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Abstract: Methods of computational intelligence show a high potential for short-term price forecast-
ing of the energy market as they offer the possibility to cope with the complexity, multi-parameter
dependency, and non-linearity of pricing mechanisms. While there is a large number of publications
applying neural networks to the prediction of electricity prices, the analysis of natural gas and carbon
prices remains scarce. Identifying a best practice from the literature, this study presents an iterative
approach to optimize both the input values and network configuration of neural networks. We
apply the approach to the natural gas and carbon market, sequentially testing autoregressive and
exogenous explanatory variables as well as different neural network architectures. We subsequently
discuss the influence of architectural properties, input parameters, data preparation, and the models’
resilience to singular events. Results show that the selection of appropriate lags of gas and carbon
prices to account for autoregressive properties of the respective time series leads to a high degree of
forecasting accuracy. Additionally, including ambient temperature data can slightly reduce errors
of natural gas price forecasting whereas carbon price predictions benefit from electricity prices as a
further explanatory input. The best configurations presented in this contribution achieve a root mean
square error (RMSE) of 0.64 EUR/MWh (natural gas prices) corresponding to a normalized RMSE of
0.037 and 0.33 EUR/tCO2 (carbon prices) corresponding to a normalized RMSE of 0.023.

Keywords: neural network; natural gas price; carbon price; multi-layer perceptron; price prediction

1. Introduction

Despite the ongoing displacement of conventional and nuclear energy carriers by
renewable sources, natural gas and natural gas substitutes are still seen as a central element
of many countries’ future energy systems. Comparing 36 scenarios on the transformation of
the German energy sector, the meta-analysis of Scharf et al. [1] illustrates that the demand
for natural gas will not decrease considerably until German greenhouse gas reductions
compared to 1990 exceed 70%. The authors argue that one reason for the constant high gas
consumption in the scenarios is the conventional fuel switch. That is, natural gas replaces
energy provision from commodities with a higher carbon intensity such as hard coal or
lignite. The main driver for this switch is carbon prices, offering an economic benefit to
natural gas due to its (comparably) low CO2 emissions (the actual emissions of natural gas,
especially with regard to its upstream fugitive methane losses, during its production and
transportation will, with reference to [2], not be discussed here).

The predicted high consumption of natural gas as well as the impact of carbon prices
on energy market demands adequate models for their price prediction. In this context, a
multitude of modeling approaches for the prediction of energy prices exists, as Weron [3]
highlights and classifies in his extensive review. Multi-agent [4–9] and fundamental [10–12]
models replicate the existing plant fleet and market interactions in a high degree of detail
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and allow the analysis of long-term horizons. For shorter (e.g., day-to-day) predictions, sta-
tistical models (e.g., ARX-type [13–16], GARCH-type [17–19]) or computational intelligence
models [20–23] are common. The review of Nowotarski and Weron [24] points out that the
majority of recent articles on electricity price forecasting make use of neural networks as
they offer the possibility to cope with the complexity, multi-parameter dependency, and
non-linearity of pricing mechanisms [3].

While there is a large number of publications applying methods of computational in-
telligence to the prediction of electricity prices, the analysis of natural gas and carbon prices
remains scarce (cf. Čeperić et al. [25]). This contribution aims at transferring the benefits of
computational intelligence to those commodities as well. Of the few existing studies, the
majority focus on the consideration of autoregressive properties of gas and carbon price
(i.e., not exploring the impact of exogenous parameters such as weather data, demand, or
cross-correlations with other commodities). In doing so, the studies neglect a vast part of
potential explanatory variables. This potentially leads to less accurate and robust results.
To address these research gaps, this contribution suggests an approach to systematically
vary input parameters and network configurations of neural networks for energy market
price predictions. The proposed methodology enables us to find optimized model setups
in a reproducible way, delivering competitive results despite its straightforward imple-
mentation. This gives the potential to provide accurate and reliable, yet computationally
cheap, predictions of gas and carbon prices. Such predictions are crucial for policymakers,
energy traders, and investors to make informed decisions, optimize resource allocation,
and mitigate financial risks. Using the strengths of artificial neural networks, we introduce
a novel methodology that leverages complex patterns and correlations in historical data to
achieve precise forecasts.

We show the applicability of the methodology for the prediction of natural gas and
CO2 prices. Gas prices in this context represent the day-ahead contracts of the NetConnect
Germany (NCG) market zone traded at the pan-European gas cooperation (PEGAS). CO2
prices refer to the daily settlement prices of daily future contracts (ECP D0) traded at the
international climate exchange (ICE).

Using a large pool of data (2007–2020 for natural gas and 2012–2020 for carbon prices)
and the best practice of relevant network architectures from a literature review, we model
a generic neural network that sequentially and systematically tests different network
configurations and input parameters. This helps us to identify the most appropriate
setup and to discuss the impact of different exogenous input parameters on the prediction
performance. In doing so, we treat the neural networks as a blackbox (cf. also Zhang
et al. [26] and Tzeng and Ma [27]). The proposed approach offers a way to experimentally,
practically, and results-driven optimize these networks.

To that end, Section 2 presents a literature review of existing studies on the prediction
of gas and CO2 prices using neural networks. This serves as the basis for all further pro-
gramming work, helps to identify and pre-evaluate relevant input and network parameters
ex-ante and to elaborate a best practice. In Section 3, we describe the suggested sequential
approach in general and its application for natural gas and carbon price prediction in
particular. This also implies the collection, analysis, and pre-processing of the required
data. Section 4 presents the results, evaluates the performance of the different models,
and discusses the implications of the outcomes. Finally, we draw a conclusion and derive
recommendations for future modeling work from the results in Section 5.

2. Literature Review

Artificial neural networks (ANN) are a promising method for short-term commodity
price predictions. As Abiodun et al. [28] point out in their comprehensive survey on
artificial neural network applications, ANNs exhibit significant advantages compared to
other prediction methods (e.g., statistical models). Inter alia, they feature a high degree
of flexibility and fault tolerance. Furthermore, they are capable of handling incomplete
data, they do not need a testing hypothesis, and they are able to solve non-linear problems.
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Abrishami and Varahrami [29] add that ANNs’ parsimony and parametrization are superior
to traditional approaches. Compared to linear ARIMA models, for example, natural gas
price predictions using neural networks showed an improvement in performance of 33% in
Salehnia et al. [30] as well as in Siddiqui [31]. More studies showing the outperformance
of ARIMA by ANNs can be found in the review of Zhang et al. [26]. Hence, the following
literature review identifies and discusses recent approaches to predict gas (Section 2.1) and
CO2 prices (Section 2.2) using neural networks.

2.1. Prediction of Gas Prices Using Artificial Neural Networks

With respect to the prediction of gas prices using neural networks, 14 articles serve as
the basis for this literature review (Table 1). Most of the published work focuses on the US
gas market. In order to design the hereby presented model, we distinguish between three
fundamental aspects:

1. Input data selection and preparation;
2. Model architecture and layout;
3. Model parametrization and hyper-parameters, e.g., activation functions, learning

rates, etc.

Regarding the input data, the majority of authors choose an autoregressive approach,
i.e., relying solely on historic gas price data. Furthermore, historic gas prices are the
principal ingredient in any published model. In order to identify the most significant lags
(i.e., the amount and specific position of historic time data), some authors like Siddiqui [31]
and Maitra [32] apply autocorrelation analyses. However, the sensitivity analyses by both
Hosseinipoor et al. [33] and Busse et al. [34] show that the model errors can be further
reduced by including additional explanatory data. Busse et al. [34], for example, indicate
that weather forecasts for 2–4 days in the future are the most important additional variables.
The authors chose this time horizon as they assume weather forecasts to become reliable
from about four days beforehand. Unsurprisingly, the level of gas production and local
demands show correlations to the gas price as well. Further data used in the literature
comprise USD/EUR exchange rates, gas flows through certain international hubs, and
domestic holidays. Maitra [32] uses up to 46 additional input parameters in his model.
However, some studies conclude that the higher model complexity often leads to only
minor improvements, thus favoring the autoregressive approach for the sake of simplicity.

The high focus on autoregression also leads to one principal finding which many
authors (e.g., Wang et al. [35]) are also (self-)aware of: the resulting gas price prediction
models work well during normal times without significant disruptions. However, black
swan events like economic or political crises and wars and similar unforeseen events with
global repercussions obviously lead to drastic mispredictions.

Table 1. Overview of the reviewed neural networks for gas price predictions including their inputs
and network configuration.

Ref. Year Inputs Market Architecture Layer/Nodes Activation Function

[35] 2020 Gas prices USA Hybrid LSTM
(RNN) n/a Tanh, Sigmoid

[31] 2019 Gas prices USA ARNN (RNN) 1/13 n/a

[36] 2019 Gas prices IRN Hybrid
(unspecified) 1/8 Sigmoid

[37] 2019

Gas prices, oil prices, CDD,
HDD, drilling activities, gas

offer and demand, gas imports,
gas storage levels

USA NAR (RNN) 1/10 n/a

[33] 2016

Gas prices, CDD, HDD,
temperature, oil prices, gas

demand, storage capacity and
operation

USA NAR (RNN)
NARX (RNN)

1/1
1/6 n/a



Energies 2023, 16, 6643 4 of 25

Table 1. Cont.

Ref. Year Inputs Market Architecture Layer/Nodes Activation Function

[38] 2015 Gas prices USA Hybrid MLP
(FFNN) 1/3 n/a

[39] 2015 Gas prices USA Hybrid MLP
(FFNN) 1/n/a n/a

[32] 2015 Gas prices, 46 others USA GRU (RNN) n/a Sigmoid, ReLU
[30] 2013 Gas prices USA MLP (FFNN) n/a n/a
[40] 2012 Gas prices, economic indicators IRN Hybrid (FFNN) n/a n/a

[34] 2012

Gas prices, EUR/USD exchange
rate, gas imports, oil prices, gas

storage level, weekend and
holiday indicator

GER NARX
(RNN) 1/7 Tanh

[41] 2012 Gas prices EU, USA MoG NN (FFNN) n/a n/a

[29] 2011 Gas prices USA Hybrid
(FFNN) 2/n/a n/a

[42] 2010 Gas prices, components of
Wavelet transformation

UK
Hybrid MLP

(FFNN) 1/6 Tanh

RBFNN (FFNN) 1/40 RBF

n/a = not available; LSTM = Long short-term memory; RNN = Recurrent neural network; FFNN = Feed-forward
neural network; ARNN = Autoregressive neural network; GRU = Gated recurrent unit; ReLU = Rectified linear
unit; MLP = Multilayer perceptron; RBFNN = Radial basis function neural network; NARX = Nonlinear autore-
gressive with exogenous variables; NAR = Nonlinear autoregressive; CDD/HDD = Cooling degree days/heating
degree days; Tanh = hyperbolic tangent.

Regarding the types and layouts of the networks, the majority of studies favor feed-
forward neural networks (FFNN) with one hidden layer. The number of nodes ranges
from 3 to 40 (if stated in the article). Some authors like Thakur et al. [39], Jin and Kim [38],
Salehnia et al. [30], and Hosseinipoor [33] examine different neuron configurations to
check the influences on forecasting accuracy. In such cases, the value listed in Table 1
represents the respective optimum. The simple network layouts are unsurprising given
the autoregressive character of most models: as Zhang et al. [26] state, one-layered FFNN
typically deliver satisfying accuracies when describing any kind of nonlinear functions.
Yet, some authors utilize multilayer perceptrons with two hidden layers (e.g., Abrishami
and Varahrami [29]) or recurrent neural networks (RNN) (e.g., Wang et al. [35] using a
hybrid model containing a RNN and Busse et al. [34] using a NARX). In contrast to FFNN,
the latter contain connections between individual neurons in a backward direction and
typically excel in time series predictions. Wang et al. [35] use an LSTM, a special RNN,
which tackles the vanishing gradient problem of normal RNN by introducing up to three
gates controlling the data flow and a mathematical equivalent of forgetting.

Some studies use (or characterize their models as) hybrid models between neural
networks and other approaches. Abrishami and Varahrami [29] do so by coupling the
FFNN with a rule-based expert system (RES), containing rules derived from regression
for describing correlations between irregular events and price fluctuations. Other authors
use nonlinear autoregressive models (NAR, e.g., Hosseinipoor [33] and Busse et al. [34]
with exogenous variables (NARX)) or Fuzzy Linear Regression (Azadeh et al. [40]). The
observed and reported autoregressive character of the task typically motivates this kind
of approach.

Most studies do not explicitly mention many of the values for underlying hyper-
parameters, activation functions, or training algorithms. The ones giving insight rely on
sigmoid or hyperbolic tangent activation functions. Regarding the optimization, Levenberg–
Marquardt is used primarily, followed by Bayesian optimization. Siddiqui [31] justifies
the choice of the Bayesian method by the fact that this method has a higher capability to
process noisy data whereas Thakur et al. [39] and Su et al. [37] prefer Levenberg–Marquardt
because of its fast convergence behavior.
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2.2. Prediction of CO2 Prices Using Artificial Neural Networks

As the trading of emission certificates emerged just a few decades ago, the number
of existing studies on CO2 price forecasting is small. Table 2 gives an overview of the
reviewed literature, again classifying the approaches by their input parameters, network
architectures, and training strategies.

Regarding the choice of input data, the results of Lu et al. [43] show how strongly the
forecasting quality of a neural network depends on the data set itself, testing it on eight
different Chinese markets. In addition to historical CO2 prices, other authors like Han
et al. [44] and Zhang et al. [45] mainly use oil, gas, and coal prices as well as environmental
and economic indicators for price forecasting. Additionally, the results of Yahsi et al. [46]
imply that the clean energy index, the German stock index, and coal prices have the
greatest influences on CO2 prices whereas oil, gas, and electricity prices have no significant
influence. The results of Han et al. [44] also suggest that CO2 prices are more sensitive to
coal prices, temperature data, and the air quality index than to other input parameters.
Furthermore, the authors’ review shows that there is a general disagreement in the literature
about whether and to what extent temperature data affect CO2 prices.

Feed-forward networks or a combination of FFNN and other approaches in hybrid
models dominate the network architecture used for CO2 price prediction. One reason for
this are the autoregressive components of CO2 prices. This is also reflected by the choice
of the combination of FFNN and regression models in hybrid modeling approaches. For
example, Han et al. [38] use a FFNN as part of a hybrid model with a regression approach
and Jiang and Wu [47] use a hybrid model consisting of an FFNN and an ARIMA model,
among others.

Furthermore, the complicated characteristics of the time series often deal with time
series decompositions in the hybrid models. Zhang et al. [45], Zhu [48], and Lu et al. [43]
use time series decomposition, complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN), and empirical mode decomposition (EMD), respectively, in
addition to the neural network. The authors justify their choice with better processing of
instationary, non-linear. and multifrequent components of the CO2 price time series.

Atsalakis [49] tests a total of 50 different network structures and concludes that the
best network consists of one hidden layer. The author does not specify an optimal number
of hidden nodes whereas other authors such as Zhu [48] determine the number of hidden
nodes depending on the number of input parameters. Considering the activation function,
the sigmoid function is employed by Atsalakis [49] while the radial basis function (RBF)
also serves in studies like those of Lu et al. [43] and Tsai and Kuo [50]. The latter justify
their choice by saying the RBF deals well with the complex interactions between oil, coal,
gas, and CO2 prices. All authors specifying the training algorithm in their publications
make use of backpropagation.

Table 2. Overview on the reviewed neural networks for CO2 price predictions including their inputs
and network configuration.

Ref. Year Inputs Market Architecture Layer/Nodes Activation Function

[43] 2020 CO2 prices
8 different
markets in

China

Hybrid
MLP (FFNN) 1/n/a RBF

[46] 2019
CO2, oil, coal, gas, and

electricity prices; DAX; clean
energy index

EU-ETS FFNN 1/n/a n/a

[44] 2019
CO2, oil, and coal prices;

leading stock index, air quality
index, temperature

Shenzhen Hybrid (FFNN) 1/p n/a

[45] 2018 CO2 prices, Stoxx600, global
cal Newcastle index EU-ETS Hybrid

GNN 1/3 n/a

[51] 2017 CO2 prices EU-ETS FFNN 1/10 n/a
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Table 2. Cont.

Ref. Year Inputs Market Architecture Layer/Nodes Activation Function

[49] 2016 CO2 prices EU-ETS Hybrid
FFNN 1/n/a Sigmoid

[52] 2015 CO2 prices EU-ETS MLP (FFNN) 1/7 Purelin
[47] 2015 CO2 prices EU-ETS Hybrid FFNN n/a n/a
[50] 2014 CO2, oil, coal, and gas prices EU-ETS MLP (FFNN) n/a RBF

[53] 2013 CO2, oil, coal, and gas prices EU-ETS Hybrid
MLP (FFNN) 1/13 RBF

[54] 2012 CO2 prices EU-ETS Hybrid FFNN 1/2*p + 1 n/a

n/a = not available, MLP = Multilayer perceptron, FFNN = Feed-forward neural network, RBF = radial basis
function, BPN = Backpropagation neural network, GNN = Grey neural network, p = number of neurons in input
layer, DAX = German share index.

3. Methodology and Data

Starting from the insights gathered from the literature in Section 2, the following chap-
ter describes the development and layout of a price prediction modelling and optimization
methodology. This comprises a discussion of the general workflow including the suitable
evaluation criteria (Section 3.1) as well as the data collection and preparation for both
natural gas (Section 3.2) and carbon prices (Section 3.3).

3.1. General Approach for Network Optimisation

The general approach followed in this study starts with the findings from the literature
reviews. Based on best practice network configurations (i.e., regarding the network type,
number of hidden layers/neurons, activation function, etc.), an own generalized model
setup is implemented in Matlab R2020b. The design and quantification of the best practice
network configuration is further described in Section 3.2.2 for gas and Section 3.3.2 for
carbon price predictions.

Subsequently, autocorrelation analyses, market assessments, and literature reviews
help to identify relevant input variables and lags to be tested. After the collection and
preparation of the data (i.e., cleaning up missing values and standardization), we develop
a heuristic approach depicted in Figure 1 allowing for simple and practicable yet effective
model development and optimization. The next step uses the basic model setup in order
to identify the ideal selection of price lags as well as additional explanatory data. For
this, additional input parameters are introduced in an iterative procedure step by step.
Depending on the improvement/deterioration of the model with a new input variable/lag,
the respective input is kept or discarded in further iteration steps. This allows us to consider
only the input parameters and lags that have enough explanatory power to improve the
model’s performance. After iterating all inputs/lags and determining the best configuration,
the network architecture is optimized in the workflow. This comprises fine-tuning of the
most promising setup(s) by varying the activation function and introducing additional
layers or modified train-test splits, for instance.

There is a validation with the forecasting standards at each level of the iteration. For
this purpose, we firstly use the root mean square error (RMSE)

RMSE =

√√√√1/T·
T

∑
t=1

(x̂t − xt)
2 (1)

with x̂t being the predicted and xt the historic value at time t. We furthermore apply the
coefficient of determination (R2) for model evaluation and comparison
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R2 = 1 − ∑T
t=1(x̂t − xt)

2

∑T
t=1(xt− 1

T ·∑
T
t xt

)2 (2)

Tracking the errors of both, the test and training data sets enable the assessment
of potential overfitting and underfitting. To validate the generalizability of the neural
network, a five-fold validation on a rolling basis is applied. A conventional k-fold cross
validation cuts data randomly and generates k subsets. Since time series are ordered, a
rolling five-fold validation based on a forward chaining of the five subsets of related data
is used instead. The entire time series is cut into five parts of equal length, each of them
containing consecutive and connected time series. In the first run, fold 1 is the training
fold and fold 2 serves for testing. In the second run, the training fold consists of fold 1 and
2 whereas fold 3 becomes the testing fold. With each new run, the test data move forward
by one subset and the training data set increases by the previous test data subset.

Figure 1. Simplified representation of the chosen neural network optimization approach.

Additionally, the normalized RMSE (NRMSE) serves as a standardized quality parameter:

NRMSE =
RMSE

x
(3)

x represents the average price of the observed fold. Hence, relating the RMSE of a
particular fold to the average price within the same fold leads to the NRMSE [55]. The
smaller the NRMSE, the more powerful the model. This relative specification of the error
allows an assessment of the results without knowing typical price regions.

For the evaluation, we use the mean value of run 3 to 5 only because the ratio of the
training and testing data set approaches the 70:30 ratio often used in the literature [30,33].
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3.2. Network and Input Preparation for Gas Price Predictions
3.2.1. Data Collection and Preparation

As shown in the literature review in Section 2.1, historic gas prices are of paramount
importance for gas price predictions. For this cause, we use approximately 13 years of price
data from the Norwegian information provider Montel. This database features a higher
amount of settlement price data compared to other potential sources like the European
gas spot index (EGSI) which only dates back to 2017. The specific commodity used is the
PEGAS NCG (natural gas regardless of gas quality L or H) continuous day ahead contract
in daily resolution. For Saturdays and Sundays, these contracts are not available, so NCG
Saturday/Sunday prices serve to bridge those gaps. Additional missing data points (e.g.,
due to holidays or recording errors) are approximated by calculating the mean value of
the preceding and following values. The deviation between the MONTEL NCG and EGSI
prices accounts for 1.39% on average, justifying the use of the NCG continuous day ahead
contract. In total, gas market price data deliver 4565 data points, i.e., one data point per
day (cf. Figure 2).

Figure 2. Natural gas price time series from 1 October 2007 to 23 June 2020 used for modeling.

As shown in the literature review, the selection of lags seems to be the most influential
factor for the model’s capabilities. Autocorrelation and partial autocorrelation analyses on
both the original price data as well as data after a decomposition into seasonal and short-
term data and noise help to identify appropriate lags. Figure 3 displays the autocorrelation
as well as partial autocorrelation after the elimination of seasonal and short-term trends.

Figure 3. Autocorrelation and partial autocorrelation function for the gas price time series from 1
October 2007 to 23 June 2020 (seasonal and short-term trend eliminated); dashed lines represent 2σ.
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The analysis of the time series shows only a weak seasonal trend (reflected in a similar
course of the time series itself and the ACF of original as well as seasonally adjusted time
series) while the short-term as well as autoregressive components dominate by far (reflected
in a very slowly decreasing autocorrelation of the original time series, cf. also [54,56]. On
the one hand, this could be surprising regarding the observable seasonality in gas prices.
On the other hand, the literature review already shows that most studies rely on short-term
data as well; the seasonal data might be insignificant in comparison to other factors like the
influence of storage capacities and external events (regarding the global economy and its
outlook, crises, etc.). Yet, the exact selection (and amount of) input data is no trivial task
and subject to empiric considerations. A significant (in this case 2σ) correlation of historic
data is visible until around 42 days (i.e., 6 weeks prior). Thus, the model will face various
combinations of different lags in order to identify an optimum model.

Since several authors like Busse et al. [34] as well as Hosseinipoor [33] report improved
predictions when including additional data sources, oil and coal prices, and temperature
data as well as gas net flow and gas storage levels are tested in the approach. Table 3 gives
an overview on the underlying time spans, data points, and the respective sources.

Table 3. Overview on the data (daily settlement prices) used for the gas price model parametrization.

Data Available Time Span Data Points Source

Gas prices 1 October 2007–23 June 2020 4565 Montel [57]
Oil prices 1 October 2007–23 June 2020 3286 Montel [57]

Coal prices 1 October 2007–23 June 2020 3286 Montel [57]
Temperature 1 October 2007–28 June 2020 4650 German meteorological service [58]

Net flow 22 June 2014–23 June 2020 2194 Montel [57]
Gas storage level 10 January 2011–23 June 2020 3262 AGSI+ [59]

Just as for gas prices, missing values are also supplemented with mean values. Due
to a lack of recorded data for coal and oil prices on weekends, the values on Saturdays
and Sundays equal the ones on Fridays in this analysis. The model uses averaged German
daily temperature data, meaning an average value from one city of each federal state of
Germany in an hourly resolution. By means of shifting, we simulate an artificial tempera-
ture prediction instead of using real (i.e., potentially flawed) prognoses. The net flow data
originate from a balance of import and export data at the German hubs with Luxemburg,
the Czech Republic, Poland, Austria, France, Switzerland, the Netherlands and, finally,
Sweden. Again, the filling of gaps happens by means of average values of previous as well
as following values. Due to reasons of data availability, the time series of net flow as well
as gas storage exhibit a shorter time span than the other parameters. Hence, in analyses
comprising these parameters, all data are adjusted to the size of net flow and gas storage
data, respectively.

3.2.2. Network Implementation and Variation

The initial model’s setup is inspired by the literature review described in Section 2.1.
We use an FFNN in an MLP setup with one hidden layer. MLPs are not only used in gas and
carbon price predictions, as pointed out in the literature review, but are also the common
choice in electricity price forecasting [3]. The reason for this is that they can especially
handle the complex non-linear relationships between inputs and outputs intrinsically
present in energy price data. MLPs are well-researched and understood and therefore a
standard choice. Yet, they require high-quality data which is no issue for the present task
due to the availability of multiple years to decades of data. Furthermore, they are prone to
overfitting, which can be prevented using the suggested network optimization approach.

A tangens hyperbolicus serves as an activation function for the hidden neurons. It
is zero-centered and non-linear, capturing both positive and negative values. However,
one needs to carefully take into consideration that the tangens hyperbolicus can lead to
the vanishing gradient problem. The impact of the activation function is assessed at a
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later stage of this manuscript. Regarding the optimization, the Levenberg–Marquardt
algorithm is applied. Being a second-order optimizer, this brings the added value of good
convergence yet comes at the cost of higher memory utilization than other algorithms for
supervised learning.

The calculation starts with random initialization for weights and biases. To ensure
reproducible results, it is necessary to fix the random starting weights for each run. In order
to deal with the weekly and monthly periodicity of the gas prices, any of the following
model setups contain indicators for weeks and months.

As presented in Section 3.1, the general approach is a sequential one. After identifying
an appropriate amount and selection of gas price lags (including the weekly markers for
3–6 weeks prior), additional data are added step-wise. This begins with the introduction of
temperature predictions and the examination of its influence. This step includes another
evaluation of lags (speaking of lags for temperature data). In case of a significant improve-
ment, the further model development comprises this data set; elsewise, it is rejected. This
process repeats for all other input parameters.

Table 4 shows the investigated models and data sets including their nomenclature, i.e.,
model G1 to G7. This notation finds application in the following sections displaying and
discussing the modelling results.

Table 4. Input parameter combinations tested for the variation and optimization of the neural network
for gas price predictions.

Model Name Inputs 1 Lags

Model G1 Historic gas prices up to 3 weeks back additively + single inputs of 4, 5, and 6 weeks back
Model G2 Future temperature 3, 1, 2, and 4 days ahead as well as a day of price forecast itself additively
Model G3 Historic temperature single inputs up to 5 days back
Model G4 Historic oil prices single inputs up to 1 month back
Model G5 Historic coal prices single inputs up to 1 month back
Model G6 Net flow single inputs up to 1 month back
Model G7 Gas storage level single inputs up to 1 month back

1 In addition to the inputs of the currently best configuration.

After examining and testing all input parameters, the approach optimizes the network
architecture. For this, three activation functions serve for iterations with up to 100 neurons
and 2 hidden layers. Due to the standardization, the gas prices have positive as well
as negative values which is why only activation functions covering positive and nega-
tive values provide reasonable results. Therefore, a hyperbolic tangent (tansig), a linear
transfer function (purelin), and a symmetric saturating linear transfer function (satlins)
find applications.

3.3. Network and Input Preparation for CO2 Price Predictions

The following chapter explicitly deals with the price trend of the CO2 time series in
the time span of phase 3 of the ETS framework, therefore using data from end of 2012 until
the middle of 2020 for price predictions.

3.3.1. Data Collection and Preparation

The CO2 prices used are daily settlement prices of contract type ECP D0 traded on the
international climate exchange (ICE). The ICE lists the contract type ECP as a daily future
contract (cf. https://www.theice.com/products/18709519, accessed on 17 March 2023).
Figure 4 shows the development of CO2 prices over the period under consideration with a
price maximum of 29.77 EUR/tCO2 and a lowest price of 2.70 EUR/tCO2.

The low price between the years 2012 and 2017 is due to an oversupply of EUAs. From
2018 onwards, prices rose massively due to governmental decisions to reduce the amount
of EUAs in order to make saving CO2 profitable again. This triggered rapid buying of
EUAs by companies. The increased demand led to significantly higher prices. In March

https://www.theice.com/products/18709519
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2020, EUA prices fell slightly again. One possible reason could be the shutdown due to
the COVID-19 pandemic which led to reduced CO2 emissions due to a shutdown of the
economy and thus smaller demand of CO2 certificates. Another reason could be imprudent
sales of the certificates due to the crisis mood.

Figure 4. Carbon price time series from 10 December 2012 to 23 June 2020 used for modelling.

Since CO2 certificates are only traded during the week, values for the weekend are
missing from the entire data set. Therefore, prices of the respective previous Friday serve
for weekends. From 26 April 2018 to 8 May 2018 there is a data gap in the time series. As
there is no physical explanation for this, this is most likely due to a recording error. CO2
prices of the contract type MidDec+1 serve as a proxy for the missing values. With a mean
deviation 30 days before and after the gap of 0.30%, it can be assumed that the inserted
data do not significantly affect the performance of the result.

Figure 5 displays the ACF and PACF of the carbon price time series in order to
derive important lags. As mentioned in the beginning as well as is visible in the time
series in Figure 4, CO2 prices show a trend. This is also evident considering the ACF which
decreases very slowly (showing an existing trend in the time series as well as autoregressive
components). However, the significance of the lags decreases as they lie further back. After
trend removal, the course of the ACF shown in Figure 5 changes significantly. In general,
the time series shows no correlations after trend adjustment. The CO2 prices do not show
any seasonal dependency which is why there is no further seasonal adjustment.

Figure 5. Autocorrelation and partial autocorrelation function for the carbon price time series from
10 December 2012 to 23 June 2020 (short-term trend eliminated); dashed lines represent 2σ.
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The literature offers only little guidance on the choice of an optimal CO2 price lag.
Therefore, the choice includes the following: lag 1 to lag 21 as well as the lags 23, 24, 27, 30,
40, 45, and 49 as they reach or even exceed the significance level (2σ) for both the ACF and
the PACF.

The literature review shows that CO2 prices are strongly autoregressive. Nevertheless,
many authors like Tsai and Kuo [50] as well as Zhang et al. [45] use exogenous input
parameters which is why we also investigate if there is an improvement by introducing
further variables. In this case, coal, oil, electricity, and gas prices from Montel as well as
temperature data from the German meteorological service serve as additional explanatory
variables. Table 5 shows the time span of used CO2 prices as well as further selected input
parameters for the simulation.

Table 5. Overview on the data used for the carbon price model parametrization.

Data Available Time Span Data Points Source

CO2-prices 10 December 2012–23 June 2020 1936 Montel [57]
Coal prices 10 December 2012–23 June 2020 1936 Montel [57]
Oil prices 10 December 2012–23 June 2020 1936 Montel [57]
Gas prices 10 December 2012–23 June 2020 2743 Montel [57]

Temperature 10 December 2012–23 June 2020 2747 German meteorological service [58]

The hypothesis underlying the choice of parameters is that commodity prices indirectly
influence CO2 prices because they determine the use of various resources for the generation
of electricity. Low coal prices, for example, would lead to an increase in (CO2-intensive)
coal burning which in turn influences demand for CO2 allowances and thus, prices. The
same goes for changes in prices for gas which produces less CO2 and therefore also affects
the demand of EUAs [60].

To detect any correlations between CO2 prices and the individual input parameters,
any prices of weekends are adjusted in the same way as applied for CO2 prices. This
means that for each time series, the value from Friday serves for the following weekend.
As with the gas market data processing, the application of a z-transformation ensures
the standardized input. Missing values are handled in the same way as described in
Section 3.2.1. Also, in cases where the time series of a parameter contains less data points
than the previous ones, all the time series are adjusted to the same size.

3.3.2. Network Implementation and Variation

Starting with the same basic model setup described in Section 3.2.2, also including indi-
cators for weekly and monthly periodicity, the stepwise introduction of further exogenous
variables follows the same heuristic approach as for the gas market (Table 6). These include
historic CO2, coal, oil, gas, and electricity prices as well as temperature data as a proxy for
the overall energy demand. After simulation of different models for the determination of
correlations between CO2 prices and other variables, especially coal, oil, and gas prices, a
network optimization follows under the same conditions as presented in Section 3.2.2.

Table 6. Input parameter combinations tested for the variation and optimization of the neural network
for CO2 price predictions.

Model Name Input Parameter Lags

Model C1 Historic CO2 prices up to 3 weeks back additively + single inputs of t-23, t-24, t-27, t-30, t-40, t-45,
and t-49

Model C2 Historic coal prices single inputs up to 1 month back
Model C3 Historic oil prices single inputs up to 1 month back
Model C4 Historic gas prices single inputs up to 1 month back
Model C5 Temperature single inputs up to 1 month back + single inputs of up to 5 days ahead
Model C6 Historic electricity prices single inputs up to 1 month back
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4. Results and Discussion
4.1. Prediction of Natural Gas Prices

Given that both the literature review and the time series analysis show that gas prices
are autoregressive, this section presents the sole use of gas prices and the effects on the
neural network independently (Section 4.1.1) before subsequently showing the influences
of exogenous variables (Section 4.1.2). Finally, we discuss determinants on the results
and performance of the model in order to better understand potential sources of errors
(Section 4.1.3) and compare the outcomes with other studies (Section 4.1.4).

4.1.1. Autoregressive Analysis

As part of the stepwise approach, the focus firstly lies on a single input parameter
at the beginning of the modelling to check the performance of a purely autoregressive
model using the lags provided by the time series analysis presented. Just as in studies
of Siddiqui [31] (stating a MSE of 0.026 (USD/mBtu)2 corresponding to a RMSE of 0.49
EUR/MWh), we obtain results with low RMSEs using only historical gas prices as inputs.

In general, the results show that an increase in the number of gas price lags and/or
model complexity (i.e., the number of hidden neurons) does not necessarily lead to better
results. More precisely, looking at the performance across all lags and hidden nodes, the
results imply that an increase in the number of lags does not influence the forecasting
performance significantly. In fact, it is quite the contrary: an increase in the number of
hidden neurons not only does not lead to better results but even worsens the prediction
beyond a certain point (approximately at lag 20). Figure 6 displays the results of model G1,
i.e., using historic gas prices as well as indicators for one week and month, only. It presents
the training and testing RMSE as a function of the gas price lags considered in the model
for a network setup of 5 hidden nodes and of 100 hidden nodes (which presents the lower
and upper boundary of the range of hidden nodes under consideration).

Figure 6. Training and testing RMSE of model G1 (historic gas prices only) for 5 and 100 nodes in the
hidden layer.

The figure shows that an increase in lags (and hence in the number of inputs) does not
show a significant impact on the results of the model but increases the model’s complexity.
However, an increase in hidden neurons tends to decrease the generalization capabilities.
The overfitting, occurring in the case of 100 hidden nodes, is also evident from the larger
difference between training RMSE and testing RMSE.

A configuration with 100 hidden nodes tends to show more volatile results, even when
working with a more complex input configuration with higher number of lags. The smaller
errors in the configuration with fewer hidden nodes imply that even a less complex network
structure can appropriately process the amount of input information in the autoregressive
case. Hence, the ability to generalize tends to decrease with an increase in hidden neurons
using this input configuration. In summary, the minimum testing RMSE of 0.68 EUR/MWh
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is achieved at a configuration of five hidden neurons and a gas price input ranging from t-1
to t-5 (i.e., a lag of five days).

4.1.2. Consideration of Exogenous Parameters

The forecasts with historical gas prices already exhibit a high degree of accuracy;
however, the results of authors like Jin and Kim [38] as well as Naderi et al. [36] suggest that
there is still potential for improvement using further explanatory variables. Subsequently
adding exogenous inputs, this section tests if this leads to a further reduction in the
forecasting errors. As described in Section 3.2.2, the best configuration of model G1 serves
as the basis for the further investigation and addition of input parameters. Figure 7 shows
the results of this process. The figure compares the best coefficient of determination for each
of the different input parameter combinations (i.e., one point for each input configuration
at its best number of hidden neurons). For better visualization, the axis scaling is adapted
to the range of 0.87 to 1.0. The figure gives an overview of the prediction qualities of the
different model configurations under analysis. The perfect network would exhibit a R2

Test
and R2

Train of 1.

Figure 7. Training and testing R2 for different network configurations of the gas price
forecasting model.

Compared to model G1, models G2 and G3 show a better performance. This implies
a positive effect of the use of temperature data on the prediction accuracy of the neural
network. Temperature serves as a proxy for the overall gas consumption as gas is a main
source of heat generation in Germany. Also, model G4 (adding oil prices) and model
G5 (adding coal prices) improve the performance compared to model G1. However, this
improvement is still outperformed by model G3. The integration of net-flow data (model
G6) further decreases the training errors but increases testing inaccuracies. Similar results
apply for the addition of gas storage filling levels (model G7). Hence, this input improves
the learning of the neural network but leads to an overfit.

Overfitting not only occurs in the case of too many input parameters but also con-
sidering the amount of hidden neurons. All setups with exogenous input parameters
consistently exhibit the worst results (both regarding RMSE and R2) when the number of
hidden neurons is in the range of 80 to 100 (e.g., a maximum RMSE of 3.36 EUR/MWh
at model G6 with 100 hidden nodes). In general, the results of the RMSE analysis for the
exogenous variables shows the same trend as the R2 analysis in Figure 7.

Model G3 shows the best performance of all setups under consideration. Comparing
its RMSE (0.64 EUR/MWh), an improvement in 5.88 EUR/MWh compared to model G1
can be observed. As a result, the following optimization of the network architecture applies
model G3; however, it does not further improve its prediction capabilities. Using up to
2 hidden layers and up to 100 hidden nodes, tansig as an activation function (best RMSE:
0.64 EUR/MWh as mentioned above) outperforms purelin and satlins (with best RMSEs of
0.72 and 0.69 EUR/MWh, respectively).
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In summary, parameter variation shows the following parametrization of the neural
network to have the best performance for gas price predictions. Using a feed-forward
network with 1 hidden layer containing 7 hidden nodes and a hyperbolic tangent activation
function as well as the Levenberg–Marquardt training algorithm. Regarding the choice of
input parameters, the following variables (in addition to a weekly and monthly indicator)
provide the best forecast. Historical gas prices of up to five days ago and temperature
forecasts of up to three days in the future (in the order of three days ahead, one day
ahead, and two days ahead) as well as historic temperature from one day before the price
prediction. Figure 8 shows the forecasted natural gas prices in validation fold 3 (5 March
2014–8 April 2016) and compares them to the actual historic prices.

Figure 8. Visual comparison of historic natural gas prices and prediction results of the optimized
network configuration in validation fold 3.

4.1.3. Discussion of Determinants

Gas prices show much lower volatility (mean changes in prices in 24 h in the period
under consideration of 1.93%) compared to prices of other energy goods (mean changes
of electricity prices in 24 h in 2014–2019 of 41.62%, for example) with a possible volatility
of up to 1000% [61]. This facilitates forecasting and to some extend explains the accurate
results of the models. Nevertheless, a residual error remains. This asks for a discussion of
where this error originates from and how it is influenced. To do so, we distinguish between
two dimensions: one is the price range itself coming from the assumption that unusually
high or low prices could correlate with higher forecasting errors. The other dimension is
the time dependency of the gas economy by means of its seasonality, analyzing to what
extent strongly varying demands between winter and summer seasons might influence the
forecasting performance. Therefore, an investigation of the forecasting results of model G3
follows to reveal errors depending on the season (divided according to the meteorological
seasons) as well as errors depending on the gas price itself.

The results show mean errors of up to 3.50 EUR/MWh in case the gas price was
uncommonly high (30–60 EUR/MWh) indicating a strong price dependency in high price
ranges. However, this is rather because such price levels are usually reached very erratically
and are very rare. Therefore, the error results are instead due to preceding price leaps than
by the price itself. Such price leaps and, in extreme cases, black swan events are difficult
to predict and therefore increase the error of the neural network. As an example, fold
4 contains the gas price leap in 2018. This leads to an RMSE of 1.00 EUR/MWh in model
G3 which is more than twice as high as its RMSE in fold 3 (best possible result with an
RMSE of 0.43 EUR/MWh). This result does not only apply for model G3 but also for any
iteration step, showing the high impact of such events on the overall error of the model.

With regard to the seasonal analysis, the mean error is invariably higher in colder
seasons like winter (December−February) and spring (March−May) than in months with
higher temperatures like summer (June−August) and autumn (September−November).
In an extreme case (mean error of fold 5), the error in winter is 4.55 times the error in
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summer (Indeed, average prices in winter months in this fold were 8.2% higher than in the
rest of the year. However, this can only partially explain the significantly higher RMSE).
This is in line with the description of Niggemann [62] who states that the demand for gas
can fluctuate strongly in the short term due to temperature variations since gas is a much
used heating source. This has an impact on spot prices especially in the winter months
January to March. To deal with the fluctuations of demand, storage capacities are used. If
the storage facilities empty out during the winter and/or delivery failures occur, the gas
prices could rise significantly [62].

4.1.4. Comparison with the Literature

A comparison with the existing literature helps to evaluate the results of our model
regarding its plausibility and competitiveness despite its simple setup. The final testing
RMSE achieved of the model G3 setup is 0.639 EUR/MWh (corresponding to a testing
NRMSE of 0.037). Comparing this result with the literature data in Figure 9 shows that this
result is well in line with the status-quo of natural gas price prediction. Notably, the RMSEs
of all authors are converted from their respective unit (e.g., Mbtu) into EUR/MWh applying
the respective conversion factors and exchange rates at the time of their publication. For
comparability, Figure 9 shows the performance of neural network individually even if
the respective authors use a hybrid model. When necessary, the unit of volume MSCF
(million standard cubic feet) is converted to MWh with a calorific value for H-gas of
0.01042 MWh/m3.

Figure 9. Comparison of the RMSE of model G3 with results from the literature [29,32,36–38].

One of the reasons for the largely varying results in the literature is the prices used.
The exceptionally low RMSE of Naderi et al. [36], for example, can partially be explained
by the very even prices in a range of approximately 2.5–4 USD/MSCF (corresponding to
5.85–11.69 EUR/MWh). On quite the contrary, Abrishami and Varahrami [29] use more
fluctuating gas prices in a range of approximately 3.75–8 USD/MSCF (corresponding
to 10.96–28.38 EUR/MWh), also including a price drop between 2008–2010. Further-
more, model G3 outperforms both Maitra [32] and Su et al. [37] which both use various
exogenous variables.

4.2. Prediction of Carbon Prices
4.2.1. Autoregressive Analysis

Following the same approach as for the gas price prediction results, the first neural
network model setup for the prediction of carbon prices follows a purely autoregres-
sive approach. Comparing the errors of the neural networks using solely autoregressive
data shows the smallest training RMSE of 0.165 EUR/tCO2, the smallest testing RMSE of
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1.020 EUR/tCO2, and the highest testing RMSE of 6.220 EUR/tCO2. Considering the indi-
vidual folds of the k-fold validation, it is noticeable that, without exception, fold 4 delivers
poor forecasting results. Taking the configuration of lag t-7 with five hidden nodes as an
example, fold 4 has (with a RMSE of 3.350 EUR/tCO2) a 22 times higher RMSE compared to
fold 3 (with a RMSE of 0.150 EUR/tCO2).

As mentioned before, there is a strong increase in CO2 prices in 2018. This increase
is difficult to predict by the neural network as it exhibits price movements and ranges
formerly unknown to the network. This time range is part of the testing data set of fold 4
and, hence, explains the weak prediction performance of this fold. To take into account
the particularity of this fold, any of the following analyses are conducted once considering
fold 4 and once neglecting fold 4. In general, both cases show similar trends; however, we
concentrate on the simulation omitting fold 4 in further discussions to ensure comparability
with the gas price prediction. Thus, the enormous, and unique in the considered time span,
price increase in the time series is not taken into account.

Figure 10 shows the training as well as testing the RMSE of the CO2 price prediction
in dependency of lags for 5 hidden neurons and 100 hidden neurons. In general, the results
indicate that the influence of the lag is not significant since the results of both model setups
with few as well as with many lags do not differ strongly from each other. In contrast to
that, the increase in the number of hidden neurons shows worse results, indicating that the
neural network overfits in these setups. Therefore, a simple network setup consisting of
7 lags and 5 hidden neurons with an RMSE of 0.355 EUR/tCO2 is considered to be the best
regarding the autoregressive analysis. Overall, the neural network provides very accurate
price predictions in this configuration, confirming the strong autoregressive character of
CO2 prices.

Figure 10. Training and testing the RMSE of model C1 (carbon prices only) for 5 and 100 nodes in the
hidden layer.

4.2.2. Consideration of Exogenous Parameters

Comparing the RMSE results reveals that most of the further explanatory parameters
slightly worsen the results of the carbon price prediction. Contrary to the analysis of a
Chinese market by Zhao et al. [63] who state a strong influence of coal prices on CO2
prices, even the introduction of coal prices does not outperform model C1. However,
model C6 (adding electricity prices) improves the RMSE by 1.52%. The improvement by
integration of electricity prices could be explained by an indirect influence of coal prices
since electricity prices are coupled with electricity production which in turn is coupled
with coal consumption and thus also coal prices.

Figure 11 compares the best coefficient of determination for each of the different input
parameter combinations. In fact, model C1 (i.e., using historic CO2 prices only) outperforms
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all complex network configurations during training considering R2. Generally speaking,
the variation of input parameters shows only little effect on the training accuracies of the
network. However, it has a higher impact on testing accuracies, as Figure 11 shows.

Figure 11. Training and testing R2 for different network configurations of the carbon price
forecasting model.

The introduction of exogenous variables seems to have only little influence on the
model performance. Even though there is no improvement in model C6 regarding its R2,
there is a slight reduction in the RMSE. Hence, model C6 serves as a setup for the following
network variation. The analysis of network optimization demonstrates that the linear
activation function improves the RMSE (0.325 EUR/tCO2) of model C6 by 7.05% and the R2

(0.96) by 0.61%. Adding a second hidden layer, the RMSE (0.325 EUR/tCO2) decreases again
by 0.09%. Since this improvement is negligible but results in a more complex network, a
second layer is disregarded.

Using purelin as an activation function, the number of hidden nodes does not show a
high sensitivity since the lowest RMSE of 0.325 EUR/tCO2 (lag 50) and the highest RMSE
of 0.335 EUR/tCO2 (lag 70) diverge by only 2.86%. This fact also supports the thesis of
strong autoregressivity [64,65]. The results are consistent with the study of Zhu [48] using
an ARIMA model for price prediction which performs (with an RMSE of 0.300 EUR/tCO2)
similarly to the neural network with an RMSE of 0.299 EUR/tCO2 in their study.

To sum up, the parameter variation exhibits the following parametrization of the
neural network to have the best performance for CO2 price prediction: using a feed-
forward neural network with 1 hidden layer containing 50 hidden nodes and a linear
activation function as well as the Levenberg–Marquardt training algorithm. With regard
to the input parameters, the following variables provide the best forecast (in addition to a
weekly and monthly indicator): historical carbon prices of up to seven days ago. Further
exogenous variables lead to contrary results, showing an improvement in the RMSE by the
introduction of electricity prices with a time lag of seven days whereas R2 worsens by 1.11%
in this input configuration. Figure 12 shows the forecasted carbon prices in validation fold
3 (7 October 2016–29 December 2017) and compares them to the actual historic prices.
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Figure 12. Visual comparison of historic carbon prices and prediction results of the optimized network
configuration in validation fold 3.

4.2.3. Discussion of Determinants

The CO2 price time series itself predominantly affects the prediction errors as it con-
tains a strong increase in prices in 2018 due to political regulations described in Section 3.3.1.
Comparing both analyses (once considering fold 4 and once neglecting fold 4) for the net-
work setup of CO2 prices of up to seven days back and five hidden neurons, considering
fold 4 leads to a RMSE of 1.354 EUR/tCO2, which is 3.8 times higher than when neglecting
fold 4 (RMSE: 0.355 EUR/tCO2). This is in line with the analysis of eight different markets
in China by Lu et al. [43] who identify the data set itself as the main determinant, showing
results which differ up to 92% from another.

4.2.4. Comparison with the Literature

The comparison with forecasting results in [46,47,49,50,52] shows that the obtained
testing RMSE of 0.33 EUR/tCO2 of the network configuration in model C6 (corresponding to
a testing NRMSE of 0.023) is in line with the status-quo of CO2 price prediction (Figure 13).
Atsalakis [49], for example, states an RMSE of 0.27 EUR/tCO2, Zhu [48] an RMSE of
0.3 EUR/tCO2, and Fan et al. [52] an RMSE of 0.27 EUR/tCO2. The three studies have in
common the fact that they achieve these very good results just by using historical CO2
prices as the input without any exogenous variables. Nevertheless, Zhang et al. [45] also
achieve very good results with an average RMSE of about 0.12 EUR/tCO2 by introducing
an economic index and a coal index. In contrast to this, the neural network of Tsai and
Kuo [50] show comparatively poor RMSEs which could be a consequence of the very small
data set under consideration.

Figure 13. Comparison of the RMSE of model C6 with results from the literature [46,47,49,50,52].
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4.3. Comparison of the Prediction Performance of Gas and Carbon Prices

For a final comparison of the performance of the gas and carbon price predictions,
Table 7 sums up the prediction accuracies of the models. This serves as a quantitative
compilation of the graphical results as presented in Figures 7 and 11. The table compares
the best performing and worst performing model for each of the network configurations
(i.e., G1–G7 and C1–C6).

Table 7. Comparison of the prediction accuracies of the different models.

Model Name
Best Model Worst Model

R2 Train R2 Test R2 Train R2 Test

Gas price prediction

Model G1 0.984 0.960 0.977 0.757
Model G2 0.986 0.960 0.985 0.748
Model G3 0.986 0.965 0.987 0.908
Model G4 0.985 0.960 0.985 0.838
Model G5 0.985 0.960 0.988 0.740
Model G6 0.979 0.910 0.916 0.603
Model G7 0.971 0.936 0.971 0.403

Carbon price prediction

Model C1 0.993 0.969 0.993 −0.845
Model C2 0.993 0.967 0.993 −2.692
Model C3 0.993 0.962 0.994 −0.002
Model C4 0.993 0.968 0.995 0.171
Model C5 0.993 0.967 0.994 −0.333
Model C6 0.992 0.959 0.990 −1.771

5. Conclusions

This paper presents an approach to systematically parametrize and optimize the inputs
and network configuration of neural network for short-term price predictions and applied
it to natural gas and carbon prices. The simulations carried out show that both natural
gas and carbon prices can be forecasted with simple multi-layer perceptrons with a high
level of accuracy. Recent successful applications of artificial neural networks for quantum
computing (cf. [66–69]) further affirm the potential of such approaches for future robust
and fast price predictions.

Results display that the selection of appropriate lags of gas and carbon prices account
for the autoregressive properties of the time series which lead to a high degree of forecast-
ing accuracy. Additionally, including temperature data can reduce errors of natural gas
forecasting whereas carbon price predictions benefit from electricity prices as a further
explanatory input.

The best configurations presented in this contribution are as follows. Using a feed-
forward network with one hidden layer containing seven hidden nodes and a hyperbolic
tangent activation function as well as the Levenberg–Marquardt training algorithm shows
the best results for gas price predictions. Regarding the choice of input parameters, weekly
and monthly indicators in combination with historical gas prices of up to five days ago and
temperature forecasts of up to three days in the future as well as historic temperature from
one day before provide the best forecast. This combination achieves a root mean square
error (RMSE) of 0.64 EUR/MWh and an accuracy of XY in the testing data set.

For the prediction of carbon prices, using a feed-forward neural network with 1 hidden
layer containing 50 hidden nodes and a linear activation function as well as the Levenberg–
Marquardt training algorithm performs best. A weekly and monthly indicator as well as
historical carbon prices of up to seven days ago are the best set of input parameters in our
study. This leads to an RMSE of 0.33 EUR/tCO2 and an accuracy of X during testing.
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The proposed optimization approach helps to identify the most appropriate setup
and to discuss the impact of different exogenous input parameters on the prediction
performance. Treating the neural networks as a blackbox (cf. also Zhang et al. [26] and
Tzeng and Ma [27]), the proposed approach offers a way to experimentally, practically, and
results-driven optimize these networks. In light of the results of this study, we draw a two-
dimensional recommendation. Firstly, due to the strong autoregressive character of carbon
and natural gas price predictions, simple one-layered FFNN typically delivers satisfying
accuracies. Secondly, and directly linked to the first recommendation, the autoregressive
character demands the thorough preprocessing of natural gas or carbon price data to
identify potentially interesting lags. This goes hand in hand with a critical analysis of the
time series included in training and testing: as our results for carbon price forecasts showed,
the price increase in 2018 drastically deteriorated the quality of forecasting, which, when
not considered in the interpretation, could potentially lead to the selection of suboptimal
parameters and network configurations. In a similar manner, the recent developments
and massive price increases on especially natural gas but also carbon markets cannot be
represented by the current parametrization of the networks as prices are on an historically
high and unseen level. This demand further work, namely that including the impact of
extreme price gradients as well as differences in overall price levels.

Yet, it has to be noted that the chosen approach for input variable selection certainly
affects the results and optimal network configuration. We carefully selected the input
variables by an extensive literature review as well as auto correlations and cross correlations.
In doing so, we preselected potential variables as well as the order they are added to the
model. The variables were then added to the model in the order of their explanatory
power for the respective target. While such ex-ante selections of explanatory variables
and their order of being added to the model are common (cf., as an example, [70] using a
sensitivity score to evaluate the order of variables) they can also lead to suboptimal results
as they do not analyze the entire set of possible input variable combinations. However,
they show a path towards a systematical yet computational cheap variable selection. Still,
further research should focus on the impact of the order in which the variables are added
to the models.

Since there are also other influential factors on gas and carbon prices relying on
unquantifiable data or events (e.g., in politics, due to pandemics, or due to crises), further
increasing the predicative accuracy while maintaining a robust model is a challenging task.
Parameters such as strategic behavior or political and geopolitical factors are particularly
of the utmost importance for the stock prices but are difficult to be quantified or linearly
separated for use in FFNN. Yet, future work on the forecasting of natural gas and carbon
prices should consider additional explanatory variables such as the demand for natural gas,
environmental indicators such as the clean energy index or the air quality index especially
for carbon prices, and economic indicators (such as the German DAX index). In addition,
the difference in using predicted values for temperatures and not the actual values (as
we applied) could be subject to further analysis. Also, the integration and analysis of a
holiday indicator would be of interest (yet difficult to define for the German case due to its
federalist structure).
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Nomenclature

Latin Letters
NRMSE normalized root mean square error
R2 coefficient of determination
T number of time steps t in time series
x̂t historic value of variable x at time t
xt predicted value of variable x at time t
Abbreviations
ACF autocorrelation function
AGSI+ aggregated gas storage inventory
ANN artificial neural network
ARIMA auto-regressive integrated moving average
ARX autoregressive model with exogenous variables
BPNN backpropagation neural network
CEEMDAN complete ensemble empirical mode decomposition with adaptive noise
DAX German stock index
ECP D0 daily settlement prices of daily future carbon certificate contracts
EGSI European gas spot index
EMD empirical mode decomposition
ETS EU emissions trading system
EUA European union allowance
FFNN feed-forward neural network
GARCH generalized autoregressive conditional heteroscedasticity
ICE international climate exchange
LSTM long short term memory
MLP multilayer perceptron
MSE mean square error
NAR nonlinear autoregressive model
NARX nonlinear autoregressive model with exogenous variables
NCG NetConnect Germany market zone
NRMSE normalized root mean square error
PACF partial autocorrelation function
PEGAS pan-European gas cooperation
purelin linear transfer function
RBF radial basis function
RES rule-based expert system
RMSE root mean square error
RNN recurrent neural network
satlins symmetric saturating linear transfer function
tansig hyperbolic tangent transfer function
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