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Abstract: A Hybrid Electric Ship (HES) is investigated in this work to improve its dynamic response
to sudden power demand changes. The HES system is based on a Variable-Speed Diesel Generator
(VSDG) used for long-term energy supply, with Two Energy Storage Systems (TESSs) using Batteries
and supercapacitors for transient power supply. The TESS mitigates the power demand fluctuations
and reduces its impact on VSDG, which is linked to a DC-bus through a controlled rectifier. Batteries
and Supercapacitors (SCs) are connected in a DC-bus using the bidirectional DC/DC converters to
manage the transient and fluctuating components. Two thrusters (one in the front and the second in
the back of the Ship) are considered for the propulsion system. The HES power demand includes
the requirement of the thrusters and embedded power consumers (elevator, package lifting, air
conditioning, onboard electronics devices, etc.). The highlight of this paper is based on the HES fast
response improvement in sudden power demand situations via TESS-based batteries and supercapac-
itors. The other highlight concerns the SCs’ electrothermal modeling using an extension of the SCs’
current ripples’ frequency range (0 to 1 kHz), considering parameter evolution according to using the
temperature and current waveform. This energy management-based dynamic power component
separation method is tested via simulations using a variable operating temperature scenario.

Keywords: variable-speed diesel generator; energy management; dynamic power components
separation method; battery; supercapacitor; hybrid electric ship; power control

1. Introduction

In conventional diesel Ships, constant-speed diesel engines are frequently used for
cost and simplicity motives. Therefore, the engine for direct propulsion or the engine and
generator in the case of electric propulsion needs oversizing; if not, the torque and/or
voltage dip at a sudden power demand surge is unavoidable. A similar issue is described
in Ref. [1], where the minimum voltage reached by the DC-bus is 320 V compared to the set
point of 400 V. Therefore, the operation of sensitive power consumers such as multimedia
and other electronic devices can be affected by the DC-bus voltage variations. If the diesel
engine operates at a constant speed without the assistance of batteries/supercapacitors, it
generally does not operate at the optimal point (minimal fuel consumption), particularly
in light-load situations. To optimize fuel consumption through diesel-engine optimal
operation points tracking, the speed of the diesel engine needs adjustment according to
the Hybrid Electric Ship (HES) power demand. Similar issues are presented in Refs. [2–4],
where the fuel consumption performances of Variable-Speed Diesel Generators (VSDG) are
compared to that of constant-speed diesel generators. Due to the slow-acting nature of a
diesel engine coupled to a generator, the produced power cannot react to the fast power
demand. In this situation, the DC-bus voltage cannot be kept constant through the control.
In this case, the power required during the fast-load demand is not obtainable from the
diesel generator because the engine speed cannot react fast due to the mechanical time
constant. Then, the fast variations of the power demand degrade the diesel generator’s
energetic performance.
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To solve this issue, a diesel generator can be assisted in transient operations by coordi-
nated power control based on the fast-acting capability of energy storage units. A similar tech-
nique is presented in Ref. [5], where the direct coupling of Supercapacitors (SCs) and batteries
is considered without the separation of dynamic act capability between the SCs and batteries.
According to the information in the literature, using TESS-based supercapacitors–batteries is
proposed to attenuate the power demand variation effect for VSDG implemented in an HES.
Batteries and SCs are coupled in a DC-bus via two bidirectional DC/DC converters. This
option allows the control of the transient powers assigned to the batteries and SCs considering
their dynamic action capability. Using supercapacitors–batteries to assist VSDG in transient
situations allows one to attenuate the power variation impact for the diesel generator and
consolidate the HES energetic performances [6,7]. TESS-based supercapacitors–batteries
are used because energy storage via batteries or SCs only is limited in cycle life for existing
batteries or in terms of energy for SCs. Fast variations in the power demand impose very
frequent and partial charge and discharge cycles on the batteries. So, the rapid aging of
batteries is a key challenge today for electric vehicles, particularly for HES applications.
Table 1 summarizes the characteristics of the batteries and supercapacitors used in an HES.
The TESS concept allows us to exploit the complementary performances of the batteries
and SCs. The highlight of this work is based on an HES fast-acting improvement during
sudden power demand changes using TESS-based batteries–supercapacitors. The highlight
of this work compared to the literature is focused on the electric Energy Management (EM)
method, which considers SCs–batteries’ parameter dependency on temperature and their
fast-acting capability during transient operations of the HES. An additional highlight of
the paper concerns electrothermal modeling of the SCs with the current ripples’ frequency
range extending from 0 to 1 kHz.

Table 1. Performances of the batteries compared to the supercapacitors.

Basic Characteristics Supercapacitors Li-ion Batteries

Capacity cost in [€/kWh] 279~18,600 465~3534
Life time in [cycles] 100,000~1,000,000 500~2000

Efficiency in [%] 75~98 70~90
Self-discharge in [%/day] 20~40 0.33

Coordinated control of the transient power use Dynamic Components Separation Con-
cept (DCSC), with an interesting flexibility compared to the classic power control-based time
domain, was described in Refs. [8–14]. The DCSC allows for coordinated transient power
control without previous knowledge of the HES power demand profile (database), which
is interesting when facing load demand changes. DCSC allows batteries–supercapacitors’
optimal dimensioning to be adapted to the dynamic power demand of the HES. One type
of an HES is presented in Figure 1, and its electric configuration is presented in Figure 2,
where the load presents the total power needed by the thrusters and onboard equipment.
A diesel generator is interfaced in the DC-bus through a controlled AC/DC converter to
control the voltage in the DC-bus. Battery and SC modules are interfaced in the DC-bus
using two DC/DC converters to manage the transient and dynamic components of the
load’s power demand.

This paper is structured as follows: Batteries and SCs models are exposed in Section 2;
the coordinated power control-based DCSC is presented in Section 3; hybrid electric ship
behavior simulations are given in Section 4; and conclusions and remarks are given in
Section 5.
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2.1. LiFePO4-Battery Modeling 
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charge/discharge tests based on four battery cells are given in Equation (1), where T rep-
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Figure 2. Hybrid Electric Ship Power circuit configuration.

2. Energy Storage Systems Behavior Modeling
2.1. LiFePO4-Battery Modeling

A Lithium-Iron-Phosphate (LiFePO4) battery model is proposed in this subsection.
LiFePO4 battery technology presents a good compromise of the cost and required energetic
performances [15–21]. The proposed model of the batteries is extracted from the LFP-
100 Ah/3.2 V battery’s cell characterization using the method described in [16,21]. The
resulting models of the resistance and capacity of the batteries obtained from 4800 cycles
of charge/discharge tests based on four battery cells are given in Equation (1), where T
represents the operating temperature in [◦C] and Fr is the ripples’ frequency of the current
of the battery in [Hz]. These models enable us to describe the degradation of the resistance
and capacity when the batteries are submitted to the temperature and current waveform
constraints at the same time.

RCell(Fr, T) = 1
1000 ∗ (Rα + Rβ + Rγ)

Rα = k0 + k10 ∗ Fr + k01 ∗ T + k20 ∗ Fr
2

Rβ = k11 ∗ Fr ∗ T + k02 ∗ T2 + k30 ∗ Fr
3

Rγ = k21 ∗ Fr
2 ∗ T + k12 ∗ Fr ∗ T2

Qcell_ch(Fr, T) ≈ Qcell_di(Fr, T) = Qα + Qβ

Qα = q0 + q10 ∗ Fr + q01 ∗ T + q20 ∗ Fr
2

Qβ = q11 ∗ Fr ∗ T + q02 ∗ T2

(1)
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The coefficients of Equation (1) are specified as follows: k0 = 2.26; k10 = 0.45; k01 = −0.56;
k20 = −0.47; k11 = −0.15; k02 = 0.31; k30 = 0.14; k21 = 0.15; k12 = −4.14 × 10−2; q0 = 84;
q10 = 1.01; q01 = 1.50; q20 = −0.16; q11 = −0.22; q02 = −0.015.

The electric behavior model of the battery module is shown in Figure 3, where the
open circuit voltage Voc depends on the state of charge (SoC) and the sign of the current.
The series resistance RS (Fr,T) depends on the temperature and frequency of the current
ripples. The two time constants (R1*C1 and R2*C2) are supposedly constant.

SoC =

 SoC(t0) +
∫ t

t0

(
IBat

3600∗Qcell_ch(Fr ,T)

)
·dt f or IBat < 0

SoC(t0)−
∫ t

t0

(
IBat

3600∗Qcell_di(Fr ,T)

)
·dt f or IBat > 0

d
dt

[
V1
V2

]
=

[
− 1

R1∗C1
0

0 − 1
R2∗C2

]
∗
[

V1
V2

]
+

[
1

C1
0

1
C2

0

]
∗
[

IBat
0

]
Rs(Fr, T) = NS_Bat

Np_Bat
∗ RCell(Fr, T) + (NS_Bat−1)

Np_Bat
∗ Rbwi

Voc(SoC) =
{
−c5 ∗ SoC5 + c4 ∗ SoC4 − c3 ∗ SoC3 + c2 ∗ SoC2 + c1 ∗ SoC + c0 f or IBat < 0
−d5 ∗ SoC5 + d4 ∗ SoC4 − d3 ∗ SoC3 + d2 ∗ SoC2 − d1 ∗ SoC + d0 f or IBat > 0

VBat = NS_Bat ∗Voc(SoC) +
(

NS_Bat
Np_Bat

)
∗ (Rs ∗ IBat + V1 + V2)

(2)
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Equation (2) presents the mathematical model of the LiFePO4 battery module, where 
RCell(Fr,T) is the resistance of the battery’s cell presented previously; NS_Bat represents the 
number of batteries in series; NP_Bat is the number of sub-modules in parallel. The param-
eters of open circuit voltage VOC(SoC) model-based battery charge (IBat < 0)/discharge (IBat 
> 0) are given as c0 = 0.90; c1 = 4.80; c2 = 33; c3 = 140; c4 = 179; c5 = 74; d0 = 1; d1 = 0.70; d2 = 42; 
d3 = 132; d4 = 15; d5 = 62. This model enables us to describe the LiFePO4 batteries’ behavior 
when they are submitted to electrical and thermal constraints at the same time. The pa-
rameters used in the battery module are presented in Table 2. 

Table 2. Parameters used in battery module based on LiFePO4 ~100 Ah/3.2 V cell. 

Parameters of the Batteries Module Values 

VBatmin~VBatmax 
Battery’s cell voltage range in 

[V] 2.8~3.8 

R1* C1 First order time constant in 
[Ω* F] 

0.033*92 

R2* C2 Second order time constant in 
[Ω* F] 

0.375*499  

Figure 3. LiFePO4 batteries behavior model, where Voc = Voc (SoC).

Equation (2) presents the mathematical model of the LiFePO4 battery module, where
RCell(Fr,T) is the resistance of the battery’s cell presented previously; NS_Bat represents the
number of batteries in series; NP_Bat is the number of sub-modules in parallel. The param-
eters of open circuit voltage VOC(SoC) model-based battery charge (IBat < 0)/discharge
(IBat > 0) are given as c0 = 0.90; c1 = 4.80; c2 = 33; c3 = 140; c4 = 179; c5 = 74; d0 = 1; d1 = 0.70;
d2 = 42; d3 = 132; d4 = 15; d5 = 62. This model enables us to describe the LiFePO4 batteries’
behavior when they are submitted to electrical and thermal constraints at the same time.
The parameters used in the battery module are presented in Table 2.

Table 2. Parameters used in battery module based on LiFePO4 ~100 Ah/3.2 V cell.

Parameters of the Batteries Module Values

VBatmin~VBatmax Battery’s cell voltage range in [V] 2.8~3.8
R1* C1 First order time constant in [Ω* F] 0.033*92
R2* C2 Second order time constant in [Ω* F] 0.375*499
ρPBat Specific power in [W/kg] 310
ρEBat Specific energy in [Wh/kg] 102

SoC(t0) Initial value of SoC [%] 97
Ns_Bat Number of the battery’s cells in series 71
NP_Bat Number of the sub-modules in parallel 8

Rbwi
Resistance of electric wiring for a battery’s

cell in [m Ω] 4.5
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The proposed electrical model of the batteries is an improvement on the classical
constant parameter model presented in Ref. [21]. It results from a simplification of the global
model presented in Ref. [16] to reduce the complexity of the model and the computing time,
which is necessary for good energy management. In other words, it considers variations
in the series resistance and capacitance according to electrical and thermal operating
conditions. The parameters of parallel RC circuits are assumed to remain constant.

2.2. Supercapacitor Modeling

Supercapacitor (SC) modeling is performed by charge/discharge tests using fluctuat-
ing DC current waveforms with different operating temperatures. Various technologies
and models of the SCs are proposed in the literature [22–28], but these models are usu-
ally limited due to the current and temperature changes. To consider these constraints,
SC characterization is proposed to assess the degradation of the SCs’ capacitance and
resistance using the frequency of the DC current ripples and the operating temperature
to establish the SCs’ behavior model-based temperature and current waveforms. The SC
characterization method is described in [26,27]. The degradation of the SCs’ resistance and
capacitance according to electrothermal constraints is presented in Figures 4 and 5, where
T is the temperature and Fr is the frequency of the SCs’ current ripples. The resistance and
capacitance models from the MATLAB curve-fitting Toolbox are presented in Equation (3),
where T presents the temperature in [◦C] and Fr is the supercapacitor’s current ripple
frequency in [Hz].

RSccell(Fr, T) = 1
1000 ∗ (RA+RB + RC)

RA = b0 − b1 ∗ Fr − b2 ∗ T + b3 ∗ Fr
2 + b4 ∗ Fr ∗ T + b5 ∗ T2

RB = −b6 ∗ Fr
3 − b7 ∗ Fr

2 ∗ T− b8 ∗ Fr ∗ T2

RC = −b9 ∗ T3 − b10 ∗ F3
r ∗ T + b11 ∗ F2

r ∗ T2 − b12 ∗ Fr ∗ T3 + b13 ∗ T4

CSccell(Fr, T) = CA + CB
CA = α0 − α1 ∗ Fr + α2 ∗ T + α3 ∗ Fr

2 − α4 ∗ Fr ∗ T− α5 ∗ T2

CB = −α6 ∗ Fr
3 + α7 ∗ Fr

2 ∗ T + α8 ∗ Fr ∗ T2 + α9 ∗ T3

(3)
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The coefficients of Equation (3) are as follows: b0 = 339.90; b1 = 2.28 × 10−1;
b2 = 6.22 × 10−2; b3 = 5.62 × 10−4; b4 = 1.62 × 10−3; b5 = 2.67 × 10−3; b6 = 4.05 × 10−7;
b7 = 5.29 × 10−8; b8 = 1.54 × 10−5; b9 = 7.91 × 10−5; b10 = 1.76 × 10−9; b11 = 4.29 × 10−8;
b12 = 5.55 × 10−7; b13 = 3.22 × 10−6; α0 = 124; α1 = 1.63; α2 = 10.46; α3 = 3.95 × 10−3;
α4 = 0.046; α5 = 0.153; α6 = 2.225× 10−6;α7 = 4.079× 10−5;α8 = 2.984× 10−4;α9 = 1.233× 10−2.
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Figure 5. Capacitance of the SC cell depending on the T and frequency of current ripples.

The resistance of the SC cell RSCcell (Fr,T) decreases as the frequency in the super-
capacitor’s current increases. The capacitance of the cell CSCcell (Fr,T) increases as the
frequency and temperature increase. The resulting model of the supercapacitor module
is shown in Figure 6, where Req (Fr,T) is an equivalent series resistance and Ceq (Fr,T)
is an equivalent capacitance, which depends on the temperature and frequency as illus-
trated in Equations (3) and (4). The mathematical model of the SC module is presented in
Equation (4), where NS_SC is the number of SC cells in series and NP_SC is the number of SC
sub-modules in parallel; Rwi is the wiring resistance of one cell and VSC0 is the initial voltage
of the cell. Compared to the literature information, this model considers the frequency of
current ripples and temperature changes, which are known to be major aging factors of
SCs in real applications. The parameters of the SC module used are presented in Table 3.

VSC = Ns_SC ∗VSC0 −
∫ t

0
ISc

Ceq(Fr ,T) ∗ dt− Req(Fr, T) ∗ ISc

Ceq(Fr, T) =
Np−SC
Ns−SC

∗ CSCcell(Fr, T)

Req(Fr, T) = NS_SC
Np_SC

∗ RSCcell(Fr, T) + (NS_SC−1)
Np_SC

∗ Rwi

(4)

Table 3. Parameters of the SC module-based 3000 F/2.7 V cell.

Parameters of the SC Module Values

VSCmin~VSCmax Voltage range of the SC cell in [V] 0.7~2.7
ρPSC Specific power in [W/kg] 5900
ρESC Specific energy in [Wh/kg] 6

SoC(t0) Initial value of the SoC [%] 80
Ns_SC Supercapacitors cells in series 120
NP_SC Sub-modules of the supercapacitors in parallel 7

Rwi Wiring resistance of a SC cell in [m Ω] 4.47

The electrical model of the supercapacitors proposed in this paper is an improvement
of the constant-parameters model described in Ref. [21] and the low-frequency range (0
to 0.5 Hz) model presented in Ref. [26]. The improvement concerns the extension of the
frequency range (0 to 1 kHz) of the current ripples while considering parameter evolution
according to the temperature and current waveform used.
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3. Coordinated Power Control of the Hybrid Electric Ship
3.1. Power Profiles of the Supercapacitors, Batteries, and Variable-Speed Diesel Generator

The coordinated power control uses the Dynamic Components Separation Concept
(DCSC) of the load’s demand and its assignation to the sources. This method consists
of sharing the power demand (Pch = Vbus*Ich) with a fast-dynamic power component, an
average-dynamic power component, and low-dynamic ones, as shown in Figure 7. Dy-
namic components’ separation from the power demand is performed using two filters (F1
and F2) to obtain the average-dynamic power component and fast-dynamic components.
Estimated profiles are assigned to the power sources according to their dynamic action
capability. Therefore, the fast-dynamic power component is assigned to the supercapacitors
Pscref, the average-dynamic power component is assigned to the batteries Pbatref, and the
diesel generator supplies the low-dynamic power component Predref adapted to its dynamic
action capability. The frequencies of the filters are f 1 and f 2, with f 1 > f 2. The frequency of
the filters is related to the power density and energy density of the SCs/batteries. The max-
imum values of the frequencies are computed as shown in Equation (5). For a multi-source
application-based variable-speed diesel generator (VSDG) and two energy storage systems
(TESSs) controlled by the DCSC, the maximum values of the frequencies are not necessary
because the sources (VSDG, supercapacitors, and batteries) operate in complementary
situations. For this, f 2 is fixed at 0.333 mHz with f 1 ≈ 5*f 2 with the aim of reducing the
size of the supercapacitors and batteries. A global view of the coordinated power control
is presented in Figure 8, which includes the control of the diesel generator speed, DC-bus
voltage, and batteries/supercapacitors’ power as presented in the following subsections.

f1 ≤
ρpSC
ρeSC

=
5.9∗ 1000 W

kg
6∗3600 W· s

kg
= 270 mHz

f2 ≤
ρpBat
ρeBat

=
309.68 W

kg
102.24∗3600 W· s

kg
= 0.84 mHz

(5)
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3.2. Diesel Generator Speed Control

The speed control of the diesel generator (DG) consists of controlling the engine speed
to maintain an efficient operating point. To do this, mechanical torque Tm is calculated as
shown in Figure 9 based on Equation (6), where fv presents the viscous coefficient and Tem
is the electromagnetic torque.

J ∗ d
dt (Ωm) + fv ∗Ωm = Tm − Tem

Tem = 3
2 ∗ p ∗

{
ϕm ∗ Isq +

(
Ld − Lq

)
∗ Isd ∗ Isq

}
Vsd = Rs ∗ Isd + Ld ∗ d

dt (Isd)− p ∗Ωm ∗ Lq ∗ Isq

Vsq = Rs ∗ Isq + Lq ∗ d
dt
(

Isq
)
+ p ∗Ωm ∗ (Ld ∗ Isd + ϕm)

(6)
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Equation (6) can be also expressed as presented in Equation (7), where the voltages in
the stator are calculated from active power conservation through the controlled rectifier.
Then, Isd and Isq currents can be computed using the S-function of MATLAB/Simulink.

Vsd ≈ Vbus ∗ Ired ∗ Isd
I2
sd+I2

sq

d
dt

[
Isd
Isq

]
=

[
− Rs

Ld

− p ∗ Ωm ∗ Ld
Lq

p ∗ Ωm ∗ Lq
Ld

− Rs
Lq

]
∗
[

Isd
Isq

]
+

[ Vsd
Ld

Vsq−p ∗ Ωm ∗ φm
Lq

]
Vsq ≈

Vbus ∗ Ired ∗ Isq

I2
sd+I2

sq

(7)
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The speed reference of the diesel engine Ωmref is calculated using Equation (8), where
tmref is the torque reference.

Qm(x) = λ5 ∗ x5 + λ4 ∗ x4 + λ3 ∗ x3 + λ2 ∗ x2 + λ1 ∗ x + λ0

tmre f ≈
(

1
1+τD1∗s

)
∗
(

2−τD2∗s
2+τD2∗s

)
∗Qm(x)

Ωmre f = χ4 ∗ t4
mre f + χ3 ∗ t3

mre f + χ2 ∗ t2
mre f + χ1 ∗ tmre f + χ0

χ0 = 148.87; χ1 = −6.58; χ2 = 0.11; χ3 = −6.33× 10−4; χ4 = 1.29× 10−6

λ0 = 0.257; λ1 = −0.217; λ2 = 3.891; λ3 = −7.236; λ4 = 6.401; λ5 = −2.108

(8)

In Equation (8), τD1 = 0.05 s presents a time constant-based diesel engine speed
response limit; τD2 = 0.02 s is a time constant-based torque change period; x is the fuel flow
index per unit (p.u.); Qm(x) presents the engine torque gain. In this paper, x is calculated
using Equation (9), where Pnom = 400 kW is the nominal power of the Variable Speed Diesel
Generator (VSDG). The VSDG parameters are shown in Table 4.

x ≈
Predre f

Pnom
(9)

Table 4. Parameters of Variable Speed Diesel Generator (VSDG).

Parameters of the VSDG Values

Pnom DG nominal power in [kW] 400
n DG nominal speed in [rpm] 1500

τD1 Actuator time constant of DG in [s] 0.05
τD2 Fuel combustion delay in [s] 0.02

p Pair of poles 9
Rs Resistance of the PMSG in [mΩ] 14

Ls = Ld = Lq Inductance of the PMSG in [mH] 8.1
ϕm PMSG rotor flux in [Wb] 0.9
J Total inertia of VSDG in [kg.m2] 4.562
fv Friction coefficient 0.0024

The controllers of the DG speed are presented in Equation (10), where Td(z−1) and
Rd(z−1) are considered the same regarding the goal of reducing the complexity of the control.{

Sd
(
z−1) = 1− z−1

Rd
(
z−1) = Td

(
z−1) = r0d + r1d ∗ z−1 (10)

The coefficients of Rd(z−1) are computed through a comparison of the desired polynomial
and the denominator of the transfer function in a closed loop as shown in Equation (11), where
A(z−1) is the denominator of the DG speed transfer function and B(z−1) is the numerator.

A
(

z−1
)
∗ Sd

(
z−1
)
+ B

(
z−1
)
∗ Rd

(
z−1
)
=
(

1− z−1 ∗ exp(−ωn ∗ Te)
)

(11)

The resulting coefficients are expressed in Equation (12), where Te represents the
sampling period, ωa is the speed control bandwidth, J represents the total inertia of the
VSDG, and fv represents the friction coefficient.

r0d = 2 ∗ J
Te
∗ (1− exp(−ωa ∗ Te))− fv ≈ 2 ∗ J

Te
∗
(

1− 1
1+ωa∗Te

)
− fv

r1d = J
Te
∗
(

exp(− 2 ∗ωa ∗ Te) +
Te ∗ fv

J − 1
)
≈ J

Te
∗
(

1
1+2∗ωa∗Te

+ Te ∗ fv
J − 1

)
ωa ≈ 0.15 ∗ fd

(12)

3.3. DC-Bus Voltage Control Method

The DC-bus voltage control method based on mixed Polynomial-PI controllers is
presented in Figure 10, where the inner loop is based on Isdq currents control and the outer
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loop is dedicated to the DC-bus voltage control. The reference current Isqref is calculated
using the voltage control loop and Isdref is fixed to zero to obtain the best power factor. The
controllers used in the DC-bus voltage control loop are given in Equation (13) [2,5,7].{

Sb
(
z−1) = 1− z−1

Rb
(
z−1) = Tb

(
z−1) = r0b + r1b ∗ z−1 (13)
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The coefficients of the controllers are presented in Equation (14), where CT is the total
capacitor in the DC-bus, Te is the sampling period, ωv is the voltage control bandwidth,
and fd is the AC/DC converter control frequency fixed at 2 kHz. Voltage references in the
dq axis are estimated using PI controllers as presented in Equation (15), where ωn is the dq
currents control bandwidth and ξ is the damping ratio fixed at

√
2/2.

r0b = 2 ∗ (1− exp(−ωv ∗ Te)) ∗ CT
Te
≈ 2 ∗ CT

Te
∗
(

1− 1
1+ωv ∗ Te

)
r1b = ( exp(− 2 ∗ωv ∗ Te)− 1) ∗ CT

Te
≈ CT

Te
∗
(

1
1+2∗ωv∗Te

− 1
)

ωv ≈ 0.32 ∗ fd
CT = C + Csc + Cbat

(14)


V∗d = Kpc ∗

(
1 + Kic

Kpc ∗ s

)
∗
(

I∗d − Isd
)
−ωe∗Ls∗Isq

V∗q = Kpc ∗
(

1 + Kic
Kpc ∗ s

)
∗
(

I ∗q − Isq

)
+ ωe ∗ Ls ∗ Isd + ωe ∗ ϕm

Kpc =
√

2 ∗ ξ ∗ Ls ∗ωn − Rs
Kic = Ls ∗ω2

n

(15)

3.4. Batteries’ and Supercapacitors’ Powers Control

The packs of SCs and batteries are coupled in the DC-bus using two bidirectional
DC/DC converters as shown in Figures 11 and 12. The power profiles of the sources are
calculated as shown in Figure 7. SCs’ and batteries’ voltages change frequently due to
the fast-dynamic and average-dynamic power components of the load’s power demand,
respectively. To avoid ruining the SCs or batteries, it is essential to add the voltage-
supervising algorithms in the TESS power control loops, which corresponds to the limiting
of energy storage (SCs, batteries) operation ranges. This action consists of keeping the
voltages of the SCs and batteries in preconized operation ranges, i.e., between maximum
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and minimum values, to avoid the decline in SCs and batteries. The proposed method
consists of using an offset in the dynamic power profiles (Pscref and Pbatref) extracted from
Figure 7. Equation (16) presents the concept, where Pscref0 and Pbatref0 are the offsets of
power from the supercapacitor and battery voltage-limiting algorithms.

PscREF =

{
Pscre f , i f Vscmin ≤ Vsc ≤ Vscmax

Pscre f + Pscre f 0, i f not

PbatREF =

{
Pbatre f , i f Vbatmin ≤ Vbat ≤ Vbatmax

Pbatre f + Pbatre f 0, i f not

(16)
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Therefore, the batteries and the supercapacitors operate in preconized ranges. How-
ever, some safeguards are necessary when choosing Pscref0 and Pbatref0 values. If the values
are large, the supercapacitors’ and batteries’ voltages rapidly reach the voltage limits. When
the voltages of the supercapacitors and batteries reach the typical values, the offsets (Pscref0
and Pbatref0) can be immediately canceled. Quick charge–discharge of the SCs’ or batteries’
operations is not recommended because Pscref and Pbatref present a random evolution. Pscref0
and Pbatref0 are estimated to be approximately 1% of the maximum load’s power demand
(300 kW). The SCs’ and batteries’ power controllers are presented in Equation (17).{

Ssc,bat
(
z−1) = 1− z−1

Rsc,bat
(
z−1) = Tsc,bat

(
z−1) = r0sc,bat + r1sc,bat · z−1 (17)

The parameters used in the supercapacitors’ and batteries’ power control are calculated
using Equation (18), where Lsc and Lbat are the inductances in buck-boost converters, Te
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is the sampling period, ωsc and ωbat represent the power control bandwidths, and fd
represents the control frequency of the converters [2,5,7].

r0sc,bat = 2 ∗ (1− exp(−ωsc,bat ∗ Te)) ∗
Lsc,bat

Te
≈ 2 ∗ Lsc,bat

Te
∗
(

1− 1
1+ωsc,bat ∗ Te

)
r1sc,bat = ( exp(− 2 ∗ωsc,bat ∗ Te)− 1) ∗ Lsc,bat

Te
≈ Lsc,bat

Te
∗
(

1
1+2 ∗ ωsc,bat ∗ Te

− 1
)

ωsc = 2 ∗ π ∗ fd
ωbat ≈ 0.1 ∗ωsc

(18)

To control the power of the supercapacitors and batteries, the control laws given
in Equation (19) are used to generate the control signals of (Q1, Q2, Q3, and Q4) for the
two DC/DC converters [29].  abuck =

Vsc,bat + VLsc,bat
Vbus

αboost = 1−
Vsc,bat − VLsc,bat

Vbus

(19)

The supercapacitors’ and batteries’ power control loops are shown in Figures 11 and 12,
respectively, where the power references of the SCs and batteries (PscREF, PbatREF) are
obtained from Equation (16). If the power control loops of the supercapacitors and batteries
are employed, the low-dynamic power component of the load’s power demand will be
supplied by the variable-speed DG.

4. Electric Ship Behavior Simulations
4.1. Conditions of the Simulations

A Hybrid Electric Ship is presented in Figure 2. This configuration includes a VSDG
with a nominal power of 400 kW/50 Hz, a supercapacitors pack with a maximum voltage
of 324 V, a batteries module with a maximum voltage of 270 V, two DC/DC converters, and
the load. This last aspect is based on two thrusters with their interface power electronics
and embedded appliances. The control of thrusters is not given here because the HES
power demand is based on an existing diesel ship database. The parameters of the SCs
and batteries change according to the temperature and load power transients used. Coordi-
nated power control is implemented in MATLAB/Simulink software using the parameters
presented in Table 5.

Table 5. HES System control parameters.

Parameters of the Control Values

Capacitances in DC-bus Cbat = Csc = 2 mF; C = 30 mF
Inductance in DC/DC converters

Tb(Z−1) = Rb (Z−1) = r0b + r1b*Z−1
Lsc = Lbat = 0.18 mH

28.58–26.09*Z−1

Tbat (Z−1) = Rbat (Z−1) = r0bat + r1bat* Z−1 18–16*Z−1

Tsc (Z−1) = Rsc (Z−1) = r0sc + r1sc*Z−1 74.44–40.23*Z−1

Td (Z−1) = Rd (Z−1) = r0d + r1d*Z−1 1909–1832.3*Z−1

Kpc; Kic 2.5; 20

4.2. Simulation Results

The typical profile of the load’s power demand based on one trip of the HES is pre-
sented in Figure 13. This power demand Pch is distributed to the fast-dynamic component
Psc, average-dynamic component Pbat, and low-dynamic components Pred. To show the
performances of the sources in the transient states, the contributions of the SCs/batteries
and the VSDG are presented in Figure 14. These curves show that the peaks in power due
to swift variations in the load are mitigated by the supercapacitors, the average-dynamic
component is mitigated by the batteries, and the low-dynamic component is supplied by
VSDG. In other words, the contributions of all sources decrease during low-load conditions,
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and the fast-dynamic component is supplied by the SCs, the average-dynamic component
is provided by the batteries, and VSDG ensures the low-dynamic component.
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power demand.

The power of SCs corresponding to the fast-dynamic component is presented in
Figure 15. This figure shows that the fast-dynamic power from the load’s power demand
is mitigated by the supercapacitors. The average-dynamic power from the load’s power
demand is compensated for by the batteries, as presented in Figure 16. Figures 15 and 16
show that the power of the SCs and batteries are close to their references, and fast-dynamic
power fluctuations from the load’s power demand are mitigated by the supercapacitors
and the average-dynamic power is ensured by the batteries. The proposed method allows
us to reduce the impact of the fluctuations in the load’s power demand for the VSDG as
illustrated by the low-dynamic power component presented in Figure 17, where the power
variations are adapted to the dynamic characteristic of a variable-speed diesel engine.
The DC-bus voltage reference is respectively fixed at 500 V and 800 V to illustrate the
performances of the control, as plotted in Figure 18. Based on this result, the proposed DC-
bus voltage control performs even under light-load conditions of the HES. In other words,
the dynamic components of the load’s power demand are mitigated by the supercapacitors
and batteries, which avoids the DC-bus voltage disturbance. The control result of the
diesel generator speed is presented in Figure 19, where the controlled speed is close to
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the reference, which depends on the load’s power demand except during the no-load
conditions where the VSDG must operate without the load’s demand to maintain the
DC-bus voltage level.
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These simulation results show that the coordinated power control using dynamic
component separation of the power demand considering the dynamic performances of
the connected sources [30,31] is interesting. This control technique avoids the supercapaci-
tors/batteries being outsized as in the classic methods [29–33] for the same power demand
profile and allows us to reduce the effect of the load’s power fluctuations on VSDG with
a possible reduction in the CO2 [34]. However, the dynamic components assignation to
the supercapacitors and batteries increases the electric stress on the SCs and batteries. This
stress causes the rapid aging of the TESS [35,36].

The computed torque Tem based on Isq and Isd current control is illustrated in Figure 20.
This figure shows a good correlation between the controlled torque Tem and its reference
Tem-ref based on Isqref. In other words, the variations in the diesel generator’s torque are
assigned to the Isq current, and the Isd current is maintained at zero through the control to
obtain a unitary power factor.

The impact of the temperature presented in Figure 21 on the supercapacitors’ parame-
ters is illustrated in Figures 22 and 23. These curves show that the SCs’ performance is better
at −40 ◦C (minimum equivalent resistance Req of 67.880 mΩ and equivalent capacitance
Ceq of 158 F) compared to that at 60 ◦C with an equivalent resistance Req of 67.882 mΩ and
equivalent capacitance Ceq of 142 F. Based on Figures 22 and 23, the negative temperature
is the best operation conditions for the supercapacitors, where the equivalent resistance
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and equivalent capacitance are best compared to those obtained in positive-temperature
conditions [10].
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The variation in Ceq as a function of time, which is illustrated in Figure 23, is due, on
the one hand, to the waveform of the power assigned to the SCs, and on the other hand, to
the operating temperature change in the SCs. In real applications, the capacity is generally
estimated at a time interval much greater than the sampling time; that is to say, it is not
directly measurable, which makes it possible to attenuate the fluctuations of Ceq in practice.

The SoCs of the supercapacitors module (SoCsc) and that of the batteries (SoCbat) are
presented in Figure 24, where that of the batteries decreases more quickly due to the greater
power demand. The fluctuations in the curves in Figure 24 are due to the phenomena of
charge/discharge macrocycles of the supercapacitors and batteries.
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5. Conclusions

This paper presents the coordinated power control of a Hybrid Electric Ship (HES)
in transient situations, using the load power demand distribution based on the dynamic
power components’ separation method. The control strategies of the DC-bus voltage
and electric power are proposed and evaluated through HES behavior simulations. The
performances of the proposed method are evaluated using simulations based on dynamic
power components’ distribution between SCs and batteries. The simulations show that
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the proposed method is interesting regarding transient power control, where the power
sources are not the same in terms of dynamic performance capabilities. Coordinated power
control of the sources using the dynamic power components’ separation method enables
us to share the load’s power requirements across the fast-dynamic power component,
average-dynamic power component, and low-dynamic power component, where the fast-
dynamic power component is assigned to the supercapacitors, the average-dynamic power
component is assigned to the batteries, and the low-dynamic power component is provided
by the diesel generator. The speed of the VSDG is controlled to follow the reference to
ensure the good efficiency of the diesel engine. In summary, the power control using the
dynamic power components’ assignation considers the dynamic response capabilities of
the sources. This concept allows us to reduce the impacts of the load’s power variations for
VSDG without knowing the profile of the load’s power demand (database) because the HES
energy demand changes frequently in real applications. Therefore, the TESS can be sized
using only the fast-dynamic power component for the supercapacitors and the average-
dynamic power component for the batteries, which allows us to reduce the capacities of the
batteries and supercapacitors to the optimal size adapted to the load’s power fluctuations.
The strength of this paper compared to previous works is its focus on coordinated power
control based on the HES fast-acting improvement during sudden power demand changes
using supercapacitors–batteries. The novelty concerns the electric energy management
considering SCs’ parameter dependency on temperature and their fast-acting capability
during transient operations of the HES. An additional contribution is the electrothermal
modeling of the SCs with the extension of the current ripples’ frequency range.
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Abbreviations

SC Supercapacitor
PMSG Permanent Magnet Synchronous Generator
VSDG Variable Speed Diesel Generator
HES Hybrid Electric Ship
TESS Two Energy Storage System
Vbus & Vbusref DC-bus voltage and its reference in [V]
Vbat Batteries voltage in [V]
Vsc Supercapacitors voltage in [V]
Psc Power of the SC
Pbat Power of the batteries
Pch Power of the load in [kW]
Pred Power of the VSDG
Sa, Sb, Sc Control signals of the rectifier
Te Sampling period in [s]
Vsd & Vsq Voltage of the PMSG in dq axis in [V]
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