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Abstract: This paper provides a comprehensive review of the existing research on the Dual Active
Bridge (DAB) DC-DC converter, focusing on modeling methods, modulation strategies, optimization
algorithms, and control methods. A comparative analysis of selected methods along with guidelines
to assist engineers and researchers in their study of DAB is also presented. Firstly, a comprehensive
review of modulation strategies for DAB is provided, ranging from classical phase-shift modulation
to the popular asymmetric duty modulation. The intrinsic relationships among different modulation
methods are summarized, and a comparison is made based on the difficulty of control and DAB
operating characteristics. Secondly, the various modeling methods for DAB are described, including
reduced-order modeling, generalized state-space averaging modeling, and discrete-time modeling
methods. A comparison is made based on the suitability for different application scenarios, provid-
ing recommendations for the adoption of different modeling methods. Furthermore, a survey of
optimization algorithms for modulation methods is presented, including classical algorithms, swarm
intelligence optimization, and reinforcement learning algorithms. A number of criteria are proposed
for different algorithms, and an analysis of the unresolved challenges and future prospects is pro-
vided. Finally, the advanced control methods for DAB are summarized based on control effectiveness
and applicability. The article concludes with a summary and an outlook on future research directions
is also provided.

Keywords: dual active bridge (DAB); modeling methods; modulation strategies; optimization
algorithms; advanced control methods

1. Introduction

With the escalation of global energy crises and environmental issues, the global energy
consumption pattern is gradually shifting from traditional fossil fuels towards distributed
energy sources such as photovoltaics, wind power, and fuel cells [1]. This trend directly
promotes the development of renewable energy utilization equipment (REUE) and energy
storage systems (ESSs) [2–4]. Traditional AC distribution networks are gradually revealing
their limitations in terms of accommodating new energy sources and ensuring power
quality [5]. In comparison to traditional AC systems, DC grids offer independent and
rapid control of active and reactive power, enhance power transmission capability and
system stability, reduce intermediate stages for energy storage and new energy source
integration, lower costs, and improve power conversion efficiency and power quality [6,7].
In a DC power grid, the DC-DC converters require both bidirectional power flow capability
and electrical isolation for safety assurance [8]. Currently, this is achieved by utilizing the
power electronic converters for high-frequency switching and high-frequency isolation
transformers for voltage transformation and electrical isolation [9–12].
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The DAB was initially proposed by de Doncker et al. [13]. It is considered to be the
core circuit for medium to high voltage and high-capacity DC-DC converters, owing to
its advantages of bidirectional power flow capability, ease of implementing soft switch-
ing, modularity, fast dynamic response, and high power density [14–17]. The DAB has
been widely studied and applied as an interface between energy storage devices and DC
grids [18,19], as well as in solid-state transformers (SSTs) and charging equipment for new
energy vehicles [20–25], as illustrated in Figure 1.

Figure 1. Application of DAB in DC grid.

The basic topology of the DAB is depicted in Figure 2. As can be observed from the
figure, there are four power switches on each side of the high-frequency transformer, and
the transformer provides isolation between the primary and secondary sides. The leakage
inductance is represented by Ls. By controlling the magnitude and direction of the phase
shift between the four bridge arms, energy can freely flow between the two DC power
sources [26–29].

Figure 2. The topology of DAB.

In all applications of the DAB, it is essential to first model the DAB converter and
design the controller based on the specified steady-state and dynamic performance criteria
according to the adopted modulation method. The objective of this paper is to provide
a comprehensive review and comparison of different modeling methods, modulation
methods, optimization algorithms, and control strategies for DAB converters. Furthermore,
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it aims to offer promising research directions for researchers who are newly engaged in
DAB studies.

The remaining sections of this paper are organized as follows. Section 2 introduces
and compares the classical modulation method for DAB, namely, phase-shift modulation,
and the recently proposed modulation method, asymmetric duty modulation. Section 3
presents an overview of the current modeling methods for DAB, including reduced-order
modeling, generalized state-space averaging modeling, discrete-time modeling, and gen-
eral modeling based on the Fourier series, followed by a comparative analysis of these
modeling methods. Section 4 provides a comprehensive review and comparison of various
optimization approaches and algorithms employed to address optimization problems in
DAB, including the KKT approach, genetic algorithms, particle swarm algorithms, and
Q-learning algorithms. Section 5 summarizes and compares advanced control algorithms
for DAB, including genetic voltage feedback control, model predictive control, model refer-
ence adaptive control, and active disturbance rejection control. Finally, the paper concludes
with a summary and outlook on future research directions in DAB.

2. Modulations of DAB

To enhance the efficiency of DAB operation, the development of modulation strategies
has progressed from single-degree-of-freedom approaches to multi-degree-of-freedom
strategies, which in turn has facilitated advancements in DAB control methods. During the
initial stages of research, the focus of DAB modulation strategy studies primarily centered
on phase-shift modulation. A large number of scholars extensively investigated various
phase-shift modulation (PSM) strategies in terms of converter circulating power, RMS
current, soft-switching range, and power transmission range. In recent years, with the
introduction of asymmetric duty modulation (ADM), scholars have continued to analyze
the operational characteristics of DAB under this modulation scheme and further enhanced
the DAB efficiency by combining it with PWM. Therefore, this section provides a com-
prehensive review of the various modulation strategies for DAB discussed in the existing
literature.

2.1. Phase-Shift Modulation Strategy

The PSM is the most widely used modulation method in the context of dual active
bridge (DAB) converters. It can be classified into several categories, including single-
phase shift (SPS), extended-phase shift (EPS), dual-phase shift (DPS), and triple-phase
shift (TPS). SPS modulation is the most fundamental and widely adopted method in DAB
converters [13,30]. However, its applicability is limited in the case of non-matching input–
output voltage ratios and transformer turns ratio, as it is difficult to achieve zero-voltage
switching (ZVS) and can result in significant circulating power [31–33]. Subsequently, EPS
and DPS modulation methods were proposed by researchers to overcome these limitations
and improve the converter’s performance in terms of circulating power, current stress,
and ZVS range [34–36]. The TPS modulation method, proposed in [37,38], represents a
generalized version of all the PSM methods, and other PSM methods can be considered
as special cases of TPS. Although TPS modulation introduces more operating modes and
complexity, it offers several advantages, including minimum current stress, minimum
power loss, larger ZVS range, and higher power factor, which make it suitable for various
applications [39–41]. As all modulation methods can be viewed as special cases of TPS,
the TPS modulation waveform is presented in Figure 3, without individual descriptions of
other methods.

Assuming D = tp/Ts is defined as the phase-shift ratio, where tp represents the
phase-shift time and Ts denotes the half-period duration. D1 represents the internal phase-
shift ratio on the primary side of the DAB, D2 represents the phase-shift ratio between
the primary and secondary sides, also known as the external phase-shift ratio, and D3
represents the internal phase-shift ratio on the secondary side. When D1 = 0 and D2 = D3,
it corresponds to the single-phase-shift modulation. When either D1 = 0 or D2 = D3, it
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corresponds to the extended-phase-shift modulation. When D1 = D2 − D3, it corresponds
to the dual-phase-shift (DPS) modulation.

Figure 3. The working waveform under PSM.

2.2. Asymmetric Duty Modulation Strategy

The asymmetric duty modulation (ADM) strategy is an extension of the phase-shift
modulation strategy. From Figure 3, it can be observed that all eight power switches in
the DAB remain conducting for half a switching period, and in the phase-shift modulation
strategy, the switches within the same bridge arm have the same conduction time. The
asymmetric duty modulation strategy allows for different conduction times for switches
within the same bridge arm, thereby adding three additional control degrees of freedom.
The typical waveform of the ADM is shown in Figure 4.

Figure 4. The working waveform under ADM.

In the ADM strategy, the switches on one bridge arm are not triggered in a comple-
mentary fashion with a 50% duty cycle. Specifically, for the primary side, the conduction
times of switches S1 and S2 are equal, while the conduction times of switches S3 and S4
are equal. The conduction times of S3 and S4 are less than half a period and are denoted
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as D1Ts, whereas the conduction times of S1 and S2 are greater than half a period. Simi-
larly, for the secondary side, the conduction times of switches Q1 and Q2 are equal, and
the conduction times of switches Q3 and Q4 are equal. The conduction times of Q3 and
Q4 are less than half a period and are denoted as D3, while the conduction times of Q1
and Q2 are greater than half a period. Additionally, there is a phase shift D2Ts between
the conduction times of S1 and Q1. It can be observed that when D1 = D3 = 0.5, ADM
essentially becomes PSM. In other words, PSM is a special case of the ADM strategy. The
contrast between ADM and PSM resides in the steady-state waveforms produced by PSM,
which exhibit symmetry within half a period, resulting in high-frequency AC voltages
on both the primary and secondary sides of the transformer containing two zero-voltage
segments within one switching cycle. In contrast, the high-frequency AC voltage in ADM
displays asymmetry within half a period, containing only one zero-voltage segment within
each switching cycle.

The ADM strategy was initially proposed in [42], but its application in efficiency
optimization of the DAB was not studied. In [43], ADM was only introduced on the
primary side, and the ZVS conditions under four operating modes were analyzed. The
authors of [44] proposed a method utilizing the ADM to reduce the peak inductor current.
The optimization objective in this scheme is chosen as the peak current, which can be
considered as an indicator of the RMS current to some extent. Due to the simplicity of the
peak current model and the absence of variable coupling, the computational complexity
is greatly reduced. Under light load conditions, the asymmetric pulse width modulation
exhibits a smaller RMS current compared with PSM, while under medium and heavy load
conditions, the RMS current is larger than that of PSM. To address the problem of narrow
soft-switching range and low efficiency of the PSM method over a wide voltage range and
under light load conditions, the authors of [45] proposed a unilateral asymmetric duty
ratio modulation. The unilateral asymmetric modulation strategy combines the advantages
of PSM in terms of Ohmic losses and ADM in terms of soft-switching range. ADM is
employed on one side while PSM is used on the other side, achieving comprehensive
performance optimization under light-load and voltage mismatch conditions.

2.3. Comparison of Modulation Strategy

Different modulation strategies need to be compared in terms of control difficulty
and converter operating characteristics. It is desirable to achieve satisfactory operating
characteristics with relatively simple controllers. As the degree of freedom in DAB control
increases, the controller design becomes more complex, but the increased flexibility in
control degrees allows for more satisfactory DAB operating characteristics. Therefore, the
selection of an appropriate modulation method should consider the design conditions. PSM,
as it can be classified under the TPS framework, exhibits the characteristic of adjusting phase
shift without adjusting the conduction duty cycle of the switches, resulting in waveforms
with half-cycle symmetry. PSM has a maximum of three control degrees of freedom, making
the controller design relatively simple. However, due to the symmetric nature of the TPS
framework, zero-voltage switching (ZVS) operation is lost when there is poor voltage match
between the DC bus and the energy storage system, leading to increased switching losses.
Furthermore, the inclusion of a substantial quantity of reactive power components raises
the RMS of the inductor current, leading to increased conduction losses. Consequently, this
decrease in conversion efficiency becomes particularly pronounced when operating under
light-load conditions. ADM itself possesses three degrees of freedom, and when combined
with phase-shift modulation, it can achieve up to six degrees of freedom. Due to its
asymmetric control nature, the controller design becomes more complex. However, ADM
can achieve lower RMS current compared with PSM under the same power transmission,
wider soft-switching range under voltage mismatch conditions, and higher efficiency under
light-load conditions. Moreover, ADM also faces inherent challenges such as complex
current stress or RMS current mathematical modeling and variable coupling, making the
analytical solution for the optimal solution difficult and online calculations challenging.
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Additionally, due to the presence of even harmonic components in voltage and current
under the ADM scheme, the calculations and optimization results based on the fundamental
component analysis model may be inaccurate.

The simulation analysis of output power flexibility for different modulation methods
is depicted in Figure 5. The vertical axis represents the transmitted power, while the
horizontal axis signifies the external phase-shift ratio value, denoted as D2. For a given
transmitted power, SPS modulation corresponds to two specific phase-shift ratio values, D2.
The blue region and the purple region, overlapping with both blue and red, represent the
power characteristic range under DPS modulation. In comparison to SPS modulation, DPS
modulation exhibits an infinite number of combinations of phase-shift ratio values, denoted
as D1 and D2, for the same transmitted power. This significantly augments the power
regulation flexibility of the DAB, playing a crucial role in the coordinated optimization of
various characteristics. The red and purple regions represent the power range under EPS
modulation, which also boasts a high degree of flexibility. The green region signifies the
power regulation range under the ADM modulation. It is evident that the ADM modulation
not only enhances regulation flexibility but also extends the power range, rendering it an
ideal modulation approach.

Figure 5. Power characteristics diagram under different modulation methods.

3. Modeling of DAB

The modeling plays a significant role in analyzing power electronic circuits. On one
hand, the establishment of converter models enables a clear analysis of the interrelation-
ships among various physical quantities. On the other hand, when applying classical
control theory to analyze nonlinear systems like power electronic circuits, it is typically
necessary to first develop a large-signal model and then linearize it to establish a small-
signal model for further analysis. Currently, there are four main modeling methods for
DAB converters. Among them, the reduced-order modeling method is widely applied in
DAB-related research due to its simplicity and clear representation of the DAB converter’s
operation process. The remaining three methods, namely, state-space averaging, general-
ized state-space averaging, and discrete-time modeling, have also found applications in the
design of DAB controllers.

3.1. Reduced-Order Modeling

By neglecting the dynamic variations in transformer currents and considering the
transformer as an ideal component, with the assumption of sufficiently large capacitors on
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the source and load sides, the DAB can be simplified to a first-order model, as illustrated in
Figure 6 [46–48].

Figure 6. The reduced-order equivalent circuit of DAB.

Subsequently, the basic operating modes of the DAB were analyzed, and the models
for each operating mode were established in the time domain. Based on the boundary
conditions at the switching instants, the overall average value model was constructed, and
the small-signal model was developed to obtain the system transfer function. The transfer
function of the DAB is a first-order model, which reflects the steady-state behavior of the
DAB while ignoring its dynamic characteristics. The following is the reduced-order model
of DAB using the SPS modulation method.

Introducing the switch state function:

s1(τ) =


1, 0 ≤ τ <

T
2

−1,
T
2
≤ τ < T

(1)

s2(τ) =


1,

dT
2
≤ τ <

T
2
+

dT
2

−1, 0 ≤ τ <
dT
2

or
T
2
+

dT
2
≤ τ < T

(2)

When the power switches S1 and S4 are turned on, s1(τ) = 1; when the power switches
S2 and S3 are turned on, s1(τ) = −1. When the power switches Q1 and Q4 are turned on,
s2(τ) = 1, and when Q2 and Q3 are turned on, s2(τ) = −1. Due to the dependence of
the inductor current polarity on the switching state of the power switches, the states are
classified into six categories in the analysis. However, since some circuit state variables
remain unchanged between certain stages, the calculation of the mathematical model for
the steady-state power of the DAB converter can be divided into four stages. Then, a
unified model for the inductor current can be established:∫ t

ti

Ls
dis
dt

dt =
∫ t

ti

s1(t)Vin − s2(t)nVoutdt (3)

Based on Equation (3), the Ls current in each of the four operation modes can be
obtained. By utilizing the DAB power definition equation within a single switching period,
the DAB power transmission expression can be derived under SPS modulation:

P =
1
T

∫ Tt

0
vABiLdt =

nVinVout

2 f Ls
D(1− D) (4)

The expressions for the average currents on each side can then be obtained as follows:
Iin =

nVout

2 f Ls
D(1− D)

Iout =
nVin

2 f Ls
D(1− D)

(5)
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Building on the steady-state model described above, the following expressions are
obtained by adding the small perturbation signals v̂in, v̂out, îin, and îout while ignoring
higher-order terms: {

îin = b1d̂ + b2ûout

îout = b3d̂ + b2ûin
(6)

Based on Equation (6) b1 = nVout(1− 2D)/2 f Ls b2 = nD(1− D)/2 f Ls and b3 =
nVin(1− 2D)/2 f Ls, the small signal model of DAB is obtained, and the equivalent circuit
diagram is shown in Figure 7.

Figure 7. The small signal equivalent circuit of DAB.

Based on the equivalent circuit diagram, the transfer functions between variables can
be obtained: 

Gv̂ind =
v̂in

d̂

∣∣∣∣
v̂out=0

=
−b1

C1s

Gv̂in v̂out =
v̂out

v̂in

∣∣∣∣
d=0

=
−b2R2

R2C2s + 1

Gv̂outd =
v̂out

d̂

∣∣∣∣
v̂in=0

=
−b3R2

R2C2s + 1

(7)

3.2. Generalized State-Space Averaging Model

The generalized state-space averaging method was proposed to address the limita-
tions of the traditional state-space averaging method in describing the variations in AC
quantities [49]. By considering higher-order Fourier coefficients of the state variables, the
generalized state-space method can closely approximate the actual waveforms, capturing
significant ripple components and higher-frequency oscillations. In [50], the generalized
state-space averaging modeling approach was first applied to DC-DC converters. The
traditional state-space averaging method neglects high-frequency fluctuations in power
electronic circuits. In the case of the DAB converter, the inductor current exhibits signif-
icant variations. Applying the state-space averaging method requires a reduction in the
model order, which compromises accuracy and fails to capture the dynamic response of
the inductor current. Therefore, in [51], the generalized state-space averaging modeling
method was employed for the DAB converter. Based on the representation of waveforms
using complex Fourier series, the periodic variable x(t) can be expressed as a Fourier series,
and the generalized averaging method is applied:

x(t) =
∞

∑
k=−∞

〈x〉k(t)e
jkωt (8)

In the equation, ω represents the fundamental angular frequency, and 〈x〉k(t) is the
sliding average coefficient obtained by moving a time window with a width of T along the
time axis. Its mathematical definition is:

〈x〉k(t) =
1
T

∫ t

t−T
x(τ)e−jkωτdτ. (9)
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Two fundamental properties can be derived from Equations (8) and (9), as shown
below:

d
dt
〈x〉k(t) =

〈
d
dt

x
〉

k
(t)− jkω〈x〉k(t) (10)

This property signifies that the derivative of a function’s Fourier series coefficients
can be expressed by first differentiating the function and then taking its Fourier series
coefficients. As a result, the Fourier series coefficient equation corresponding to the state
variable equation can be established.

〈xy〉k =
∞

∑
i=−∞

〈x〉k−i〈y〉i (11)

Another property of the Fourier transform is its frequency domain convolution prop-
erty, which is mainly used in power electronics converter applications to convert the Fourier
series coefficients of the product of switch variables and state variables into the product of
their respective Fourier series coefficients.

For systems with insignificant ripple, the fundamental and DC components of the
Fourier series coefficients can accurately reflect the variations in the state variables. There-
fore, it is sufficient to consider k = 0, k = ±1. Since the Fourier coefficients for k = 1 and
k = −1 are complex conjugates, the real and imaginary parts of the k = 1 coefficient can be
used to represent the Fourier coefficients for k = ±1. By incorporating Equation (11), the
Fourier coefficient equations for the system can be derived:

〈xy〉0 = 〈x〉0〈y〉0 + 2
(
〈x〉R1 〈y〉

R
1 + 〈x〉I1〈y〉

I
1

)
〈xy〉R1 = 〈x〉0〈y〉

R
1 + 〈x〉R1 〈y〉0

〈xy〉I1 = 〈x〉0〈y〉
I
1 + 〈x〉

I
1〈y〉0

(12)

Finally, the Equation (12) is applied to the state equation of the DAB converter to
establish its small-signal model.

3.3. Discrete-Time Modeling

The discrete-time modeling method is also capable of capturing the high-frequency
dynamic behavior of DAB and has been widely employed in power electronics model-
ing [52–55]. As demonstrated by the generalized averaging model approach discussed
earlier, it is based on continuous-time function models. In contrast, for discrete-time mod-
eling, the discrete state equations are obtained by sampling the DAB at different time
instances, resulting in changes to the coefficient matrix of the differential equations in
the state equation. In the case of discrete modeling for DAB under SPS modulation, four
different switching states are utilized for discrete sampling, and the previous switching
state is used to represent the next switching state. Through iterative iterations, the final
discrete state equations are obtained, and by applying the Z-transform, the transfer function
of the discrete system can be derived.

The continuous model of DAB can be obtained through the modeling of the state
variables: .

X = AX + BU

Y = CX
(13)

Discrete-time model:
X(n) = FX(n− 1) + GU

Y(n) = CX(n− 1)
(14)

The coefficients of the state variables, A1, A2, A3, A4, and B1, B2, B3, B4, under different
switching states can be obtained from the switching function.
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The solution to the continuous state equation is generally expressed as:

X(t) = E(t− t0)X(t0) +
∫ t

t0

E(t− τ)BU(τ)dt (15)

where E(t) = eAt. Specifically for DAB, considering only one period of Ts, there are four
switch states: 

S1 : X1 = f1(X4, ϕ)⇔ X1 = F(ϕ)X4 + G(ϕ)U1, t ∈ (0, t1)

S2 : X2 = f2(X1, ϕ)⇔ X2 = F(ϕ)X1 + G(ϕ)U1, t ∈ (t1, t2)

S3 : X3 = f3(X2, ϕ)⇔ X3 = F(ϕ)X2 + G(ϕ)U1, t ∈ (t2, t3)

S4 : X4 = f4(X3, ϕ)⇔ X4 = F(ϕ)X3 + G(ϕ)U1, t ∈ (t3, t4)

(16)

where ϕ represents the phase shift angle, t1 = ϕ
2π Ts, t2 =

(
1− ϕ

π

) Ts
2 , t3 = 2t1 + t2,

t4 = 2t1 + 2t2.
Substituting Equation (16) into Equation (15) with DAB’s four states as discrete inter-

vals yields provides the following:

X1 = f1(x4, ϕ) = eA1t1X4 +
∫ t1

0 eA1t1B1dtU1 = eA1t1X4 + A−1
1
(
eA1t1 − I

)
B1U1

X2 = f2(x1, ϕ) = eA2t2X1 +
∫ t2

t1
eA2t2B2dtU1 = eA2t2X4 + A−1

2
(
eA2t2 − I

)
B2U1

X3 = f3(x2, ϕ) = eA3t3X2 +
∫ t3

t2
eA3t3B3dtU1 = eA3t3X4 + A−1

3
(
eA3t3 − I

)
B3U1

X4 = f4(x3, ϕ) = eA4t4X3 +
∫ t4

t3
eA4t4B4dtU1 = eA4t4X4 + A−1

4
(
eA4t4 − I

)
B4U1

(17)

By repeatedly iterating (17), a general discrete expression can be obtained:

Xn+1 = f(xn, ϕ) = f1(f4(f3(f2(x1, ϕ), ϕ), ϕ), ϕ) = F(ϕ)Xn + G(ϕn)U1 (18)

3.4. General Modeling Based on Fourier Series

It can be seen from the previous three modeling methods that different modulation
methods require the establishment of corresponding models. Advanced modulation meth-
ods offer a greater number of controllable variables. However, as the controllable variables
of the high-frequency link increase, the system model changes with different time periods
and operating states, making it quite complex to establish a model that can be uniformly
described. References [56,57] provide a unified description of the DAB high-frequency
link characteristics based on Fourier analysis and establish a unified model for DAB under
different modulation methods.

The modulation techniques of SPS, DPS, and EPS can be seen as particular cases that
fit into the wider framework of TPS modulation, and they can be represented in a unified
form. The high-frequency link voltages exist in three different phase-shift variables: β1,
β2, and α. Here, β1 and β2 are the internal phase angles of the primary and secondary
sides, respectively, while α represents the external phase shift between the primary and
secondary sides. SPS, DPS, and EPS can all be considered as special cases of this form,
where β1 = β2 = 0 is applied for SPS modulation, β1 = β2 is applied for DPS modulation,
and β1 = 0 or β2 = 0 is applied for EPS modulation.

The primary and secondary side high-frequency link voltages can be expressed in
Fourier series as:

vAB(t) = ∑
n=1,3,5,...

4Vin
nπ

cos
(

nβ1

2

)
sin(nω0t)

vCD(t) = ∑
n=1,3,5,...

4Vout

nπ
cos
(

nβ2

2

)
sin([n(ω0t− α)]n)

(19)

The equation for leakage inductance current can be derived by:
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is(t)− is(0) =

∫ t
0

vAB(t)− vCD(t)
Ls

dt

is

(
π

ω0

)
= −is(0)

(20)

is(t) = ∑
n=1,3,5

4
n2πω0Ls

√
A2 + B2 sin

(
nω0t + arctan

A
B

)
(21)


A = Vout cos

(
n

β2

2

)
cos(nα)−Vin cos

(
n

β1

2

)
B = Vout cos

(
n

β2

2

)
sin(nα)

(22)

Based on Equations (19) and (21), we can obtain a unified transfer power function for
the high-frequency link:

P = ∑
n=1,3,5,...

8VinVout

n3π2ω0Ls
cos
(

n
β1

2

)
cos
(

n
β2

2

)
sin(nα) (23)

Equations (19), (21) and (23) provide the time-varying behaviors of voltage, current,
and instantaneous power at each frequency component, which together form the high-
frequency link voltage, current, and power. These results are consistent with the ones
obtained from the reduced-order modeling analysis. Thus, the steady-state model can be
used to derive the DAB small-signal model.

3.5. Comparison of Modeling Methods

In this section, a comparison of different modeling methods is conducted based on
their application scenarios and modeling accuracy.

Regarding the application scenarios, the reduced-order modeling method is employed
in three areas. Firstly, it is used to analyze the steady-state characteristics of the DAB under
different modulation methods [34,58,59]. The reduced-order modeling method effectively
expresses the relationships between electrical quantities in the DAB circuit, enabling a
detailed description of the operating states. Secondly, this method establishes mathematical
models for optimization strategies with fewer variables [45,60,61]. Lastly, it is employed
in the design of control methods based on Proportional–Integral (PI) controllers [62–67].
By developing a reduced-order model that expresses the average values of output power,
output current, output voltage, and phase shift angle, small-signal models can be derived
to establish transfer functions, facilitating controller design. The generalized state-space
averaging method finds applications in advanced control methods. In [68,69], this method is
employed to establish an adaptive model under TPS modulation, followed by the design of
an adaptive controller. The generalized state-space averaging model provides information
about the dynamic response characteristics of the DAB. By formulating the generalized
state-space equations of the system and performing linearization, transfer functions or
state-space models can be obtained. The model is useful for analyzing system frequency
response, stability, and control design. Discrete-time modeling is primarily applied in DAB
model predictive control. In [47,70], the discrete-time model is used to construct predictive
models for predicting the future behavior of the system. By utilizing a discrete-time model
of the DAB, in combination with current measurements and control inputs at the current
time, one-step or multi-step predictions of the DAB operating states can be made. The
general modeling method based on the Fourier series is mainly employed to establish
mathematical models for optimization strategies with multiple variables [44,71,72].

Regarding modeling accuracy, reduced-order modeling is a technique to simplify
complex system models. It achieves this by neglecting certain high-order dynamics or
nonlinear characteristics of the system, reducing the model to a lower-order one. Although
the DAB is simplified to a lower-order model, it does not compromise the accuracy of



Energies 2023, 16, 6646 12 of 30

the model, as this is determined by the inherent characteristics of the DAB topology [73].
In the case of the generalized state-space averaging method, while a full-order model
theoretically should achieve higher accuracy, the accuracy may be compromised when
significant harmonic distortions are present since the full-order model is based on the first
harmonic only [74]. Discrete-time modeling methods can provide higher modeling accuracy,
particularly suitable for dynamic behavior analysis and control design of the system. The
general modeling method based on the Fourier series is theoretically the most accurate
and general modeling method. However, in practical systems, high-order effects are often
neglected to trade off accuracy for practicality. The accuracy of the four modeling methods is
further verified through simulation. The DAB simulation parameters are shown in Table 1.

Table 1. The DAB parameters for model accuracy comparison.

Parameter Value

C2 650 µF
Ls 84 µH

Req 7.2 Ω
n 7:5
fs 10 kHz

D2 0.2
Rt 0.01 Ω

Figure 8 illustrates the comparative results between different modeling methods and
the actual model. The accuracy of these methods in reflecting the output voltage Vout is
evaluated by varying the input voltage Vin. At t = 0.04, the input voltage rises from 700 V to
1400 V, and at t = 0.08, it changes from 1400 V to 2100 V. From Figure 8, it can be observed
that the reduced-order modeling method exhibits the highest precision with no steady-
state error compared with the actual model. The discrete-time modeling method incurs
a relatively small steady-state error. On the other hand, both the generalized state-space
averaging and Fourier series-based generalized modeling methods display lower accuracy,
primarily due to the consideration of only the fundamental harmonic component. These
simulation results are in alignment with theoretical analyses.

Figure 8. Modeling method accuracy comparison.
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In summary, the choice of modeling method depends on the specific application sce-
nario and the desired modeling accuracy. Reduced-order modeling techniques are suitable
for analyzing steady-state characteristics, establishing optimization models with fewer
variables, and designing control methods. The generalized state-space averaging method
is employed in advanced control techniques, providing insight into dynamic response char-
acteristics. Discrete-time modeling is utilized in DAB model predictive control, enabling
predictions of future system behavior. The general modeling method based on the Fourier
series is applied to establish mathematical models for optimization strategies with multiple
variables. The accuracy of each modeling method varies, with reduced-order modeling
sacrificing some accuracy for simplicity, while discrete-time modeling provides higher
accuracy, and the general modeling method based on the Fourier series offers the most
accuracy in theory but may neglect higher-order effects for practicality.

4. Optimization Algorithms

The high-efficiency operation of the DAB converter is a key technical challenge in
power conversion and application. Optimization objectives such as minimizing inductor
current stress, reducing losses, optimizing the circulating power, and expanding the soft-
switching range are commonly pursued in order to improve transmission efficiency and
related performance. Through the combination of different modulation methods and
solving algorithms, a variety of optimal modulation strategies are proposed. The traditional
methods for solving the optimization problem of the DAB converter are mainly based
on the Karush–Kuhn–Tucker (KKT) conditions using the Lagrange multiplier approach,
later referred to as the KKT approach. In recent years, numerous intelligent algorithms,
such as swarm intelligence optimization and reinforcement learning algorithms, have
been proposed successively to solve DAB performance optimization problems under
different modulation methods. These solution algorithms have opened up new technical
avenues for DAB converter efficiency optimization and have become promising research
directions. In the following sections, the current research status of the KKT approach,
swarm intelligence optimization, and reinforcement learning algorithms in solving DAB
modulation optimization problems will be reviewed and analyzed.

4.1. KKT Approach

Initially, most optimization strategies for modulation in the DAB converter were
primarily based on the Lagrange Multiplier Method (LMM) [61,75]. The KKT approach
can be considered as an extension of the LMM. In the context of the optimization problem
in DAB, the KKT algorithm constructs a Lagrangian function to convert the inequality
constraints into equality constraints, thereby transforming the optimization problem into
solving a set of nonlinear equations. By solving this set of nonlinear equations, the optimal
solution and Lagrange multipliers can be obtained, enabling the derivation of the optimal
control strategy for the system. The application of the KKT approach to the optimization
modulation algorithm for the DAB can be described as follows:

MinJn(Y) (24)

Pn(Y)− Pon = 0, Ik 6 0, k = 1, . . . , q (25)

where Y = (D1, D2, D3), the objective function Jn represents different optimization objec-
tives such as the current stress characteristic function, and circulating power characteristic
function, among others. Here, n denotes the number of switching modes. The equality
constraint is represented by Pn(Y)− Pon, while Ik represents the inequality constraints de-
termined by operational constraints of effective switching modes. The number of inequality
constraints is denoted by k. Mathematically, the local minimum point Y∗ satisfies the KKT
conditions, which can be described as follows:
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L(Y, λ, µ) = Jn(Y) + λ[Pn(Y)− Pon] +
q
∑

k=1
µk Ik(Y)

∂L
∂Y

∣∣∣∣
Y=Y∗

= 0, λ 6= 0

Pn(Y∗)− Pon = 0

µk ≥ 0, Ik(Y
∗) ≤ 0

µkBk(Y
∗) = 0, k = 1, . . . , q

(26)

where L is the Lagrangian function, and λ as well as µk are defined as the KKT multiplier.
In Reference [76], under the constraint of full-range soft-switching conditions, the

KKT algorithm is employed to determine the phase-shift angles D1, D2, and D3 for the
TPS modulation method, aiming to minimize the inductor current stress. Reference [44]
proposes a variable duty cycle modulation approach to minimize the peak-to-peak current
of the inductor for the DAB converter in four different operating modes. The KKT algo-
rithm is applied to solve this optimization problem. Furthermore, Reference [60] presents
an optimization scheme using EPS modulation to reduce the circulating power in DAB
converters. The KKT method is employed to obtain the optimal solution.

The KKT method is proficient in handling convex optimization problems. However,
it also possesses limitations. Specifically, when applied to DAB optimization, the KKT
method requires separate optimization for different operating modes, thereby increasing
the complexity of the solution process. For instance, in the case of optimizing the TPS
modulation, which encompasses a total of 12 operating modes, the values need to be
recalculated and compared for all 12 modes whenever circuit parameters change, resulting
in significant computational time. DAB is frequently employed as an interface for new
energy generation and energy storage systems, characterized by stochastic and fluctuating
behaviors. This dynamic nature causes rapid variations in the voltages on both sides of the
DAB, and the computational time required for optimization algorithms can significantly
affect the effectiveness of DAB optimization and control. As a result, most optimizations are
limited to offline calculations, followed by the use of look-up tables in microprocessors for
optimized operation. Furthermore, the KKT method can only optimize a single objective
and does not facilitate the simultaneous optimization of multiple objectives. Consequently,
in recent years, researchers have applied advanced algorithms to optimize DAB mod-
ulation strategies, aiming to achieve the coordinated optimization of circulating power,
soft-switching range, current stress, and other characteristics of the DAB system.

4.2. Genetic Algorithm

The inception of the genetic algorithm (GA) can be attributed to its initial proposition
by J. H. Holland in the year 1969. Genetic algorithms are a type of evolutionary algorithm
that use principles inspired by natural selection to search for solutions to optimization
problems. To apply a GA to the modulation problem in DAB converters, the problem
must first be formulated as an optimization problem with a set of objective functions and
constraints. The objective functions could include minimizing current stress, maximizing
efficiency, or minimizing circulating power, depending on the specific requirements of the
application. Once the optimization problem is formulated, the GA can be used to find the
phase shift ratio that meets the desired objectives. The GA iteratively evaluates the fitness
of each potential solution in the population, selecting the best solutions for reproduction
and applying crossover and mutation operations to create new solutions.

For the multi-objective optimization modulation problem of DAB, it can be uniformly
described as:
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Obj.1 : J1(Vin, Vout, D1, D2, D3)

Obj.2 : J2(Vin, Vout, D1, D2, D3)

. . .

Obj.n : Jn(Vin, Vout, D1, D2, D3)

Equconst.1 : P(Vin, Vout, D1, D2, D3) = Pon

Inequconst.1 : switching model(D1, D2, D3)

Inequconst.2 : ZVS(Vin, Vout, D1, D2, D3).

(27)

The objective functions, Obj.n, in the context of DAB modulation, can represent char-
acteristics such as current stress, circulating power, and RMS current of the inductor. The
equality constraint, Equconst.1, is commonly used in DAB modulation to ensure that the
actual transmitted power matches the desired transmitted power. The inequality constraint,
Inequconst.1, represents the constraints under different switching models. Inequconst.2
represents the zero voltage switching (ZVS) constraint. Equation (27) plays a crucial role in
constructing the fitness function of the genetic algorithm. It is used to evaluate and select
the generated offspring, making it a critical step in the optimization process of modulation
using genetic algorithms.

A multi-objective efficiency optimization scheme based on a genetic algorithm and
TPS modulation is proposed in Reference [77]. This optimization scheme encompasses
three objectives: minimizing RMS current, reducing current stress, and achieving ZVS
performance. By employing a genetic algorithm, the proposed approach effectively tackles
the non-convex optimization problem encountered in the multi-objective modulation of the
DAB system. Reference [78] introduces a genetic algorithm-based droop control method
aimed at reducing power losses in DAB converters and thereby enhancing transmission
efficiency. Furthermore, Reference [79] presents the application of a genetic algorithm for
multi-objective optimization modulation of modular DC-DC converters.

The genetic algorithm excels in addressing multi-objective cooperative optimization
problems and non-convex optimization problems that cannot be directly solved by using
the KKT approach. However, its search capability is limited, and it imposes high demands
on parameter settings. When there are variations in circuit parameters, corresponding
adjustments to algorithm parameters are required. Furthermore, in the online computation
of optimized modulation for DAB converters, real-time and dynamic considerations are
necessary. The search process of genetic algorithms typically involves a substantial number
of iterations and fitness evaluations, which may lead to high computational complexity
and difficulty in meeting real-time requirements.

4.3. Particle Swarm Optimization Algorithm

The Particle Swarm Optimization (PSO) algorithm was initially proposed by J. Kennedy
and R. Eberhart in 1995 [80]. Both PSO and genetic algorithms are regarded as swarm intelli-
gence search algorithms, with their core lying in the construction of the fitness function. For
the optimization modulation problem of DAB, the fitness function can be constructed based
on Equation (27), and the specific construction method is elaborated upon in Reference [71].
Here, a concise overview of the fundamental concept of PSO is presented. In the PSO
algorithm, each solution to be optimized can be conceptualized as a particle, and the motion
state of a particle is represented by its position and velocity. The particle’s position denotes
the parameter values of the solution to be optimized, i.e., x(D1, D2, D3), while its velocity,
denoted as v, represents the search direction and step size of the particle in the solution
space. The particle’s motion state is influenced by the historical best position of the particle
itself and the swarm’s historical best position. Throughout the search process, particles
continuously update their positions and velocities in order to discover more favorable
solutions. The formulas for updating a particle’s position and velocity are as follows:

vt+1
i,d = ωvt

i,d + c1r1,d

(
pbesti,d − xt

i,d

)
+ c2r2,d

(
gbestd − xt

i,d

)
(28)
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xt+1
i,d = xt

i,d + vt+1
i,d (29)

where, vt
i,d represents the velocity of the i-th particle in the d-th dimension, xt

i,d represents
the position of the i-th particle in the d-th dimension, pbesti,d represents the historical best
position of the entire group, ω is the inertia weight, c1 and c2 are the individual and social
learning factors of the particle, and r1,d and r2,d are random numbers in the range of [0, 1].
By continuously updating the positions and velocities of particles, PSO can search for
optimal solutions in the solution space.

A modulation strategy for optimizing the reflux power based on the TPS modulation
method and a unified model using the Fourier series was proposed in Reference [71]. The
PSO algorithm was utilized to solve for the phase-shift angle corresponding to the mini-
mum circulating power. This method also increased the ZVS range in the DAB converter
and reduced switching losses. Reference [79] presented a multivariable optimization mod-
ulation strategy solved using the PSO algorithm. This optimization modulation strategy
included phase-shift modulation with PWM, effectively reducing the root mean square
current of the DAB converter. In Reference [81], the PSO algorithm was employed to find
the optimal phase-shift angle under the TPS modulation strategy to minimize the root mean
square current across the entire operating range. However, this optimization scheme did
not consider the ZVS performance of the DAB converter, resulting in significant switching
losses. The PSO algorithm can be combined with other algorithms to overcome the problem
of falling into local optima. Reference [82] proposed an EPS modulation strategy based on a
combination of GA and PSO algorithms to optimize the circulating power of the DAB con-
verter. Furthermore, Reference [83] utilized both the PSO algorithm and the LMM method
to optimize the transmission efficiency of the DAB converter. The PSO algorithm was
applied for local optimization, while the LMM method was used for global optimization.

Compared with GA, PSO exhibits faster convergence speed and lower parameter de-
pendence. However, it is prone to becoming trapped in local optima and requires significant
computational resources, particularly in high-dimensional and complex problems, which
necessitates longer computation time and higher computational precision. The existing
literature addresses this issue by employing offline calculations followed by table look-up
methods for implementing optimization control in DAB systems.

4.4. Q-Learning Reinforcement Learning Algorithm

The Q-learning algorithm, as a classic method in reinforcement learning, is an approach
that utilizes temporal differences to solve reinforcement learning control problems [84]. Its
principles can be illustrated as shown in the diagram below.

Figure 9 illustrates the basic framework of the Q-learning reinforcement learning
algorithm, which is a trial-and-error approach aimed at gradually improving the decision-
making capabilities of the agent. During each training episode, the agent, based on the
current state St, selects an action At. Subsequently, it receives a corresponding reward and
transitions to the next state St+1. The objective of the agent is to discover the optimal policy
in each discrete state to maximize the expected discounted cumulative reward. Through
continuous interactions between the agent and the environment, an optimized policy
corresponding to the maximum cumulative reward can be obtained. Q-learning employs
the e-greedy method and the Bellman optimality equation to select new actions. Compared
with other reinforcement learning algorithms, Q-learning features a simple Q-function that
can be used online as the agent interacts with the environment. In the context of DAB
optimization modulation, the Q-learning algorithm primarily aims to optimize the phase
shifts D1, D2, and D3 corresponding to various performance metrics. It maintains a Q-value
table to record the learned experiences and retrieves the optimal phase shift ratios based on
the indices of the Q-value table.
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Reference [84] proposes an efficiency optimization modulation strategy based on a
Q-learning algorithm and TPS. This method enhances the transmission efficiency of the
DAB by optimizing the power loss rate under ZVS conditions. However, after the comple-
tion of Q-learning algorithm training, the corresponding optimization results need to be
stored in a discrete lookup table, which makes continuous control inconvenient. To address
this issue, Reference [85] introduces an RL+ANN-based TPS modulation strategy. Firstly,
the Q-learning algorithm is employed to solve for the optimization strategy corresponding
to the minimum current stress in the DAB, and the optimization results are stored in the
Q-table. Subsequently, the ANN algorithm is applied to fit this Q-table. Based on this,
the trained ANN agent functions as a fast proxy predictor, providing continuous opti-
mization modulation strategies for the DAB across the entire operating range. However,
this RL+ANN approach involves two training processes, which increases the computa-
tional complexity and requires more training time. Due to the limitations of traditional
optimization-based modulation strategies, which rely on mathematical models of the DAB,
they may not provide optimal performance under complex operating conditions. The
Q-learning reinforcement learning algorithm can learn modulation strategies through trial-
and-error and automatic optimization, specifically tailored to the operating environment,
thereby achieving optimal performance.

4.5. Comparison and Application Suggestions of Different Advanced Algorithms

In this section, a comparison of the aforementioned advanced algorithms is conducted,
and the following metrics are proposed: A. Algorithm application complexity, B. Optimiza-
tion speed, C. Environmental adaptability, D. Multi-objective optimization capability, and E.
Ability to achieve online continuous optimization. Subsequently, application recommenda-
tions are provided for different modulation methods. Table 2 compares various advanced
algorithms and some combination algorithms based on the aforementioned metrics.

Table 2. Algorithm Comparison Table.

Algorithm Reference
Algorithm

Application
Complexity

Optimization
Speed

Environmental
Adaptability

Multi-
Objective

Optimization
Capability

Ability to Achieve
Online

Continuous
Optimization

KKT [44,62,86] Low Medium Low Low NO
GA [77–79] Medium Medium Medium Medium NO
PSO [58,59,81] High Slow High Medium NO

Q-learning [84] High Fast High High NO
GA+PSO [82] High Slow Medium High NO

PSO+KKT [83] High Slow Medium High NO
QL+ANN [85] High Fast High High Yes
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From Table 2, it can be observed that the KKT method is applicable to simple mod-
ulation techniques such as DPS and EPS, which have relatively straightforward circuit
operating modes and enable the establishment of KKT optimization models. However, it
may not be suitable for multi-objective optimization problems. The GA algorithm exhibits
moderate performance across various modulation techniques and working environments;
therefore, it can be employed for diverse applications in DAB. The PSO algorithm demon-
strates excellent environmental adaptability, enabling it to adjust to changes in circuit
parameters without frequent parameter tuning, unlike the GA algorithm. However, due
to its tendency to converge to local optima, it is beneficial to combine PSO with other
algorithms to address premature convergence issues. Promising approaches include the
hybrid GA+PSO and PSO+KKT algorithms. Additionally, the Q-learning algorithm, based
on reinforcement learning, exhibits robust environmental adaptivity and, when combined
with ANN, can achieve online continuous optimization, providing it with a competitive
edge.

5. Dynamic Control Method of DAB

In practical operation, the dynamic performance of a converter is also critical. When
the operating conditions of the converter change, a fast dynamic response through the
controller is required to bring the converter back to a stable state. A review and comparison
of different control methods, including Feedback Control, Linearization Control, Feed-
forward Plus Feedback Control on Output Voltage, Disturbance-Observer-Based Control
(DOBC), Feedforward Current Control (FFCC), and Model Predictive Current Control
(MPC) is presented in Reference [75]. Reference [87] applied the generalized super-twisting
algorithm to DAB control in aircraft battery systems. This algorithm ensures the robustness
of control actions in the presence of current and voltage disturbances. The voltage tracking
capability and load disturbance suppression performance were used as indicators for the
various control methods. However, all the control methods were based on SPS modulation,
and the combination of advanced modulation and control methods was not summarized.
As discussed above, SPS modulation alone may not achieve efficient power transmission.
Therefore, the combination of optimization modulation strategy and control methods is of
great importance and is reviewed in this paper.

5.1. Generic Voltage Feedback Control for DAB

Reference [88] proposes a control method called Generic Voltage Feedback Control
(GVFC) that is applicable to different modulation strategies. The control structure under
TPS modulation is shown in Figure 10, which has three control degrees of freedom and
can be used for corresponding control of any modulation method. The proposed control
scheme includes a single voltage control loop and a PCTL block, where PCTL stands for
Peak Current Tracking and Limiting. The function of PCTL is to avoid magnetic core
saturation mainly by limiting the peak current by stopping the phase angle shift outward.
Initially, the optimal internal phase angle is determined based on specific performance
criteria. Subsequently, the feedback voltage is compared with the reference voltage using
a comparator, and the resulting error is transmitted to the voltage controller. The voltage
controller output, along with the feedforward controller, is then used to set the external
phase angle. Then, the peak current is limited through the PCTL block, achieving balanced
control without current sensors.
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Figure 10. Generic feedback voltage block diagram.

5.2. Model Predictive Control for DAB

Utilizing model predictive control (MPC) with DAB converters primarily revolves
around employing a mathematical model of the converter for forecasting the system’s
future dynamics and fine-tuning the control inputs to attain the desired performance
objectives. In MPC, a finite-time horizon is defined over which the future behavior of the
system is predicted, and a cost function is formulated to minimize the error between the
predicted and desired outputs, as well as to satisfy any constraints on the control inputs
and outputs. Once the model is established, a cost function is formulated that quantifies
the performance objectives, such as minimizing the output voltage ripple, achieving a fast
transient response, and maximizing efficiency. The cost function also takes into account any
constraints on the control inputs and outputs, such as the maximum and minimum values
of the switch duty ratio and the output voltage. Using the cost function and the model,
an optimization problem is formulated and solved at each sampling instant to determine
the optimal control inputs over the finite-time horizon [89,90]. The optimization problem
can be solved using various techniques, such as quadratic programming or nonlinear
programming.

The advantages of MPC applied to DAB converters include the ability to handle
nonlinear dynamics and constraints, fast transient response, and the ability to predict
and correct disturbances in real time. However, MPC requires significant computational
resources and can suffer from numerical issues such as constraint violation or instability if
the cost function or model is not well formulated [91].

MPC has been incorporated to tackle the optimization control challenges encountered
in DAB converters, as discussed in References [70,92–94]. When it comes to achieving rapid
dynamic responses, MPC emerges as a highly promising alternative to traditional power
converter control techniques. Additionally, the TPS method stands out as a particularly
effective modulation strategy for DAB converters. This approach mitigates circulating
current, reduces current-related stress, minimizes EMI noise, and extends the zero-voltage
switching (ZVS) range, as visually represented in Figure 11. Hence, in the existing literature,
there has been the introduction of a TPS-based MPC approach as outlined in Reference [95].
This method incorporates a current stress optimization scheme based on TPS modulation
to elevate dynamic performance while adhering to the minimal current stress constraint,
ensuring the maintenance of the desired output voltage level. A predictive model has been
meticulously devised to accurately forecast the dynamic behavior of the output voltage
in response to variations in input voltage and load disturbances. Notably, the model
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development is rooted in TPS modulation, facilitating the computation of the internal
phase shift of the H-bridge through the current stress optimization TPS scheme. Results
from both simulations and experimental tests provide compelling evidence for the merits
of this proposed control algorithm, characterized by rapid dynamic response, absence of
output voltage overshoot, consistent switching frequency, low computational complexity,
and robust stability.

Figure 11. Model Predictive Control based on TPS block diagram.

The input of the MPC controller is the sampled voltage of DAB at time k, Vout(k), and
the reference voltage V∗out. Using Vout(k) as input, the future output voltage V̂out(k + j/k) at
each future sampling time within the prediction horizon N is predicted, where j = 1 . . . N.
The specific calculation formula is as follows:

V̂out(k + 1/k) = Vout(k) +
Vin

4C f 2
s Ls

(
α2(k/k) + 2β1β2(k/k) + β1β2

)
− i0

fsC
(30)

As shown in Equation (30), V̂out(k + 1/k) also depends on the future control input
signal α3(k + j/k). To accurately and quickly track the desired output voltage, the control
input signal is calculated by minimizing a cost function:

Cost function J =
N

∑
j=1

[
V̂out(k + j/k)−V∗out(k + j)

]2 (31)

Subject to constraints:
β1 − β2 6 α 6 min(β1, 1− β2) (32)

The control objective is to compute the sequence of future control signals α(k), α(k + 1),
α(k + 2). . ., which makes the output voltage V̂out(k + j/k) closest to the reference V∗out(k + j).

5.3. Model Reference Adaptive Control for DAB

Adaptive control theory is a powerful tool for controlling power electronic converters,
which are used in a wide variety of applications ranging from renewable energy systems to
electric vehicles [86]. The goal of adaptive control theory is to design control algorithms
that can adapt to changes in the converter’s operating conditions, such as changes in
the load or input voltage. One of the key concepts in adaptive control theory is the use
of adaptive algorithms to adjust the controller’s parameters in response to changes in
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the system’s behavior. These algorithms are typically based on a mathematical model of
the converter, which describes the relationship between the input and output voltages,
currents, and other key variables. The adaptive algorithm uses this model to estimate the
converter’s parameters, such as the resistance and inductance of the load, and then uses
this information to adjust the controller’s parameters to achieve the desired performance.
There are many different types of adaptive algorithms that can be used in power electronic
converters, including model reference adaptive control (MRAC), self-tuning regulators
(STR), and adaptive sliding mode control (ASMC) [86,96,97]. Each of these algorithms has
its own strengths and weaknesses, and the choice of algorithm depends on the specific
requirements of the application.

The advantages of adaptive control applied to DC-DC converters include improved
performance in the presence of uncertainties, robustness to variations in the system param-
eters, and the ability to adapt to changes in the load and input voltage. However, adaptive
control can be complex to implement, and the convergence of the adaptive algorithm may
depend on the design of the adaptive law and the choice of the adaptation parameters.

References [68,97] proposed a control strategy for DAB converters based on the tra-
ditional MRAC with SPS modulation strategy. However, high-frequency oscillations are
inevitable when choosing large adaptive gains to accelerate asymptotic tracking, as tradi-
tional MRAC only guarantees the asymptotic stability of the system without considering
its dynamic performance. In pursuit of enhancing the dynamic performance of the DAB
converter, Reference [69] introduces an upgraded model reference adaptive control (MRAC)
strategy founded on TPS modulation. This strategy enhances the system’s tracking capa-
bility and bolsters its dynamic response by introducing tracking errors into the reference
model within the MRAC framework. Moreover, to comprehensively assess the influence
of multidimensional modulation schemes on the MRAC model, a generalized averaging
model (GAM) is established using the TPS modulation scheme as its basis, building upon
the foundation of the uniform-phase-shift (UPS) modulation scheme. Ultimately, the effi-
cacy of this proposed approach is confirmed through simulation experiments. The control
method is shown in Figure 12.

Figure 12. The control block diagram of MRAC.

The reference model for DAB converters is formally established as follows:

d
dt

V∗out(t) = −amV∗out(t) + bmr(t) + cme(t) (33)
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where am, bm, and cm are considered positive. Then, the control law is obtained in the form
of state feedback in Equation (34).

u(t) = ar(t)r(t) + ax(t)x(t) (34)

The adaptive rule governing the defined parameters is as follows:
d
dt

ar(t) = −αemr(t)

d
dt

ax(t) = −αemx(t)
(35)

where em = x(t)− ym(t) and α is considered positive.
The error system of IMRAC is:

.
em(t) = (am − cm)em(t) + gãxx(t) + gãrr(t) (36)


ãr = ar −

bm

g

ãx = ax −
ap − am

g

(37)

The Lyapunov energy function is defined as:

V =
1
2

e2
m +

1
2α

g
(

ã2
r + ã2

x

)
(38)

It can be demonstrated through a straightforward derivation that the Lyapunov energy
function exhibits negative definiteness.

d
dt

V = −ame2
m < 0 (39)

5.4. Active Disturbance Rejection Control for DAB

The main idea of Active Disturbance Rejection Control (ADRC) is to define an ex-
tended state variable, which includes both internal and external disturbances, and then
use an extended state observer (ESO) to observe the total disturbance of the system and
compensate for it in the controller. The input and output of the system are simplified to be
transformed only by a pure integrator and can then be controlled by a PD controller [98,99].

The biggest advantage of ADRC is that it does not require an exact mathematical
model of the controlled system, which gives it an engineering practicality that other
intelligent control methods may lack. For the most practical engineering systems, it is
difficult to establish an accurate mathematical model, and the system parameters may
change with operating conditions, requiring the controller to have good robustness. The
ADRC has received widespread attention in recent years because of its good robustness,
low requirement for system models, and better dynamic performance compared with
PI control. However, the ADRC method may require high computational resources for
real-time implementation, and the design of the nonlinear state observer and the controller
can be challenging.

References [100,101] applied the ADRC method to DAB dynamic control, and [102]
proposed an artificial neural network-based ADRC to regulate constant output voltage
quickly and accurately under different operating conditions. Reference [103] used a particle
swarm optimization algorithm to tune the parameters of the ADRC. Currently, the design
of ADRC for DAB is based on the reduced-order modeling method to establish a first-order
equivalent model of the DAB, and then design a second-order ESO. The specific control
method is shown in Figure 13.
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Figure 13. The control block diagram of ADRC.

To design a first-order active disturbance rejection controller (ADRC), a first-order
model of the system is established. Based on the reduced small-signal model of the DAB
converter in Section 3.1, the time-domain expression of the DAB converter can be derived.

C2
dv̂out

dt
=

nVin(1− 2D)

2 f Ls
d̂− v̂out

R2
(40)

The expression in Equation (40) in a general form is as follows:

.
y = −a1y + w + bu (41)

The control objective is to maintain a stable output voltage, with the control variable
being the phase-shift ratio D. The output y represents the output voltage of the converter,
while the controller output u represents the phase-shift ratio D. The variable w represents
disturbances within and outside the system, while a1 is an internal parameter of the DAB
converter that is unknown, as well as w. The input control gain b is partially known, with
the known part denoted as b0, where b0 = nVin(1− 2D)/2 f Ls. Therefore, the equation can
be written as:

.
y = −a1y + w + (b− b0u) + b0u = f + b0u (42)

Equation (42) considers the uncertainties in the internal parameters of the system as
well as the external disturbances. Although the inductance parameter ls is included in
b0, the effect of inductance can be neglected due to the compensating action of the total
disturbance.

By selecting the state variables x1 = y, x2 = f , the state vector x = [x1x2]
T includes

both the system state variables and the total disturbance. Let h =
.
f (y, w), then the system

state equation can be obtained as follows:
.
x1 = x2 + b0u
.
x2 = h

y = x1

(43)
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For a first-order system, it is not necessary to observe the differential signals of the
system state variables. Therefore, the first-order linear error state feedback law can be
expressed as:

u0 = kp(v− z1) (44)

where the term u0 represents the output of LSEF and kp represents the gain of the propor-
tional controller.

Traditional PI controllers can eliminate system errors through integration, but they
may also reduce system stability. The first-order LADRC can use second-order LESO to
compensate for generalized disturbances in real time, effectively avoiding the negative
impacts caused by integration. By estimating the total disturbance of the system using
expanded state variables and compensating for the input end of the system, the control
system can achieve better performance.

5.5. Comparison of Different Dynamic Control Methods

GVFC is a popular control method based on the Proportional–Integral (PI) control
strategy. It offers a straightforward and easily implementable approach, delivering satisfac-
tory steady-state performance under stable operating conditions. However, its effectiveness
is limited when confronted with nonlinearities and uncertainties, leading to inadequate
dynamic response, especially in scenarios characterized by rapidly changing operating
conditions. Consequently, it is not suitable for applications demanding precise performance
under varying operating conditions.

MPC exhibits favorable tracking performance and disturbance rejection capabilities
for DAB in various operating modes. Since DAB converters can establish accurate math-
ematical models, MPC can effectively handle nonlinearities and uncertainties. However,
MPC’s computational complexity and resource requirements are significant, necessitat-
ing powerful hardware support. Additionally, if the operating environment of the DAB
converter system undergoes changes, it may lead to model variations that undermine the
effectiveness of model predictive control.

In comparison to the aforementioned methods, MRAC overcomes its limitations by
adapting to system uncertainties, variations, and nonlinearities without relying on precise
system models. It can deliver good tracking and disturbance rejection capabilities under
dynamically changing operating conditions. However, its implementation may be complex,
requiring extensive system identification and parameter estimation processes.

ADRC exhibits resilience against disturbances and uncertainties. It effectively handles
nonlinearities and time-varying dynamics without relying on precise system models, en-
suring satisfactory tracking performance and disturbance rejection. However, the design of
its core component, the ESO, is challenging, as poor design choices can hinder effective
tracking of state variables and subsequently impact control performance.

In conclusion, while the generalized voltage feedback control is a simple and widely
used strategy with good steady-state performance under stable operating conditions, it is
limited in handling nonlinearities and uncertainties, making it unsuitable for applications
with stringent performance requirements or varying operating conditions. MPC provides
good tracking and disturbance rejection capabilities for DAB in different operating modes,
but its implementation complexity and reliance on accurate system models may pose
challenges. MRAC and ADRC offer solutions to these limitations, adapting to uncertainties,
variations, and nonlinearities without requiring precise system models. However, they
may involve complex implementation procedures and design considerations.

6. Conclusions

This passage presents a comprehensive review of various aspects concerning the
research on DAB, encompassing modulation strategies, optimization algorithms, modeling
methods, and advanced control techniques. The findings of DAB research are summarized
as follows:
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Two categories of modulation strategies are comprehensively introduced: PSM strat-
egy and ADM strategy. The PSM strategy encompasses SPS, DPS, EPS, and TPS modulation
methods, albeit essentially summarized by the TPS modulation method. The ADM strategy
further extends the PSM strategy by introducing control over the conduction time of the
same bridge arm switches. Continuing with the analysis, a comparative evaluation of
various modulation methods’ complexities and flexibilities was conducted, alongside a
simulation-based comparison of the power characteristics of these methods. Recently,
scholars have proposed ADM strategies, which offer greater flexibility compared with
traditional PSM techniques. ADM modulation has emerged as one of the recent focal points
in DAB research.

The commonly employed modeling methods for DAB were reviewed, including
reduced-order modeling, generalized state-space averaging modeling, discrete-time mod-
eling, and Fourier series-based universal modeling. Each modeling method is applicable
to different scenarios and with varying levels of precision. Reduced-order modeling is
widely adopted due to its simplicity and broad applicability. Generalized state-space
averaging modeling offers higher modeling accuracy while simplifying circuit state anal-
ysis by reducing the required variables and equations. However, its modeling accuracy
is compromised by neglect of higher-order harmonics in practical applications, and its
complex theoretical foundation lacks the clear physical concepts found in reduced-order
modeling. Discrete-time modeling is primarily used to incorporate high-frequency dynam-
ics, particularly in advanced control methods. Fourier series-based universal modeling
presents a comprehensive approach to establishing DAB operation models under various
modulations, streamlining the analysis process at the expense of increased computational
complexity. The diverse optimization algorithms are subsequently presented, including
the KKT approach, GA, PSO, and Q-learning algorithm. The KKT approach is suitable for
simple modulation techniques but not well-suited for multi-objective optimization. The
GA exhibits moderate performance across different modulation techniques. The PSO algo-
rithm demonstrates excellent environmental adaptability but may suffer from premature
convergence. Combining PSO with other algorithms such as GA or KKT can address this
issue. The Q-learning algorithm, when combined with artificial neural networks, exhibits
robust environmental adaptivity and capability to achieve online continuous optimization,
making it a promising approach.

The advanced dynamic control methods for DAB are reviewed: GVFC, MPC, MRAC,
and ADRC. When GVFC is straightforward, it has limitations in handling non-linearity and
uncertainties. MPC offers good performance but requires powerful hardware and accurate
DAB models. MRAC and Active ADRC adapt to uncertainties without relying on DAB
models, albeit posing challenges in implementation and design due to their complexity.

With the introduction of advanced modulation strategies, the modeling and control
methods of DAB face new challenges. Despite some existing literature that combines
advanced control methods with advanced optimization modulation methods, such studies
remain relatively scarce, and some control methods have yet to incorporate advanced
modulation strategies. Moreover, most articles simplify DAB to a first-order model for
controller design, which compromises the controller’s performance under significant dis-
turbances. Furthermore, the advanced control methods are predominantly investigated
under the framework of phase-shift modulation strategies, lacking research inegration with
asymmetric PWM strategies, which represents a notable research gap.
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