excellent c-Si <100> surface passivation with
a minority carrier lifetime of >8 ms [13]. Thus, it is clear that hydrogen plasma treatment
can play a key role in improving the Voc, which in turn improves conversion efficiency.
Therefore, it is necessary to understand the microstructural changes, such as degree of
disorder, induced by H2 plasma treatment in a-Si:H film. However, there have been limited
studies that have clarified the interrelationship between the degree of disorder in the
passivated layers and the device performance.

In this study, we investigated the effect of post-HPT on the microstructures of the
a-Si:H(i) layers, including changes in the degree of disorder and/or void densities, with
the help of ellipsometry and Raman characteristics. Subsequently, the correlation between
the microstructures and the passivated properties of the a-Si:H/c-Si heterointerface and
also the device characteristics were then carried out.

2. Materials and Methods

For the experiment, Czochralski-grown n-type c-Si wafers with a thickness of 180µm
and a resistivity of 4.5 Ω.cm were used. The wafers were initially cleaned with acetone,
methanol, de-ionized water, and were subsequently subjected to RCA-1 cleaning. The
surface texture was formed by anisotropic wet etching in a dilute alkaline solution, followed
by additional RCA-1 and RCA-2 cleaning steps. The a-Si:H layers with a thickness of 7 nm
were deposited using RF-PECVD (13.56 MHz). Post-HPT was performed by RF-PECVD
with hydrogen plasma-treated power in the range of 0–60 (Watt). Subsequently, the a-
Si:H(p) emitter layer was deposited on one side of the wafer, while the highly doped
n-type a-Si:H(n+) layer was formed on the opposite side. An indium tin oxide layer with a
thickness of 80 nm ± 5 nm was employed to create an anti-reflection coating on the front
side. Finally, a low-temperature silver paste was screen printed to form the front finger and
full back electrodes.

A spectroscopy ellipsometry (SE) was performed using a VASE® (J. A. Woollam,
Lincoln, NE, USA), which provided (Ψ, ∆) data over a wavelength range of 240–1700 nm.
The analysis of ellipsometry spectra included considerations for the thickness, the imaginary
(εim) and real parts of the pseudo dielectric (εreal), and a degree of disorder (C) using the
Tauc–Lorentz and Cody–Lorentz oscillator modes [14]. The hydrogen bonds present in the
a-Si:H layers were estimated using a Fourier transform infrared spectroscopy in the range
of 2800–3500 cm−1 (FTIR, FTIR Prestige-21 spectrometer, Shimadzu, Osaka, Japan). The
Raman spectra were recorded using a Dongwoo Optron (model number Ramboss 500i,
Gwangju-si, Korea) with an excitation wavelength of 514.5 nm. The passivation quality of
the a-Si:H film was measured using a quasi-steady-state photo conductance decay setup
(QSSPC, Sinton WCT-120, Boulder, CO, USA) and quantified by the minority carrier lifetime
(τeff) at an injection level of 1015 cm−3 and an implied voltage (Vimp) at 1 sun. The device’s
characteristics were measured under Air Mass 1.5 Global (100 mW/cm2, AM1.5G) with the
help of a solar simulator.

3. Results & Discussions

The microstructure of the a-Si:H(i) film was studied using spectroscopic ellipsometry.
The experimental data and fitting curve for Ψ and ∆ with before and after hydrogen
treatments of the a-Si:H(i) layers are shown in Figure 1a. By combining the Tauc–Lorentz
and BEMA fitted models [14], the maximum amplitude, <εim, max>, and the minimum
amplitude, <εreal, min>, were acquired, and the results are shown in Figure 1b,c, in which
the <εim, max> and <εreal, min> are related to the film density. After treatment, in the range
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of 0–40 W, it can be seen that the values of <εim, max> exhibited a little rise with increasing
treated power, while the values of the <εreal, min> showed the opposite trend. The degree of
disorder, denoted as C, is illustrated in Figure 1d. Thus, with the increase in the treatment
power up to 40 W, the values of C tend to decrease. The behaviors of the <εim, max>,
<εreal, min> and C inferred that after hydrogen treatment the films show fewer voids and
hence, a higher structural order.
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amplitude, <εreal, min>; and (d) degree of disorder, C.

The Raman spectroscopy approach, which is effective for studying the development
of ordering in amorphous silicon networks, was used to explain the ordered film network’s
response to hydrogen plasma treatment power [15]. The Raman spectra of the a-Si:H layers
for different treated powers as a function of the wavenumber are illustrated in Figure 2.
Figure 2 denotes the Si–Si Transverse Acoustical (TA) mode, Si–Si Longitudinal Acoustic
(LA) mode, and Si–Si Transverse Optical (TO) mode, which correspond to the band at
around 160 cm−1, 310 cm−1, and 480 cm−1, respectively; while ∆θTO (degrees) is the bond
angle dispersion, referred from [16]. Marinov et al. reported through a 216-atom model
of a-Si (which was generated by the algorithm of Wooten, Winer, and Weaire) that the
correlation length is associated with the vibrational mode localization state at different
frequencies [17,18]. While the TO-like band is mostly sensitive to the short-range order, the
high-frequency modes in the TA-like band and the LA-like band are primarily sensitive to
the intermediate-range order [17]. The quantitative measures of the ITA/ITO ratios and ∆θ
were extracted from the peak fitting of the Raman spectra (Figure 2), as shown in Table 1. It
can be seen that the ITA/ITO ratio, ∆θ, and C exhibit similar trends. Initially, these values
decrease as the treated power increases from 0 to 40 W, beyond which all values increase.
Notably, the minimum values for ITA/ITO, ∆θ, and C were obtained at the treated power of
40 W. This suggests that a more ordered network corresponds to lower C values [16,19].
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Figure 2. The Raman spectra of the a-Si:H layers for different treatment powers.

Table 1. The summaries of some micro-structural properties of the a-Si:H layer, such as the degree of
disorder, C; ITA/ITO, ∆θTO, and MS (%).

Treated Power (W) C ITA/ITO ∆θTO MS (%)

0 2.20 0.40 7.82 11.43

30 2.17 0.39 7.21 3.09

40 2.03 0.37 6.82 2.88

50 2.64 0.39 7.03 4.55

60 3.14 0.41 8.15 17.38

Based on the information mentioned earlier, when the as-deposited a-Si:H(i) undergoes
post-hydrogen treatment, the following possible situations, as depicted in Figure 3, may
occur: Hydrogen atoms are effused (from hydrogen plasma) through the film surface and
into its bulk. During diffusion, hydrogen atoms with preferrI confirmed kinetic energy
break weak Si–Si bonds (Figure 3a,b), followed by the deactivation of not only the dangling
bonds but also previously broken weak Si–Si bonds as well (Figure 3c). Thus, hydrogen
atoms with higher kinetic energy, due to an increase in treated power, can exhibit greater
mobility and cover longer diffusion distances. This enhanced mobility may aid in locating
suitable crystal sites and subsequently adhering to them [12,16,20,21]. Therefore, it can be
stated that the treated power of 40 W is the preferred power for hydrogen atoms to come
into the surface, passivate dangling bonds, and break weak Si–Si bonds as well, leading
to the lowest degree of disordered film. Yet, at higher-treated power levels, hydrogen
treatment can adversely affect passivation. Investigating the negative effects beyond 40 W
is beyond our study’s scope.
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Figure 3. (a) A possible bonding configuration of as-deposited a-Si:H layer; (b) hydrogen effusion
following breaking week Si–Si bonds; and (c) the formation of Si-H bonds.

Since an a-Si:H layer plays a vital role in the a-Si:H/c-Si heterojunction solar cells, its
passivated ability needs to be examined. To evaluate the correlation between the degree of
disorder of the post-HPT a-Si:H(i) layer and the quality of passivation at the a-Si:H/c-Si
heterointerface, we conducted an evaluation of the effective minority carrier lifetime, τeff,
as a function of excess carrier density using the QSSPC method. The results are depicted
in Figure 4a; in this figure, a C value of 2.20 is represented for the as-deposited a-Si:H(i)
film. It is worth noting that the mean carrier density (MCD) is selected corresponding to
the Vmp of the material used. However, the MCD value of 1 × 1015 cm−3 is appropriate,
as it is above the noise, trapping, and dual-resonance model effects. Thus, after post-HPT,
the highest τeff of 2.80 ms and the lowest τeff of 0.93 ms are achieved for the lowest C of
2.03 and the highest C of 3.14, respectively. An interesting observation is the correlation
between C and τeff values, with higher τeff values corresponding to lower C values.
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In addition, a recombination mechanism occurs through deep-level defects (commonly
referred to as Shockley-Read-Hall [SRH] recombination). SRH recombination losses can
occur at the c-Si bulk, a-Si:H/c-Si interface region, and transparent conductive electrodes
(TCO). Notably, for SHJ solar cells utilizing high-quality c-Si wafers, the primary recombi-
nation loss occurs at the interface region. In this sense, excellent passivation characteristics
are required to obtain a high open-circuit voltage (Voc) in an SHJ solar cell. Another inter-
pretation of the τeff obtained through QSSPC can be used to determine the voltage of the
contact device. This voltage is referred to as the implied open-circuit voltage (iVoc) and is
determined by the carrier concentration at the edge of the depletion region. The iVoc values
plotted as a function of the C values are depicted in Figure 4b. It can be seen that the higher
iVoc values correspond to a lower degree of disorder in the films.

To understand the improvement in τeff and iVoc values associated with lower film
disorder, FTIR characterization was carried out, as shown in Figure 5. The FTIR spectra, in
the wave number range of 1850–2220 cm−1, were measured and represented in Figure 5a.
Figure 5b displays microstructure information, MS, in the form of a bar chart. Here the
MS is defined as the ratio of the integrated area under FTIR absorption spectra for a high
Si-Hn stretching mode (HSM) around 2070–2100 cm−1 to that of a low Si-H stretching mode
(LSM) around 1980–2010 cm−1 after de-convolution [20]. Figure 5b and Table 1 show that,
as the treated power increases from 0 to 40 W, the MS ratio decreases from 11.43 to 2.88, and
then increases again with further power increments. The changes in the MS ratios indicate
that films treated with higher post-hydrogen treatment power have fewer voids within
them. The reduced structural defect density in the films also correlates with the behavior of
the degree of disorder in the layers, as discussed previously for higher-treated power (up
to 40 W). It was reported that the presence voids are associated with high-order bonding,
specifically Si-Hn (n ≥ 2). This bonding can have a detrimental effect on the passivation of
the c-Si surface [7]. Thus, thanks to its lower structural defect density, namely the degree of
disorder, these films achieved higher τeff and iVoc values, as shown in Figure 4.
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passivated layer at different treatment powers.

Finally, the a-Si:H/c-Si HJ solar cells were constructed for evaluating the validity
of our approach, and the results are illustrated in Figure 6. From the figure, it can be
roughly stated that there is a negligible change in the short-circuit current density, Jsc,
with alterations in the C values of the a-Si:H passivated layer. However, the behavior of
other characteristics, such as Voc, FF, or η, differs from that of Jsc. The higher values of Voc,
FF, and conversion efficiency can be found at the lower values of the degree of disorder,
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C. The behaviors of the Voc and FF are probably due to an enhancement of the τeff and
subsequently, the iVoc values to a lower degree of disorder, C, as discussed earlier. The
best device performance (Voc: 728 mV, Jsc: 39.55 mA/cm2, FF: 72.33%, and η: 20.84%) was
achieved with the lowest C value of 2.03 and the post-HPT power of 40 W. Beyond this
treated power value, nevertheless, the device characteristics dropped, and the reason for
this reduction in device performance is not currently understood.
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Overall, in this investigation, an interrelation was identified between the microstruc-
ture, characterized by the degree of disorder C within the layer, and the performances of
the a-Si:H/c-Si heterojunction devices. Higher device characteristics, such as Voc, FF, and η,
were consistently observed for lower C values, regardless of the treatment conditions. As
mentioned earlier, lower C values in ordered films improve a-Si:H/c-Si heterointerface pas-
sivation, leading to higher minority carrier lifetime, and subsequent implied open-circuit
voltage. This can result in improved Voc, FF, and subsequent conversion efficiency.

4. Conclusions

In this study, the correlation between the degree of disorder of the passivated a-Si:H
and the performance of the a-Si:H/c-Si HJ solar cells was investigated. The results show
that the post-HPT-induced rearrangement of bonds in the a-Si:H film reduced disorder
within the layer, leading to an improvement in the effective carrier lifetime and the implied
open-circuit voltage as well. Thus, the change in effective lifetime was attributed to
microstructural characteristics, where a higher degree of disorder in the films corresponds
to a lower effective minority carrier lifetime. A lower degree of disorder improved Voc
and FF values, thereby increasing conversion efficiency. A maximum cell efficiency of
20.84% was obtained with the lowest degree of disorder of 2.03 in the passivated a-Si:H
layer. Importantly, higher device characteristics consistently correlated with a lower degree
of disorder in the films, regardless of the treatment conditions.
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