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Abstract: Aiming at the optimization of current stress with low voltage ratio and full ZVS, a control
method combining variable duty cycle and phase shift was proposed based on dual active bridge
(DAB) converters with DC blocking capacitors. By adding DC bias to the DC blocking capacitors,
asymmetric duty modulation (ADM) can adjust the bias as needed. Based on the theoretical analysis
of steady-state operation, the operating modes can be divided into eight modes. According to the
features of each mode, equivalent circuits are established. The transmission power and the boundary
of zero-voltage-switching (ZVS) are deduced through a detailed analysis of each mode. Based on
the theoretical deduction, ADM is more suitable for a low voltage ratio. Verified by experiment,
optimized asymmetric duty modulation (OADM) can increase efficiency by 3.58%, 6.57%, 8.81%, and
10.33% compared with DPS when P is equal to 0.36 and m is equal to 0.4, 0.3, 0.2, and 0.1, respectively.
Using this method, the current stress of the converter is lighter than that under regular modulation
when the voltage ratio m ≤ 0.5 with full ZVS.

Keywords: DC blocking capacitor; DAB; asymmetric duty modulation; ZVS; current stress

1. Introduction

In recent years, the proportion of renewable energy in the power grid has rapidly
increased. However, as a significant source of renewable energy, solar power could not be
connected to the AC grid directly. As a result, the DC microgrid was proposed and has
developed greatly [1]. The DC microgrid could not only realize local consumption but also
relatively reduce the times of electric energy conversion, which significantly improved effi-
ciency [2]. In a DC microgrid, solar power could not work stably. It would lead to damage
to the converter, and even DC-link voltage fluctuation, causing grid fault [3]. Bidirectional
isolated DC-DC converters can not only transmit power bidirectionally between DC buses
of different voltage levels, but also have the advantages of higher power density, simple
structure, and isolation, which have vital research value.

R.W. De Doncker proposed DAB converters for the first time in the late 20th century [4].
Their excellent properties soon led to a series of studies by different researchers. They are
now widely used in renewable energy, energy storage, electric vehicle charging, energy
routers, and other fields [5–7].

The most common modulation of DAB converters is phase shift modulation (PSM),
mainly including single phase shift (SPS) modulation [4], extended phase shift (EPS)
modulation [8,9], dual phase shift (DPS) modulation [10,11], and triple phase shift (TPS)
modulation [12]. To avoid magnetic bias, PSM can only operate at a fixed 50% duty
cycle. For the same reason, pulse width modulation (PWM) also cannot be used directly.
In [13], a three-level DAB is proposed. Its modulation is a combination of PSM and PWM.
Although the complexity of control is reduced, the cost and the complexity of hardware
increase. Furthermore, [14] proposed a modulation that applies PWM on both sides of the
DAB converter.
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For the optimization of current stress, the most direct method is derivation [15].
However, it is challenging to derive or obtain the analytical conditional extreme points when
the equation of current stress is complex. On this basis, the Lagrange multiplier method
is applied [16]. However, this method could only solve the current stress optimization
problem with equality conditions, namely transmission power. When it needs to meet both
the ZVS conditions and mode boundary, inequality conditions should be added. To solve
this, the Karush–Kuhn–Tucker method (KKT) is applied [17]. However, with the increase
in constraint conditions, the difficulty of the analytical solution increases exponentially. So,
in [18], a graphic method was proposed. The characteristics of the optimal operating point
can be determined by analyzing the variation in current stress and constraint conditions.
This simplifies the analytical process and helps achieve optimization. However, when
the ZVS conditions, boundary conditions, and current stress equations are complex and
their trends are difficult to analyze, the above methods may not be effective. To address
this issue, this paper presents an optimization method that involves discretizing and
numerical solutions.

The research on the topology, modulation, and optimization of DAB converters has
been relatively detailed, while the research based on DC blocking capacitors is still insuffi-
cient. The research on DC blocking capacitors is currently still focused on SPS under the
hybrid bridge modulation [19,20].

Due to the insufficient analysis of PWM and current stress optimization, a novel ADM
based on DC blocking capacitors is proposed. By using PWM to generate a DC component
that is then converted into DC bias, the proposed modulation enables DAB to adapt to a
wide range of voltage ratios. By adjusting the duty cycle of the full bridge output voltage
on the input side and the phase between the full bridge output voltages on both sides,
the power and transmission direction can be controlled without changing its fundamental
topology. The different operating modes of the converter are classified based on the output
voltage waveforms of the full bridge on both sides of the power transmission process.
The transmission power and ZVS boundary of all modes are mathematically deduced.
Furthermore, the OADM is proposed, which can be used to optimize the current stress. By
this method, minimum current stress and full ZVS for voltage ratios of m ≤ 0.5 is achieved.
Finally, the proposed OADM is validated through comparative experiments. It also makes
it possible to achieve a smoother transition of mode switching in the method proposed
in [20].

The structure of this article is as follows: In Section 2, the basic definition of the
proposed ADM is introduced. In Section 3, the working principles of the proposed ADM
are analyzed in detail. In Section 4, the optimization of the ADM with ZVS and inductor
current, namely OADM, is given. In Section 5, the experimental results are given to
verify the analysis and compare with those of the conventional modulation. Finally, the
conclusions are presented in Section 6.

2. ADM with the Aid of DC Blocking Capacitors

The topology of a DAB converter with DC blocking capacitors is shown in Figure 1. V1
and V2 are input and output DC-link voltage, respectively. The turn ratio of the transformer
is n. VAB is the primary side bridge output voltage, and VCD is the secondary side bridge
output voltage. Vp is the primary side voltage of the transformer, and Vs is the secondary
side voltage of the transformer. Cbp is the DC blocking capacitor of the primary side, and
Cbs is the DC blocking capacitor of the secondary side. L is the sum of external series
inductance and transformer leakage inductance. iL is the inductor current. io is the output
current. C1 and C2 are the DC bus capacitors for input and output. With the aid of DC
blocking capacitors, ADM can adjust the DC bias of DC blocking capacitors to control the
output voltage.
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Figure 1. Topology of a DAB converter with DC blocking capacitors. 

The typical ADM waveforms based on DC blocking capacitors are shown in Figure 
2. Ths represents half of a switching cycle. Vcbp and Vcbs represent DC bias voltage on the 
primary and secondary side DC blocking capacitors, respectively. D is the duty cycle of 
primary bridge output in one switching cycle. The phase shift angle φ, which is calculated 
in radians as the difference between the rising edges of the primary and secondary side 
voltages of the transformer, varies between −π and π. A positive phase shift (φ > 0) is 
shown in Figure 2, corresponding to the phase shift ratio Dφ in half a switching period. Dφ 
is the ratio of the difference between the rising edges of the primary and secondary side 
voltages of the transformer to half a switching period. 
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Figure 1. Topology of a DAB converter with DC blocking capacitors.

The typical ADM waveforms based on DC blocking capacitors are shown in Figure 2.
Ths represents half of a switching cycle. Vcbp and Vcbs represent DC bias voltage on the
primary and secondary side DC blocking capacitors, respectively. D is the duty cycle of
primary bridge output in one switching cycle. The phase shift angle ϕ, which is calculated
in radians as the difference between the rising edges of the primary and secondary side
voltages of the transformer, varies between −π and π. A positive phase shift (ϕ > 0) is
shown in Figure 2, corresponding to the phase shift ratio Dϕ in half a switching period. Dϕ

is the ratio of the difference between the rising edges of the primary and secondary side
voltages of the transformer to half a switching period.
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Figure 2. Typical waveforms of ADM.

According to the definitions of D and Dϕ, the ranges are as follows:{ ∣∣Dϕ

∣∣ ≤ 1
0 ≤ D ≤ 1

(1)

3. Principles of the Proposed ADM

The principle of ADM control is relatively easy to understand. Its main idea is to apply
different DC biases to the DC blocking capacitors by changing the duty cycle to match the
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voltage of the primary side and the secondary side of the transformer, thus reducing the
current stress and increasing the soft switching range. There are eight operating modes.
This section analyzes each operating mode in detail. The transmission power and the
conditions of ZVS for each mode are discussed with a specific analysis of mode A as
an example.

3.1. Analysis of Operation Mode

D and Dϕ are controlled variables in the ADM based on DC blocking capacitors.
Distinctions between different control combinations are mainly reflected in the waveforms
and voltages across the DC blocking capacitors on the changed duty cycle side. Whether
D ≥ 1/2 determines the polarity of the voltage on the DC blocking capacitors. So, the
relationship between the waveforms of Vp and Vs and the voltage across DC blocking
capacitors can be used to classify the operation modes of the converter.

Firstly, when Dϕ ≥ 0 and D ≤ 1/2, the rising edge of Vp is ahead of Vs. In this case,
when D > Dϕ/2, the operation state is mode A, and when D ≤ Dϕ/2, the operation state is
mode B. Secondly, when Dϕ ≥ 0 and D≥ 1/2, the rising edge of Vp is ahead of Vs. Therefore,
when D > Dϕ/2 + 1/2, the operation state is mode C, and when D ≤ Dϕ/2 + 1/2, the
operation state is mode D. Thirdly, when Dϕ ≤ 0 and D ≤ 1/2, the rising edge of Vs is
ahead of Vp. In this situation, when D > Dϕ/2 + 1/2, the operation state is mode E, and
when D ≤ Dϕ/2 + 1/2, the operation state is mode F. Lastly, when Dϕ ≤ 0 and D ≥ 1/2,
the rising edge of Vs is ahead of Vp. Thus, when D > Dϕ/2 + 1, the operation state is mode
G, and when D ≤ Dϕ/2 + 1, the operation state is mode H. The waveforms of Vp and Vs
in different modes are shown in Figure 3, and the ranges of corresponding variables are
presented in Table 1.
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Table 1. Range of D, Dϕ under each mode.

The Boundary Conditions Mode

0 ≤ D ≤ 1/2, 0 ≤ Dϕ ≤ 1, D > Dϕ/2 Mode A
0 ≤ D ≤ 1/2, 0 ≤ Dϕ ≤ 1, D ≤ Dϕ/2 Mode B

1/2 ≤ D ≤ 1, 0 ≤ Dϕ ≤ 1, D > Dϕ/2 + 1/2 Mode C
1/2 ≤ D ≤ 1, 0 ≤ Dϕ ≤ 1, D ≤ Dϕ/2 + 1/2 Mode D

0 ≤ D ≤ 1/2, −1 ≤ Dϕ ≤ 0, D > Dϕ/2 + 1/2 Mode E
0 ≤ D ≤ 1/2, −1 ≤ Dϕ ≤ 0, D ≤ Dϕ/2 + 1/2 Mode F

1/2 ≤ D ≤ 1, −1 ≤ Dϕ ≤ 0, D > Dϕ/2 + 1 Mode G
1/2 ≤ D ≤ 1, −1 ≤ Dϕ ≤ 0, D ≤ Dϕ/2 + 1 Mode H

The range of modes is shown in Figure 4.
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There is no overlap between the modes. The range of modes exactly covers (1),
ensuring the wholeness and uniqueness of classification.

3.2. Transmission Power Analysis

Transmission power varies across different modes. The operation mode shown in
Figure 2 is used as an example to illustrate the deduction.

The equivalent circuit of each stage in mode A from t0 to t4 can be drawn according
to Figure 2, and the results are shown in Figure 5. The red lines in Figure 5 indicate the
current flow of each stage in mode A.

Stage 1 (t0 − t1
′): At t0, S1 and S4 turn on, while S2 and S3 turn off. As the current on L

is negative, diodes SD1 and SD4 conduct, allowing the power devices to realize ZVS. The
current through diodes QD2 and QD3 on the secondary side of the transformer remains
continuous. The voltage across L can be derived as [V1 − V1(2D − 1)] + nV2. So, iL at this
stage can be derived as:

iL(t) = iL(t0) +
[V1 −V1(2D− 1)] + nV2

L
(t− t0) (2)
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Stage 2 (t1
′ − t1): At t1

′
, the current through L begins to increase from zero. The current

flows through S1 and S4 on the primary side of the transformer and through Q2 and Q3 on
the secondary side. The voltage on L can be deduced as [V1 − V1(2D − 1)] + nV2. So, iL at
this stage can be derived as:

iL(t) = iL(t1
′) +

[V1 −V1(2D− 1)] + nV2

L
(t− t1

′) (3)

Stage 3 (t1 − t2): At t1, Q1 and Q4 turn on, while Q2 and Q3 turn off. The current on L
increases; the current on the primary side of the transformer flows through S1 and S4, and
the current on the secondary flows through QD1 and QD4. The voltage across the inductor
is [V1 − V1(2D − 1)] − nV2, so the power devices achieve ZVS. The current through L
reaches its maximum absolute value at this stage and can be expressed as:

iL(t) = iL(t1) +
[V1 −V1(2D− 1)]− nV2

L
(t− t1) (4)

Stage 4 (t2 − t3
′
): At t2, S2 and S3 realize ZVS while S1 and S4 turn off. The current

flows through QD1 and QD4 on the secondary side of the transformer. The voltage on L is
[−V1 − V1(2D − 1)] − nV2. At this stage, iL falls to zero, and the expression is:

iL(t) = iL(t2) +
[−V1 −V1(2D− 1)]− nV2

L
(t− t2) (5)

Stage 5 (t3
′ − t3): At t3

′
, the current on L begins to increase negatively from zero. The

current on the primary side flows through S2 and S3, and the current on the secondary side
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flows through Q2 and Q3. The voltage across L at this stage is [−V1 − V1(2D − 1)] − nV2,
and iL increases in the reverse direction, expressed as:

iL(t) = iL(t3
′) +

[−V1 −V1(2D− 1)]− nV2

L
(t− t3

′) (6)

Stage 6 (t3 − t4): At t3, Q2 and Q3 realize ZVS, while Q1 and Q4 turn off. The current
on L increases in the reverse direction. The primary side current of the transformer flows
through S2 and S3, while the secondary side current flows through QD2 and QD3. The
voltage across L is [−V1 − V1(2D − 1)] + nV2, and the expression of iL is:

iL(t) = iL(t3) +
[−V1 −V1(2D− 1)] + nV2

L
(t− t3) (7)

According to the condition of zero integral of current on the DC blocking capacitors in
a steady state: ∫ 2Ths

0
iL(t)dt = 0 (8)

Solving Formulas (2) to (8), the inductor current at different times is shown below:

iL(t0) =
4D2−4D−2mDϕ+m

2L V1Ths

iL(t1) =
4D2−4D−4DDϕ+4Dϕ+m

2L V1Ths

iL(t2) =
−4D2+4D+m−4mD+2mDϕ

2L V1Ths

iL(t3) =
4D2−4DDϕ−m

2L V1Ths

(9)

m represents the voltage ratio and m = nV2/V1.
The transmission power of mode A is derived as follows:

Pout_A = 1
2Ths

∫ 2Ths
0 vp(t)iL(t)dt

=
V2

1 m[−2D2−Dϕ
2+D(1+2Dϕ)]

L Ths

(10)

The maximum power that a DAB converter with DC blocking capacitors can transmit
under SPS control is as follows:

PN =
mV2

1
4L

Ths (11)

For the simplification of the analysis, the transmission power expression of Formula (10)
is normalized by PN expressed as a function of D and Dϕ as follows:

PA = −8D2 − 4Dϕ
2 + 4D(1 + 2Dϕ) (12)

Similar to the derivation process of transmission power for mode A, the expression
for each mode is as follows:

P =



−8D2 − 4Dϕ
2 + 4D(1 + 2Dϕ) Mode A

4D(2D− 2Dϕ + 1) Mode B
4(D− 1)(2D− 2Dϕ − 1) Mode C
−8D2 − 4Dϕ

2 + 4D(1 + 2Dϕ) Mode D
4[2D2 + (1 + Dϕ)

2 − D(3 + 2Dϕ)] Mode E
4D(1− 2D + 2Dϕ) Mode F
4(D− 1)(2Dϕ − 2D + 3) Mode G
4[2D2 + (1 + Dϕ)

2 − D(3 + 2Dϕ)] Mode H

(13)
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Normalized transmission power is shown in Figure 6 based on Formula (13).
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Under the ADM based on DC blocking capacitors, the transmission power characteris-
tics are as follows: (1) the forward and reverse transmission powers are symmetrical and
have a maximum value that is equal to 1; (2) there exist equal power points, which provide
a basis for optimizing current stress; (3) the transmission power in modes B, C, F, and G
can range from −0.5 to 0.5.

3.3. ZVS Analysis

ZVS has different boundary conditions in different modes. The software Mathematica
is used to simplify boundary conditions and the figure of the ZVS range is verified and
plotted using MATLAB. To make a switch achieve ZVS, the current has to flow reversely
when an on signal is set. Take mode A in Figure 2 as an example. At t0, S1 and S4 are turned
on, and S2 and S3 are turned off. At this time, the current on the inductor is less than zero to
achieve ZVS. At t1, Q1 and Q4 are turned on, and Q2 and Q3 are turned off. At this moment,
the current on the inductor is more than zero to realize ZVS. At t2, S2 and S3 are turned on,
and S1 and S4 are turned off. At this moment, the current on the inductor is greater than
or equal to zero to realize ZVS. At t3, Q2 and Q3 are turned on, and Q1 and Q4 are turned
off. At this moment, the current on the inductor is less than or equal to zero to realize ZVS.
The same methods can be used to analyze the boundary conditions of every mode. The
boundary conditions are shown in Table 2.

Table 2. Boundary conditions of ZVS in each mode.

Mode t0 t1 t2 t3

A iL(t0) ≤ 0 iL(t1) ≥ 0 iL(t2) ≥ 0 iL(t3) ≤ 0
B iL(t0) ≤ 0 iL(t1) ≥ 0 iL(t2) ≥ 0 iL(t3) ≤ 0
C iL(t0) ≤ 0 iL(t1) ≥ 0 iL(t2) ≤ 0 iL(t3) ≥ 0
D iL(t0) ≤ 0 iL(t1) ≥ 0 iL(t2) ≥ 0 iL(t3) ≤ 0
E iL(t0) ≤ 0 iL(t1) ≤ 0 iL(t2) ≥ 0 iL(t3) ≥ 0
F iL(t0) ≤ 0 iL(t1) ≥ 0 iL(t2) ≤ 0 iL(t3) ≥ 0
G iL(t0) ≤ 0 iL(t1) ≤ 0 iL(t2) ≥ 0 iL(t3) ≥ 0
H iL(t0) ≤ 0 iL(t1) ≤ 0 iL(t2) ≥ 0 iL(t3) ≥ 0

Take the boundary conditions of ZVS under mode A as an example:{
0 ≤ Dϕ ≤ 1; 0 ≤ D ≤ 1

2 ; D ≥ 1
2 Dϕ

iL(t0) ≤ 0; iL(t1) ≥ 0; iL(t2) ≥ 0; iL(t3) ≤ 0
(14)
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To simplify the calculation, the maximum transmission power current is taken as the
reference current, and the current is normalized.

iN =
PN

V1
=

mV1Ths
4L

(15)

The normalized current at each moment under mode A is:

iL(t0) = 2− 4Dϕ + 8(−1+D)D
m

iL(t1) = 2 + 8(−1+D)(D−Dϕ)
m

iL(t2) = 2− 8D + 4Dϕ + 8D(1−D)
m

iL(t3) = −2 +
8D(D−Dϕ)

m

(16)

By combining Formulas (16) and (14), Formula (17) can be derived, which represents
the ZVS region under mode A. The boundary of this region varies with m.


0 < Dϕ < 1

2
1
2 Dϕ < D ≤ Dϕ

m < −4D + 4D2

−1 + 2Dϕ

or



0 < Dϕ < 1
2

Dϕ < D < 1
2

4(D− Dϕ)(1− D) < m

m < −4D + 4D2

−1 + 2Dϕ

or

{ 1
2 ≤ Dϕ < 1
1
2 Dϕ < D < 1

2

(17)

The same method can be used to solve the other seven modes. Thus, the range of ZVS
in the full operating area is shown in Figure 7. Figure 7 shows the range of ZVS in the full
operating area when m = 0.1, m = 0.1, m = 0.3, and m = 0.4, respectively.
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The same method can be used to solve the other seven modes. Thus, the range of ZVS 
in the full operating area is shown in Figure 7. Figure 7 shows the range of ZVS in the full 
operating area when m = 0.1, m = 0.1, m = 0.3, and m = 0.4, respectively. 
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Figure 7. Range of ZVS under the full operational area: (a) m = 0.1; (b) m = 0.2; (c) m = 0.3; (d) m = 0.4.

4. Optimal Asymmetric Duty Modulation
4.1. Current Stress Optimization under ZVS

The optimization of current stress using an optimal numerical solution in a discretized
domain is based on normalization. Assuming that i* represents current stress, the equation
for current stress under mode A can be derived as:

i∗ = 2− 8D + 4Dϕ +
8D(1− D)

m
(18)

Likewise, current stress under other modes can be determined. So, the current stress
is shown in Figure 8 under m = 0.1, m = 0.2, m = 0.3, and m = 0.4, respectively.
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Figure 8. Current stress under the full operational area: (a) m = 0.1; (b) m = 0.2; (c) m = 0.3; (d) m = 0.4.

According to Table 2, the current stress under ZVS conditions can be optimized by
combining Formulas (18) and (13), given that m has been determined.

However, because of the complexity of the optimization conditions and the numerous
requirements, it is hard to solve the optimization problem with analytical methods. The
optimal numerical solution of the discretization region can effectively address this problem.
The crux of this method is to establish the optimal control table offline, as depicted in
Figure 9.
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chart of the optimal table.

mref represents the reference voltage ratio, and Pref represents the reference transmis-
sion power. They form the basis for establishing and looking up the tables. According
to the control accuracy requirements, the table can be established by offline theoretical
calculation based on exponential step value. During online table lookups, the algorithm
utilizes real-time values of m and P to locate the optimal points within the region centered
on mref and Pref. The output value for the operation is then determined based on this
optimal solution. When the values of mref and Pref are precise enough, the control can be
considered approximately equivalent to that of a continuous system.
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The basic idea is to find the discrete regional optimal numerical solution in the operat-
ing region by traversal. By setting the step size of the control variables, the whole operation
area is divided into grids, so that the problem of non-convex optimization is transformed
into a problem of numerical comparison. The operating area is discretized into a limited
number of points to solve for the transmission power and current stress at each point. The
optimal operating point is then determined by comparison. Figure 10 shows a schematic
diagram of optimization when m = 0.3, P = 0.4.
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According to the tabulation method in Figure 9, the online control table of OADM can
be obtained using the offline optimization program.

4.2. Control Scheme of OADM

The control scheme of OADM is shown in Figure 11. Based on the theoretical analysis
in the previous section, it was found that different voltage ratios and transmission powers
result in different optimal operation points with varying values of D and Dϕ.
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Figure 11. Overall control scheme of OADM.

The overall control scheme contains an outer control loop for output voltage and an
inner control loop for efficiency optimization. The outer loop is mainly composed of a PI
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controller. Firstly, the measured output voltage V2 is compared to the set point value Vref
and fed into a PI controller to determine the required Dϕ. The inner loop is mainly made
up of a lookup table for OADM. The lookup table is of utmost importance for efficiency
improvement. It directly decides the output value of D and requires actual values of P
and m to be calculated through sampling. By combining the actual sampling values with
Formula (11), the actual P can be obtained as Formula (19). The measured DC bus voltages
V1 and V2, and the output current io are fed into the lookup table controller to calculate the
actual value of P, m. The value of D is determined by comparing the actual value of P, m
with the value in the lookup table. The actual value of m will select an optimal table with
various values of P. The actual value of P will select the optimal point and output the value
of D. The output value of D from the table can limit the current stress of the converter. For
robustness, Dϕ cannot be directly assigned to the value of the optimal point in the inner
control loop from the lookup table but needs to be adjusted by a PI controller. This ensures
the reliability of the system during dynamic transitions to a certain extent. With D and Dϕ

the PWM signal can be generated.

P =
V2io
PN

=
4Lio

nV1Ths
(19)

D is obtained using the lookup table of the OADM directly, calculating m and P,
finding the lookup table of mref that is closest to the current operation point, and similarly
taking the value of Pref. Based on this, the value of D is obtained. To increase the robustness,
Dϕ cannot be directly assigned to the value of the optimal point in the lookup table but
needs to be adjusted by a PI controller. This ensures the reliability of the system during
dynamic transitions to a certain extent.

5. Experimental Verification
5.1. Experimental Verification of ADM

The prototype of a DAB converter with DC blocking capacitors was built using
TMS320F28335 as the controller, and the practical platform is shown in Figure 12. The
switches use 1KW40N120T2. The main parameters of the prototype are shown in Table 3.
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Table 3. Parameters of the prototype.

Parameter Value

Input Voltage V1/V 200
Turns ratio of transformer n 1:2

Transfer inductor L/µH 269
Blocking capacitors Cbp, Cbs/µF 1300

Input capacitor C1/µF 500
Output capacitor C2/µF 500

Switching frequency f /kHz 10
Switches 1KW40N120T2

Nominal power/W 915.36

The DC blocking capacitors are the key to the modulation. This is different from LC
resonance, and the capacitors will cause voltage ripple when it is charged and discharged.
If they are too small, the voltage ripple will be large. So, the capacitors should satisfy:

f >
1

2π
√

LCbp

(20)

Therefore, two 650 µF capacitors in parallel are selected in this paper, that is,
Cbs = 1300 µF and Cbp = 1300 µF.

Figure 13 is the experimental waveform of mode A under the ADM when Dϕ = 0.4
and V2 = 120 V. As indicated in Figure 13, when Dϕ is the same under mode A, transmis-
sion power changes accordingly as the duty cycle increases. Its trend is consistent with
theoretical power transmission characteristics in Figure 6b.
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Figure 13. Waveforms of mode A with the same phase shift: (a) D = 0.2 (P = 0.465); (b) D = 0.3 (P = 
0.782); (c) D = 0.4 (P = 0.952); (d) D = 0.5 (P = 0.948). 

Figure 14 is the experimental waveform under mode A when D = 0.4 and V2 = 120 V. 
As indicated, when D is the same, changes in transmission power are also consistent with 
the theoretical transmission power characteristics in Figure 6b. 

Figure 13. Waveforms of mode A with the same phase shift: (a) D = 0.2 (P = 0.465); (b) D = 0.3
(P = 0.782); (c) D = 0.4 (P = 0.952); (d) D = 0.5 (P = 0.948).

Figure 14 is the experimental waveform under mode A when D = 0.4 and V2 = 120 V.
As indicated, when D is the same, changes in transmission power are also consistent with
the theoretical transmission power characteristics in Figure 6b.
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Figure 15 shows the experimental waveform under the ADM when P = 0.76, V2 = 120 
V, and m = 0.3. As shown in Figure 15, different combinations of D and Dφ can transmit 
the same power, thereby confirming the feasibility of optimization. 
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Figure 15. Waveforms of P = 0.76: (a) D = 0.31, Dφ = 0.09; (b) D = 0.31, Dφ = 0.42; (c) D = 0.61, Dφ = 0.31; 
(d) D = 0.69, Dφ = 0.51; (e) D = 0.71, Dφ = 0.82; (f) D = 0.37, Dφ = 0.11. 

By adding D in the experiment, it was possible to obtain equal transmission power 
lines for different transmission powers in the entire operating region, which is consistent 
with the theoretical derivation in Figure 10a. 

As shown in Figure 16, experiments were carried out at grid points, and the trans-
mission power of each point was measured to obtain the forward transmission power 

Figure 14. Waveforms of mode A with the same duty cycle: (a) Dϕ = 0.2 (P = 0.776); (b) Dϕ = 0.5
(P = 0.914); (c) Dϕ = 0.6 (P = 0.784); (d) Dϕ = 0.8 (P = 0.287).

Figure 15 shows the experimental waveform under the ADM when P = 0.76, V2 = 120 V,
and m = 0.3. As shown in Figure 15, different combinations of D and Dϕ can transmit the
same power, thereby confirming the feasibility of optimization.
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Figure 15. Waveforms of P = 0.76: (a) D = 0.31, Dφ = 0.09; (b) D = 0.31, Dφ = 0.42; (c) D = 0.61, Dφ = 0.31; 
(d) D = 0.69, Dφ = 0.51; (e) D = 0.71, Dφ = 0.82; (f) D = 0.37, Dφ = 0.11. 

By adding D in the experiment, it was possible to obtain equal transmission power 
lines for different transmission powers in the entire operating region, which is consistent 
with the theoretical derivation in Figure 10a. 

As shown in Figure 16, experiments were carried out at grid points, and the trans-
mission power of each point was measured to obtain the forward transmission power 

Figure 15. Waveforms of P = 0.76: (a) D = 0.31, Dϕ = 0.09; (b) D = 0.31, Dϕ = 0.42; (c) D = 0.61,
Dϕ = 0.31; (d) D = 0.69, Dϕ = 0.51; (e) D = 0.71, Dϕ = 0.82; (f) D = 0.37, Dϕ = 0.11.

By adding D in the experiment, it was possible to obtain equal transmission power
lines for different transmission powers in the entire operating region, which is consistent
with the theoretical derivation in Figure 10a.
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As shown in Figure 16, experiments were carried out at grid points, and the trans-
mission power of each point was measured to obtain the forward transmission power
characteristics. D and Dϕ were varied from 0.1 to 0.9 and 0 to 1, respectively, with equal
steps of 0.1. By comparing the experimental transmission power curve in Figure 16 with
the theoretical transmission power curve in Figure 6b, it was found that the correctness of
the transmission power equations for different modes was verified.
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Figure 16. Curves of transmission power under ADM control.

Based on Figures 13–15, when the duty cycle or phase shift ratio is the same, DAB con-
verters under the ADM based on DC blocking capacitors can transmit different powers. To
obtain the power reverse characteristic, only input and output ports need to be exchanged.
Furthermore, the curves for forward and backward power transmissions are symmetric,
indicating that the experimental curve is consistent with the theory.

5.2. Experimental Verification of OADM

To verify the correctness of the theory, the OADM is compared with SPS control and
DPS control with the same transmission power. Figure 17 compares the experimental
waveforms at m = 0.1, m = 0.2, m = 0.3, and m = 0.4.

Figure 17 demonstrates that the controller can obtain the optimal operating point for
different working states by referencing the lookup table. The OADM is effective in reducing
current stress when m is relatively low, and the power devices S2 and S3 on the primary
side are somewhat limited by parasitic parameters. However, the current approaches zero
when the soft switch turns on. For the other voltage ratios in the experiment, the same
transmission power as those of SPS and DPS control is achieved while ensuring ZVS for all
power devices and effectively controlling current stress.

As shown in Figure 17, the converter has difficulty realizing ZVS for the full power
range with SPS. Since there are no additional control degrees of freedom for optimization,
the current stress is large and appears as a near triangle when the voltage ratio m ≤ 0.5.
Under this condition, such a current makes it difficult to achieve ZVS, which cannot quickly
reverse the current between switching. DPS control, compared to SPS control, has an
additional control degree of freedom and lighter current stress. However, due to the lack
of multi-objective consideration in the optimization, the ZVS is hard to achieve at a light
load. The OADM control proposed in this paper also has two control degrees of freedom,
which optimizes the current stress and takes ZVS into account at the same time. It is a
multi-objective optimization. Compared with DPS under light load conditions of m ≤ 0.5,
it has advantages in the realization of current stress reduction and full ZVS. In contrast to
DPS, the inductor current of OADM has unequal positive and negative peaks, making it
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less intuitive to compare with DPS control. To address this, the root mean square (RMS)
of the inductor current is added to this experiment. The experimental results confirm the
effectiveness of the proposed OADM.
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Figure 17. Waveforms of three different strategies: (a) SPS (m = 0.1, P = 0.11); (b) DPS (m = 0.1, P = 
0.11); (c) OADM (m = 0.1, P = 0.11); (d) SPS (m = 0.2, P = 0.22); (e) DPS (m = 0.2, P = 0.22); (f) OADM 
(m = 0.2, P = 0.22); (g) SPS (m = 0.3, P = 0.31); (h) DPS (m = 0.3, P = 0.31); (i) OADM (m = 0.3, P = 0.31); 
(j) SPS (m = 0.4, P = 0.18); (k) DPS (m = 0.4, P = 0.18); (l) OADM (m = 0.4, P = 0.18). 

Figure 18 shows the efficiency curves under SPS control, DPS current stress optimi-
zation control, and the OADM at different m with P = 0.36. As shown, the two-degrees-of-
freedom modulation provides flexibility for efficiency optimization, resulting in greater 
efficiency improvements compared to SPS control. Moreover, the proposed OADM is 
even more efficient than DPS with the same degrees of control freedom. 

Figure 17. Waveforms of three different strategies: (a) SPS (m = 0.1, P = 0.11); (b) DPS (m = 0.1,
P = 0.11); (c) OADM (m = 0.1, P = 0.11); (d) SPS (m = 0.2, P = 0.22); (e) DPS (m = 0.2, P = 0.22);
(f) OADM (m = 0.2, P = 0.22); (g) SPS (m = 0.3, P = 0.31); (h) DPS (m = 0.3, P = 0.31); (i) OADM
(m = 0.3, P = 0.31); (j) SPS (m = 0.4, P = 0.18); (k) DPS (m = 0.4, P = 0.18); (l) OADM (m = 0.4, P = 0.18).

Figure 18 shows the efficiency curves under SPS control, DPS current stress optimiza-
tion control, and the OADM at different m with P = 0.36. As shown, the two-degrees-of-
freedom modulation provides flexibility for efficiency optimization, resulting in greater
efficiency improvements compared to SPS control. Moreover, the proposed OADM is even
more efficient than DPS with the same degrees of control freedom.
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Figure 18. Efficiency curves of three different strategies. 

It is worth noting that the efficiency of the DAB converter is low when there is a 
significant voltage deviation. The proposed OADM can improve efficiency under these 
conditions, thus enhancing adaptability to a wide range of voltages. 

6. Conclusions 
By applying DC bias to the DC blocking capacitors, the proposed ADM provides a 

new method of optimization. With a detailed derivation of the operation of a DAB con-
verter with DC blocking capacitors under ADM, the eight operating modes of the con-
verter are analyzed based on theoretical considerations, and the relationship between the 
control variables and the transmission power is investigated for each mode. By studying 
the boundary conditions of ZVS for each power device of the converter, an OADM is pro-
posed that ensures full ZVS in the range of voltage ratio m ≤ 0.5 and effectively reduces 
the current stress of the system. The proposed OADM is optimized using numerical meth-
ods, and experimental results confirm its effectiveness. Specifically, when the voltage ratio 
is low, the OADM can modify the bias to compensate for it, allowing the DAB to maintain 
consistent performance. It can increase efficiency by 3.58%, 6.57%, 8.81%, and 10.33% com-
pared with DPS when P is equal to 0.36 and m is equal to 0.4, 0.3, 0.2, and 0.1, respectively. 

Overall, this approach provides greater flexibility and robustness for DAB, which 
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