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Abstract: This study discusses the resonance characteristics of the LLC resonant half-bridge converter
and smart battery charging for the fast charging of personal mobility devices (e.g., electric kickboards,
segways, hoverboards, electric bicycles, and electric motorcycles), whose use is rapidly increasing.
Through the analysis of resonance characteristics, this study aims to validate that fS > f 0 is the most
appropriate correlation in the relationship between resonant frequency (f 0) and switching frequency
(fS) that is suitable for the rapid charging of batteries of personal mobility devices. Additionally, the
proposed half-bridge converter does not charge the battery from discharge or misconnection based
on the detection of the battery voltage for the batteries of personal mobility devices. Therefore, the
proposed converter suggests a charging system based on battery state detection that stably performs
rapid charging of the batteries of personal mobility devices by equalizing the battery voltage and the
charger voltage through a pre-charge operation.

Keywords: personal mobility devices; rapid charging; smart battery charging; LLC; half-bridge; converter

1. Introduction

This study discusses the resonance characteristics of the LLC resonant half-bridge
converter for the fast charging of batteries of personal mobility devices and smart battery
charging. Recently, a new type of transportation that can accomplish tens of kilometers of
travel using an AC 220 V battery has been realized.

Particularly, the new means of transportation, including electric wheelchairs, electric
bicycles, electric motorcycles, electric wheels, hoverboards, segways, and micro electric
vehicles, basically does not generate pollution or fine dust, such as carbon (CO2) and
nitrogen (NOX). As well as this advantage, it is based on a simple payment method using a
smart phone and a location-based global positioning system [1,2].

Lee et al. analyzed and compared an asymmetric half-bridge (AHB) converter, a
two-transistor forward converter, and an active clamp forward converter. They determined
that among the three topologies, the AHB converter with the smallest current flowing
through the switch, diode, and inductor of the converter is the most efficient [3].

Yong et al. analyzed and compared the topologies of an AHB converter and an LLC
resonant converter in terms of the conduction and switching loss of the primary side of the
transformer. They found that the efficiency of the LLC resonant converter is about 2~3%
higher than that of the AHB converter [4].

Lu et al. [5] and Choi [6] analyzed the series resonance characteristics of LLC resonant
converters, and Beiranvand et al. investigated the optimal design method of LC–LLC
resonant converters that are suitable for large output voltage and load fluctuations [7].

Gu et al. studied an LLC series resonant converter based on a three-level topology
suitable for high voltage input and high power output [8]. Yong et al. proposed a magnetic-
type LLC resonant converter [9].
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Kim et al. proposed LLC resonance on the secondary side of a transformer for the
transformation of various resonance methods in relation to the LLC resonance type [10].

Chen et al. employed LLC resonance in a bidirectional converter [11], Cheng et al.
analyzed the LLC parallel resonance method [12], and Cheng et al. analyzed the LLCC
parallel resonance method [13].

Recently, studies on the topology suitable for high current loads have been actively
conducted. Feng et al. determined that the on-resistance (Rds_on) of the switch is smaller
than the voltage drop (VD) of the rectifier diode on the secondary side of the transformer,
resulting in a low voltage and high current output. Additionally, they studied a suitable
synchronous-rectifier-based LLC converter [14].

Lin et al. proposed an LLC converter based on a current doubler rectifier circuit [15],
and Mishima et al. proposed a full-bridge-based converter with four switches for large
power conversion [16]. Bhat et al. designed a bridge circuit with six switches [17].

Yi and Moon proposed a power supply wherein two LLC resonant converters operate
in parallel and perform interleaved operations [18], and Gu et al. proposed a voltage
doubler circuit that is suitable for the high voltage output of an LLC converter [19].

To reduce the switching loss of an LLC resonant converter, Mishima et al. proposed
the zero current switching (ZCS) method based on the arrangement of an active clamp
circuit, wherein an auxiliary switch and auxiliary diode are placed in parallel with the main
switch [20]. Huang studied operating waveform for LLC resonant converter according
to the resonant frequency [21], and Han et al. analyzed efficiency of the LLC resonant
converter according to the resonant frequency [22].

Various studies related to LLC resonant converters are being conducted [23–27].
Through resonance characteristic analysis, this study aims to validate that fS > f 0 is

the most appropriate correlation in the relationship between resonant frequency (f 0) and
switching frequency (fS)that is suitable for the rapid charging for batteries of personal
mobility devices.

The proposed smart battery charging system is technically characterized; in other
words, no initial overcurrent occurs during battery charging and the battery does not
charge when it is discharged or mis-wired according to the detection of the battery voltage.
This study proposes a battery charging system based on battery state detection that stably
performs the rapid charging of the batteries of personal mobility devices by equalizing the
battery and charger voltages through a pre-charge operation.

Based on the 1.5 kW class prototype, the efficiency and suitability of the proposed
converter for the rapid charging of the batteries of personal mobility devices are inves-
tigated, and the feasibility of the proposed converter is discussed through simulations
and experiments.

2. Characterization of the Proposed LLC Resonant Half-Bridge Converter

Figure 1 displays the circuit diagram of the LLC resonant AHB converter. The proposed
LLC resonant AHB converter circuit comprises main switches (S1 and S2), the resonant
network (Lr, Cr, and Lm), a main transformer, and secondary rectifier diodes (D1 and D2).
In the proposed converter, the switches and the secondary rectifier diodes operate at zero
voltage switching (ZVS) and ZCS and fS > f 0.

Since the proposed converter is based on the series resonance method, magnetizing
inductance (Lm) participates in the resonance and the input/output voltage conversion
ratio (Mg) can be derived based on f 0.

Figure 2 displays the operating waveform of the LLC resonant AHB converter that is
suitable for battery charging. For the mode analysis of the LLC resonant AHB converter,
the following assumptions are made.
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Figure 2. Operating waveform for proposed LLC resonant AHB converter.

First, the main switches and secondary rectifier diodes are ideal.
Second, the main switches comprise an ideal switch and an anti-parallel diode.
Third, the transformer considers the ideal Lm and leakage inductor (Lr).
Fourth, the output capacitor (CO) is very large and operates as a constant voltage

source in a steady state.
Fifth, the LLC resonant converter operates in a steady state.
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(1) Mode 1 (T0 – T1)

Figure 3 shows the current conduction path of mode 1 and the current flow for the
dead time area corresponding to the mode 1 (T0 – T1) section in Figure 2. The switch
S2 is on in the period before t = T0. The switch S2 is turned off at t = T0. Here, the
current flowing in Lr is negative (−) due to the continuous flow and the resonance path
Lm − Lr −Cr − S1 −Vin results in the flow of a negative (−) Lr current.
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Figure 3. Current conduction path in mode 1.

Therefore, since the voltage across switch S1 = 0, at t = T1, the switch S1 is turned on
under the condition of ZVS; thus, the switching turn-on loss is zero (0).

The secondary rectifier diode D1 of the transformer secondary side is conducting and
the current continuously flows. The voltage across the transformer’s Lm is Vo

n (where n is
the winding ratio of the transformer), and the current of the transformer’s Lm increases
with a slope of Vo

n Lms. Therefore, in mode 1, the current of Lr is relatively larger than the
current of Lm.

(2) Mode 2 (T1 – T2)

Figure 4 shows the current conduction path of mode 2. It displays the current flow for
the area corresponding to the mode 2 (T1 − T2) section in Figure 2. As shown in the mode
2 section waveform in Figure 2, at t = T1, the switch S1 is turned on under the condition
of ZVS. Moreover, the current of Lr has a positive (+) value and gradually increases, and
the voltage across both ends of Lm is applied as Vo

n . Thus, the current of the Lm of the
transformer increases with a slope of Vo

n Lm. During the mode 2 section, Lr − Cr resonance
current flows and series current resonance is achieved. The rectifying diode D1 on the
secondary side of the transformer is conducting and the current continuously flows. The
remaining half-cycle follows the same process as that of mode 1.
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Figure 5 shows the operating waveform of the LLC resonant converter according to
the resonant frequency [21]. To date, various studies have been conducted on the design of
the resonant frequency of the LLC resonant converter. For LEDs and laptops with relatively
small load fluctuations, studies have been conducted to design the LLC resonant frequency
as fs = f0 or fs < f0 [4–9].
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For LEDs and laptops, wherein the load characteristics are almost unchanged, the LLC
resonant frequency setting is designed under the condition of fs = f0 or fs < f0 to ensure
full or heavy load, respectively. It was proposed to supply the power necessary during the
heavy load condition [4–9]. This method exhibits excellent efficiency under full and heavy
load conditions, but it is not suitable for battery charging because the battery efficiency
rapidly deteriorates under light load conditions [6,22].

Figure 6 shows the efficiency curves at resonant frequencies fs > f0 and fs ≤ f0 [6,22].
As shown in Figure 6, the efficiency of the converter at the resonant frequency is about 90%
under heavy load, but the efficiency rapidly decreases under light load. At the resonant
frequency fs > f0, the efficiency curve continuously exhibits high efficiency under full and
heavy load as well as light load conditions [6,22].
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As shown in Figure 6, the resonant frequency fs > f0 of the proposed AHB converter
is more than 5% under the full load condition and more than 10% under the light load
condition. Thus, compared to existing converters with fs ≤ f0, the proposed converter
exhibits higher efficiency [6,22].

Therefore, herein, the LLC resonant AHB converter is applied as the circuit implemen-
tation method of a rapid charging apparatus for charging the batteries of personal mobility
devices. For battery charging, a full load or heavy load is applied initially and a light load
is continuously applied at the end. The validity of the proposed method was verified via
comparison with the results of previous studies [6,22].

3. Input/Output Voltage Conversion Ratio of LLC Resonant Converter

Figure 7 shows the LLC resonant AHB converter circuit and the AC equivalent circuit.
From Figure 7, the following relational expressions (1) and (2) can be derived [6].

VRo
F =

4Vo

π
sin(ωt) (1)

Iac =
π Io

2
sin(ωt) (2)

Therefore, based on the output voltage conversion formula, the equivalent load resis-
tance (Rac) can be expressed as follows:

Rac =
VRo

F

Iac
=

8
π2

Vo

Io
=

8
π2 Ro (3)

Considering the transformer turns the ration
(

n =
Np
Ns

)
, the Rac is obtained as

Rac =
8

π2

(
Np

Ns

)2
Ro =

8
π2 n2Ro (4)

From the AC equivalent circuit of the LLC resonant converter shown in Figure 8, the
impedances of Lr, Cr, and Lm can be defined as follows.
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Impedance of Lr: XLr = ω Lr

Impedance of Cr: XCr =
1

ω Cr

Impedance of Lm: Xm = ω Lm

Based on the impedances defined above, the voltage ratio between the input (VAB) and
output (VCD) of the LLC resonant converter (Figure 8) can be expressed as Equations (5)–(8).

VCD
VAB

=
jXmRac/(jXm + Rac)
jXmRac

jXm+Rac
+ jXLr − jXCr

(5)

VCD
VAB

=
jXmRac

jXmRac + (jXLr − jXCr ) (jXm + Rac)
(6)

VCD
VAB

=
1

1 + j XLr
Rac
− j XCr

Rac
+

XLr
Xm

− XCr
Xm

(7)
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VCD
VAB

=
1(

1 + XLr −XCr
Xm

)
+ j

(
XLr −XCr

Rac

) (8)

∣∣∣∣ VCD
VAB

∣∣∣∣ = 8
π2√√√√ 1 +

(
ωLr −

1
ωCr

ωLm

)
+

(
ωLr −

1
ωCr

Rac

)2
(9)

∣∣∣∣ VCD
VAB

∣∣∣∣ = 8
π2√ (

1 + Lr
Lm
− Lr

ω2Cr Lr Lm

)2
+
(

ωLr
Rac

− 1
ωCr Rac

)2
(10)

From Equation (10), the following can be defined.

- Quality factor: Q = ω0 Lr
Rac

= 1
ω0 Lr Rac

- Resonant angular frequency: ω0 = 1√
LrCr

- Normalized angular frequency: ωx = ω
ω0

- Normalized frequency: fn = ωx
2π

Subsequently, the total voltage ratio (Mg) of the input and output including the
secondary rectifier diode can be expressed as Equations (11) and (12).

Mg =

∣∣∣∣ VCD
VAB

∣∣∣∣ = 8
π2√ (

1 + Lr
Lm

(
1− 1

ωx2

) )2
+ Q2

(
ωx − 1

ωx

)2
(11)

where
m =

Lm + Lr

Lr
→ Lm

Lr
= m− 1

Mg =

∣∣∣∣ VCD
VAB

∣∣∣∣ = 8
π2 ωx

2√ (
ωx2 + Lr

Lm
( ωx2 − 1)

)2
+ Q2ωx2(ωx2 − 1)2

(12)

The final Mg can be expressed as follows:

Mg =

∣∣∣∣ VCD
VAB

∣∣∣∣ = 8
π2

ωx
2 (m− 1)√

(m ωx2 − 1 )
2 + Q2ωx2(ωx2 − 1)2

(m − 1)2
(13)

4. Analysis of Resonance Characteristics of LLC Resonant Converter

Figure 9 shows the voltage gain curve of the LLC resonant converter versus the frequency.
This figure shows the Mg value when the normalized frequency

(
Mg
2π

)
is between

0.3 and 2.5. As shown in Figure 9, for an LLC resonant converter, the reference frequency
to be controlled can be defined in different ways considering the resonance characteristics.
Generally, when the fS of the main switch in an LLC resonant converter operates below
the f0.

When an LLC resonant converter operates in the ZCS region and operates above f0,
the switching operation is performed in the ZVS region [6,22].

As described above, if the LLC resonant converter is designed under the condition
of fS = f0 or fS < f0, the efficiency under full and heavy load conditions is excellent, but
it is not suitable for lithium-ion battery chargers because the efficiency under light load
conditions rapidly decreases [10].
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In a rapid charger for battery charging, operating fS under the condition fS > f0 is
desirable, as it yields excellent efficiency in the entire load range and greatly reduces the
circulating current of the resonant circuit [22].
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Figure 9. Gain curve of LLC resonant converter according to rrequency.

In this study, considering the m = 1.5, 6.0, 15, 30 and Q = 0.1, 0.5, 0.7, 1.0, 5.0, 10.0
conditions for the proposed LLC resonant AHB converter and the input and output accord-
ing to the frequency at each load, Mg was simulated using MATLAB Version 9.4.

Figure 10 shows the MATLAB simulation results.
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In Figure 10, the Mg values obtained under the full and light load conditions in the
LLC resonant converter are compared.

As seen in Figure 10, when the m value is designed to be small, the change in total
voltage gain (Mg) is large between light load and full load. And when the m value is
designed to be large, the change in total voltage gain (Mg) is small.

In addition, as the Q value decreases, the load increases and the total voltage gain
(Mg) increases, and as the Q value increases, the load decreases and the total voltage gain
(Mg) decreases.

5. Smart Battery Charging System

Figure 11 shows the smart battery charging system located at the output stage of the
LLC AHB converter.
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Figure 11. Smart battery charging system placed at the output stage of the LLC half-bridge converter.

The smart battery charging system detects the battery connection through the follow-
ing process:

(1) Detect the (+) voltage of the battery through the voltage sensor (VS).
(2) Inject a 15 V, 0.1 Hz pulse into the (+) terminal of the battery.
(3) Compare whether the maximum voltage of the pulse is greater than or equal to the

minimum voltage of the battery.
(4) Check whether the current flowing through the battery is 0.5 A through the switch (S)

and diode (D).
(5) Check whether the output voltage of the LLC half-bridge converter and the voltage of

the battery are equal.
(6) Check whether the output voltage of the LLC half-bridge converter and the voltage of

the battery are the same.
(7) The output current of the LLC half-bridge converter gradually increases, and after the

maximum output current is reached, the output current gradually decreases.

Figure 12 displays the detailed circuit diagram of the pulse injection circuit of the
proposed smart battery charging system. Pulses are continuously injected through the first
pulse driving circuit.
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Figure 12. Detailed configuration of the pulse injection circuit.

The voltage feedback circuit detects the battery voltage, and when the maximum
value of the pulse voltage matches the battery voltage, the diode (D) conducts. Moreover,
the second pulse driving circuit is operated by the first comparator (OP Amp1), and
the switch (S) is conducted through the operation of the second comparator (OP Amp2).
When the output current detects 0.5 A, the LLC half-bridge converter smartly detects
whether the battery is connected to the output terminal and whether the battery voltage is
normally generated.

Figure 13 displays the operating waveform of the proposed smart battery charging
system. The 15 V, 0.1 Hz pulse train checks whether the battery is properly connected to
the output terminal. When the maximum value of the pulse voltage matches the battery
voltage, an output current of 0.5 A flows while the diode (D) and switch (S) operate.
Thereafter, the output voltage of the LLC half-bridge converter gradually increases, and
when the output voltage becomes equal to the battery voltage, the relay is turned on.
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Figure 14 shows the battery charging voltage and current waveforms when no smart
battery charging system is employed.
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Figure 14. Battery charging voltage and current waveforms without the smart battery charging system.

When the output voltage of the LLC half-bridge converter and the battery voltage
differ, a sudden inrush current of more than 40 A is generated in the battery, which impacts
the separator of the lithium-ion battery.

Figure 15 shows the battery charging voltage and current waveforms when a smart
battery charging system is employed.
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Figure 15. Battery charging voltage and current waveforms with the smart battery charging system.

The proposed charging system detects the normal connection of the battery, gradually
matches the output voltage of the LLC half-bridge converter with the battery voltage, and
gradually increases the charging current of the lithium-ion battery by gradually increasing
the output current of the battery.

Furthermore, the proposed charging system compares whether the maximum voltage
of the pulse train is higher than the battery voltage when the polarity of the battery is
reversed, and the relay does not operate when it is high. Thus, the proposed system is
effective during mis-wiring and ensures the stable charging of the battery.

6. Simulation and Experimental Results

Table 1 presents the apparatus and circuit parameters used to manufacture the hard-
ware for the personal mobility device rapid charging apparatus. Figure 16 shows the
experimental apparatus for the experiment of the proposed circuit and a picture of the
manufactured LLC resonant AHB converter, and Figure 17 depicts the simulation circuit of
the LLC resonant AHB converter for the proposed fast charging apparatus.
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Table 1. Component and circuit parameters used in hardware fabrication.

Input Voltage (Vin) 100–240 V

Output Voltage (Vout) 28 V

Output Power (Pout) 1.5 kW (28 V, 50 A)

Main Transformer (Trans.)
EE 5040 × 4, Magnetics

N1:N2 = 22:4,
Lr = 11.72 µH

Input Capacitor (Cin) 68 µF × 6 = 408 µF

Resonant Capacitor (Cr) 1 µF

Main Switch (S1, S2) OSG60R092H
Oriental Semiconductor

Secondary Rectifier Diode NCEP026N10
NCE POWER

Output Capacitor (Cout) 1200 µF × 8 = 8400 µF

Li-ion Battery 28 V, 57 Ah, 1500 Wh,
Samsung SDI

Switching Frequency 150 kHz
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Figure 16. Experimental apparatus for the proposed LLC resonant half-bridge converter. (a) Exper-
imental apparatus. (b) Proposed LLC resonant half-bridge converter. (c) Proposed smart battery
charging system.
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Figure 17. LLC resonant half-bridge converter simulation circuit for the proposed fast charging
apparatus (PSIM simulation).

Figure 18 presents the voltage and current simulation waveforms of the upper and
lower main switches (S1 and S2, respectively).
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Figure 18 shows that both S1 and S2 operate stably with ZVS.
Figures 19 and 20 show the PSIM simulated and experimental waveforms of the gate

signal (Vgate), low-side switch voltage (VS2), and transformer current (Itrans).
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Figure 20. Gate signal, lower switch voltage, and transformer current waveform (experimental waveform).

Comparing the voltage and current waveforms in Figures 19 and 20, the shapes of
the waveforms generally match. Thus, the simulations and experiments confirm that fS
operates under the condition of fS > f0.

Furthermore, the ZVS operation is stably performed without a voltage spike during
operation of S1 and S2.

Figure 21 displays the simulation circuit of the LLC resonant half-bridge converter for
feedback simulation using PSIM simulation, and Figure 22 exhibits the PSIM simulation
waveforms of the load variable output voltage and output current.
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Figure 22. Output voltage and current waveform when load is changed (PSIM simulation).

Figure 23 shows the experimental waveforms of the output voltage and output current
obtained when the load is changed.

A comparison of the PSIM simulation waveform in Figure 22 with the experimental
waveform in Figure 23 shows that they are almost identical. In Figure 23, the output voltage
of the LLC resonant half-bridge converter is tested at 28 V and the load current is varied
from 15 to 50 A, which experimentally confirms the stable operation of the LLC resonant
half-bridge converter with load changes.
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Figure 23. Output voltage and output current waveform when load is changed (experimental waveform).

For the proposed LLC resonant half-bridge converter for the batteries of personal
mobility devices, since a large current of 50 A is output at the maximum output current, no
inrush current should be generated during initial startup.

Therefore, in the LLC resonant half-bridge converter, the current needs to be gradually
increased through the frequency duty control of the main switch.

When an inrush current is generated during the initial start-up, continuous stress is
applied to the lithium-ion battery, which may damage the separator of the lithium-ion
battery. Subsequently, the lifespan of the battery could be reduced.

Therefore, rapid chargers based on the proposed LLC resonant half-bridge converter
are characterized by a gradual increase in the current with a constant slope during the
initial startup without the generation of an inrush current.

Figure 24 shows the experimental waveforms of the input voltage, input current,
output voltage, and output current at full load.
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Figure 25 presents the efficiency characteristics according to the input voltage and
load current. A charging test is performed for a lithium-ion battery using the rapid charger
based on the proposed LLC resonant half-bridge converter.
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Table 2. Comparison of Previous and Proposed Charging System. 

Division 
Previous Converter without Smart Ba�ery 

Charging System 

Proposed Converter with Smart Ba�ery 

Charging System 

Inrush Current Existing (Max: 20 A) Does not exist 

Ba�ery A�ached Detec-

tion 

Output generation regardless of ba�ery 

a�achment 

Output is generated only when the ba�ery is 

a�ached 

Additional Effect 

- Undervoltage Problem 

- Wrong Wiring Problem 

- Mis-wiring Problem 

- Short Circuit Problem 

- UVP (Undervoltage Protection) 

- Wrong Wiring Protection 

- Mis-wiring Protection 

- Short Circuit Protection 

7. Conclusions 

This study proposed an LLC resonant half-bridge converter for the rapid chargers 
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The results show that the overall efficiency of the battery is about 86–93%.
The input voltage is varied from 100 to 240 V, and the overall efficiency is measured

at the output current of up to 50 A. The efficiency increased with the input voltage and
load current.

This experiment verifies that the maximum efficiency is 93.564%, and 28 V, 50 A is
stably output without an initial inrush current.

Therefore, the simulations and experiments confirm that the rapid charging apparatus
based on the proposed LLC resonant half-bridge converter is suitable for charging the
batteries of personal mobility devices.

Table 2 compares the proposed charging system to the previous one.

Table 2. Comparison of Previous and Proposed Charging System.

Division Previous Converter without Smart Battery
Charging System

Proposed Converter with Smart Battery
Charging System

Inrush Current Existing (Max: 20 A) Does not exist

Battery Attached Detection Output generation regardless of
battery attachment

Output is generated only when the
battery is attached

Additional Effect

- Undervoltage Problem
- Wrong Wiring Problem
- Mis-wiring Problem
- Short Circuit Problem

- UVP (Undervoltage Protection)
- Wrong Wiring Protection
- Mis-wiring Protection
- Short Circuit Protection

7. Conclusions

This study proposed an LLC resonant half-bridge converter for the rapid chargers of
personal mobility devices.

The operation of each mode of the LLC resonant half-bridge converter were analyzed:
fs = f0, fs < f0, and fs > f0.

The LLC resonant AHB converter was used in the charging apparatus of personal
mobility devices. In terms of battery charging, a full load or heavy load was initially
applied and a light load was continuously applied toward the end. The LLC resonant AHB
converter method that operates at fs > f0, was found to be the most appropriate.

Subsequently, the mathematical modeling of the Mg of the LLC resonant converter
operating under fs > f0 conditions was performed.

The conversion ratio curves of the proposed LLC resonant converter at full and light
loads were simulated using the MATLAB program.
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Additionally, to validate the proposed method, PSIM was used to simulate and experi-
ment with an LLC resonant AHB converter capable of rapidly charging a 1.5 kW battery.

The proposed charging system detects the normal connection of the battery in real
time, starts charging, gradually matches the output voltage of the LLC AHB converter with
the battery voltage, and gradually increases the output current of the battery. It smoothly
charges Li-ion batteries. If the polarity of the battery is incorrectly connected, the output
relay does not operate, thereby improving safety during battery charging. The efficiency
of the proposed converter was determined by varying the output voltage of 28 V and the
load current from 15 to 50 A. The converter responded stably to the load changes in the
experiment, and the maximum efficiency was 93.564%.

The proposed converter is suitable for the rapid charging of micro-electric vehicles
and mobility device batteries, and it is expected to have wide application prospects.
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