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Abstract: The assessment of geothermal potential has gained prominence among scholars, with
a focus on establishing a reliable prediction model to reduce development risks. However, little
attention has been given to predicting and evaluating the geothermal potential in Dali’s Eryuan
area. This study introduces a novel hierarchical model integrating remote sensing, a Geographic
Information System (GIS), and geophysics for the first-ever effective prediction of geothermal po-
tential in Eryuan. The dataset includes lithology, seismic epicenter data, fault distribution, Bouguer
gravity anomalies, SRTM-DEM images, and Landsat 8 remote sensing images. These datasets are
converted into evidence maps and normalized to generate distinct evidence factor layers. Using the
Analytic Hierarchy Process (AHP), a hierarchical model establishes weights for each evidence factor,
resulting in a comprehensive prediction map. The results reveal the overall favorable geothermal
potential in Eryuan, except the central area. Key hotspots include the Niujie–Sanying–Gromwell
Lake and Liantie–Qiaohou, followed by the Youshou, Dengchuan, and Xixiang towns. Validation
against known hot springs confirms the model’s accuracy and reliability.

Keywords: geothermal anomalies; GIS and remote sensing; hierarchical structure models;
spatial analysis

1. Introduction

As non-renewable fossil energy sources such as oil and natural gas continue to dimin-
ish and deplete, geothermal energy has emerged as a renewable, clean, and environmentally
friendly alternative [1,2]. Geothermal energy is a special mineral resource and is able pro-
mote to human economic development and the utilization of the Earth’s internal thermal
energy resources, with large reserves and wide distribution, and it is clean, environmen-
tally friendly, stable, reliable, etc. It is the Earth’s cleanest green, low-carbon, recyclable
renewable energy [3]. In recent years, the prediction model of geothermal anomaly areas
has been a focal point of research for geothermal experts and scholars, both domestically
and internationally.

In the 1970s, American scientist T.L. Saaty proposed the Analytic Hierarchy Process
(AHP) method [4], which combines qualitative and quantitative methods in an analytical
approach. The principle of this method is to establish a hierarchical structure model and
compare elements pairwise to determine the weight values of each element. The distribu-
tion of geothermal resources is typically linked to lithology [5], seismic activity [6], fault
distribution [7], Bouguer gravity anomaly [8], surface temperature [9], and various other
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factors. Numerous scholars from China, the United States, and Japan have effectively pre-
dicted and assessed geothermal resources, as well as unexplored geothermal zones, through
the development of mathematical models that incorporate influencing factors closely associ-
ated with geothermal phenomena. In 2013, Chinese scholar Kong Weizhen et al. combined
the fuzzy summation analysis method with the AHP method to establish a fuzzy AHP
method and created an evaluation method for shallow geothermal energy suitability zoning
based on fuzzy AHP [10]. In 2016, Zhang Yanjun et al. used a Geographic Information Sys-
tem (GIS) environment to predict the deep hydrothermal geothermal potential areas in the
western Anatolian region of Turkey based on five geothermal-related influencing factors,
including seismic epicenters, faults, Bouguer gravity anomalies, magnetic anomalies, and
infrared remote sensing [11].

In 2021, Zuo Liqiong et al. conducted a suitability evaluation of mid-deep geothermal
exploration in Taizhou, Jiangsu, using the ArcGIS geographical information system software
and the comprehensive index method. Eventually, they divided the geothermal resources
in the region into areas with good development and utilization conditions, areas with
relatively good conditions, and general areas [12]. In 2023, Faisal Alqahtani et al. evaluated
the geothermal energy in the Lu’nayyil Volcanic Field in the western part of Saudi Arabia by
using remote sensing, surface temperature, and geophysical data such as gravity, magnetic,
and surface temperature data [13]. The Dianxi region is rich in geothermal resources [14]
and is one of the exploration areas for high-temperature geothermal resources in China.
However, there has been no previous research on predicting favorable geothermal anomaly
areas in the Eryuan area of Dali. This paper, through a multidisciplinary approach that
combines remote sensing, GIS, and geophysics, establishes a hierarchical structure model
to predict geothermal potential in the Eryuan area for the first time. The data used in
this study include lithology, seismic epicenter data, fault distribution, Bouguer gravity
anomalies, SRTM-DEM images, and Landsat 8 remote sensing images. After transforming
these data into evidence maps, they are normalized to generate predictive maps. Then,
based on the hierarchical structure model, the geothermal potential prediction map is
generated. The main purpose of this study is to use freely available datasets and conduct
multi-criteria analysis to predict favorable areas. The combination of different indicators
is supported by expert opinions to generate a priority map for geothermal potential. The
research results will provide a reliable basis for conducting geothermal-related research in
the Dali and neighboring areas. The results of the study show that in the Dali Eryuan area,
all the areas showed good geothermal potential except for the central area. Among them,
the Niujie–Sanying–Gromwell Lake area and the Liantie–Qiaohou area were classified
as primary geothermally favorable areas, whereas the towns of Youshou, Dengchuan,
and Xixiang were presented as secondary geothermally favorable areas. We verified the
accuracy and reliability of the prediction model through validation with known hot spring
sites. In this study, we adopted a multidisciplinary approach, including remote sensing,
GIS, and geophysical techniques, as well as the introduction of hierarchical modeling and
the AHP method, to assess the geothermal potential from the perspective of synthesizing
data from multiple sources. This comprehensive approach is the first of its kind in the
field of geothermal exploration suitability assessment and provides a more comprehensive
and accurate prediction model for the study. In addition, this study incorporates multiple
factors such as lithology, seismic activity, fault distribution, and Bouguer gravity anomaly
into the prediction model and generates a highly credible geothermal potential prediction
map through normalization and weight assignment. The accuracy and reliability of the
prediction model are further ensured through validation with known hot spring points,
which provides a strong scientific basis for the decision-making of actual geothermal
resource development. In summary, this study constructed an innovative geothermal
potential prediction model through the comprehensive use of multidisciplinary methods,
which fills the gap in the assessment of geothermal potential in the Eryuan area of Dali
and provides important theoretical and practical guidance for decision making on the
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development of geothermal resources in similar areas. It has important theoretical and
practical value.

2. Geological Setting of the Study Area
2.1. Stratigraphic Outcrop

The Eryuan area is divided by the Luoping Mountain, with the eastern part being
the Eryuan Basin [15], which has a larger area and more exposed strata [16], mainly from
the Paleozoic era. The western part is the Qiaohou–Hanzhuang Basin, with a smaller area,
and the exposed strata mainly originate from the Mesozoic era. The basement consists
of metamorphic rocks from the Lower Cambrian Cangshan Group, with the absence of
Cambrian strata, and is overlaid by Ordovician strata up to Quaternary strata [17]. Among
these, the primary lithology of the Ordovician Xiangyang Formation comprises gray-white
sandstone and gray-green shale; the main lithology of the Devonian includes gray-black
limestone, dolomitic limestone, and limestone; the primary lithology of the Carboniferous
and Lower Permian consists of light gray and gray-white limestone; the principal lithology
of the Permian Basalt Formation is dense, almond-shaped basalt; the predominant lithology
of the Triassic, Tertiary, and Quaternary periods encompasses sandstone and siltstone [18].
The region has undergone marine sedimentation, with early Paleozoic sedimentation
representing shallow marine facies strata, later followed by thick layers of basic volcanic
rocks. Mesozoic sedimentation comprises shallow marine facies and intercalated marine-
continental facies strata. The Cenozoic era witnessed the development of substantial
intermountain basin conglomerates, sandstones, clays, and fluvial–lacustrine deposits, and
alluvial deposits [19]. The study area is primarily characterized by the exposure of Triassic,
Carboniferous, and Devonian limestones.

2.2. Tectonic Development

During the Paleozoic era, the Eryuan area primarily underwent carbonate platform
sedimentation. Previous research findings indicate that the Mojiang area exhibited a
deep-water depositional environment, while the northern Chenghai region displayed a
coastal depositional environment [20]. Towards the end of the Late Devonian, a marine
transgression occurred, leading to a further deepening of the water bodies within the region.
Throughout the Devonian period, the Yangtze Block and the Lanping–Simao Block had not
yet experienced rifting, resulting in an overall stable platform sedimentation characterized
by the development of open platform facies, platform margin facies, and shallow marine
shelf facies [21]. In the Carboniferous period, the opening of the Paleo–Tethys Ocean caused
rifting along the margin of the Yangtze Block, while the Ailaoshan Ocean separated the
Yangtze Block from the Lanping–Simao Block, creating a stable block with a relatively active
small ocean basin pattern. The predominant sedimentation during this time continued to
involve platform carbonate deposition [22]. The collisional orogeny commenced during
the Permian period. The Triassic sediments exhibit a chronological sequence characterized
by early marine transgression and subsequent marine regression [23]. Throughout the
Early Triassic, the collisional orogenic activity was intense within the region, leading to
the deposition of alluvial fan-dominated terrestrial sediments [24]. In the Middle Triassic,
the Middle Tethys Ocean began to form through tensional rifting in the geologically weak
zones of western Yunnan. This process resulted in the creation of a new oceanic trough
and marked the entry of the study area into a foreland basin stage. By the conclusion of
the Late Triassic, the Middle Tethys Ocean had closed, triggering a retreat of the sea in the
region [25], leading to the gradual transition into a coal swamp environment. The Early
Jurassic period brought about extensive uplift and denudation of the area. Starting from the
Middle Jurassic, the region experienced further uplift, eventually evolving into a terrestrial
environment [26]. This period saw the development of interactions between land and sea,
characterized by the deposition of red land-sourced clastic and carbonate rocks, along with
pre-lake sandy mudstone and coarse land-sourced clastic rocks [27].
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2.3. Geothermal Conditions

Dali Prefecture is situated in the central-western part of Yunnan Province and falls
within the southern extent of the Convection-type Geothermal Resource Belt of the Southern
Tibet–Sichuan–Western Yunnan Uplift Mountain. The region boasts an abundance of
geothermal resources owing to intense tectonic activity and magmatic events [28], earning
it the reputation of being the “hometown of hot springs.” As shown in Figure 1, encircling
the Eryuan Basin, a belt-like distribution of numerous warm (hot) springs is evident,
primarily concentrated in three zones: the Niu Street–Sanying area in Eryuan, the Eryuan–
Liancheng area, and the Xiasankou–Xihu area [29]. Drawing from the collection and
preliminary analysis of past data, a total of 103 geothermal hot spring outcrops have been
identified across the entire 29,459 square kilometers of the prefecture, along with over
30 privately developed geothermal wells. Below the surface, a wealth of heat sources exists,
encompassing geothermal fluids, rock heat conduction, and subterranean hot water.
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Figure 1. Geothermal geologic map of Eryuan County.

The distribution of geothermal temperatures within the Eryuan area remains fairly
uniform, influenced by geothermal heat flow and gradients, with temperature gradients
typically ranging from 25 ◦C to 40 ◦C per kilometer and increasing progressively with
depth [30]. Abundant underground hot water resources are prevalent in this locality,
featuring water temperatures that typically range from 50 ◦C to 80 ◦C, with instances even
surpassing 80 ◦C. These conditions establish a favorable environment for direct geothermal
applications, including heating and hot spring bathing.

Several key geothermal display zones are spread throughout the region, encompassing
Jiutai–Yuhu, Niu Street–Sanying, and Xiasankou–Chengxi–Wenshui, and comprising more
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than 30 natural outcrop sites. Water temperatures in these hot springs span from 38 ◦C
to 78 ◦C. A majority of these springs are characterized as sulfur springs and carbonate
springs [31], distinguished by excellent water quality, elevated water temperatures, stable
flow rates, and notable health and medicinal advantages. Notably, the “Dali Geothermal
Country” initiative currently stands as the largest hot spring leisure resort in Yunnan
Province [32].

All in all, the Eryuan area of Dali boasts abundant geothermal potential, a uniform
temperature distribution, favorable heat storage conditions, and copious subterranean
hot water resources, collectively establishing a solid foundation for geothermal energy
development and utilization. Concurrently, the region presents expansive prospects for
heat supply, hot spring tourism, and other related sectors. The geothermal resources within
the Eryuan area of Dali hold substantial economic value and development prospects and
are poised to play a pivotal role in local economic growth and the promotion of sustainable
energy utilization.

3. Materials and Methods
3.1. Materials

This paper primarily focuses on selecting geological data (lithology, faults), infrared
remote sensing data (Landsat 8 satellite imagery, SRTM-DEM imagery), and geophysical
data (seismic activity, Bouguer gravity) as evidence factors to formulate a fuzzy logic model
for identifying geothermal sites within the designated study area. The pertinent data and
images corresponding to the aforementioned evidence factors were sourced from public
platforms, and subsequent digital processing and analysis of these datasets were executed
employing the ArcGIS platform. The different types of data are analyzed and processed in
the ways and with the sources shown in Table 1.

Table 1. Analytical Approaches for Different Types of Data.

Data Types Data Sources Spatial
Resolution Scale Data Analysis and

Processing Modalities

Geologic
Map-Lithology

Geological map and field survey results
prepared by Yunnan Geological and

Environmental Testing Institute
/ 1:200,000 Reclassification lithology map

Landsat 8 images
Chinese Academy of Sciences Computer
Network Information Center Geospatial

Data Cloud Platform
30 m / Surface temperature map

Geologic Map-Faults
Geological map and field survey results

prepared by Yunnan Geological and
Environmental Testing Institute

/ 1:200,000 Distance map to fault line

Earthquake activity United States Geological Survey (USGS) / / Gutenberg–Lister B-value chart
Bouguer gravity International Gravity Bureau / / Distance to main graben

SRTM-DEM images
Chinese Academy of Sciences Computer
Network Information Center Geospatial

Data Cloud Platform
30 m / Distance to water system

The lithology and fault data were sourced from prior studies, geological maps prepared
by the Yunnan Geological and Environmental Supervision Institute, and the findings of
field surveys conducted in the study area from February to May 2022, utilizing a scale of
1:200,000. Subsequent to corrections made to the earlier study data based on actual field
surveys in the Eryuan area, the lithology and fault-distribution maps were meticulously
redrawn to better reflect the true conditions.

Landsat 8 satellite imagery and SRTM-DEM data were obtained from the Geographic
Spatial Data Cloud Platform of the Computer Network Information Center, Chinese
Academy of Sciences “http://www.gscloud.cn (accessed on 30 June 2023)”. This dataset
includes vital information such as the acquisition date (2 January 2021, 03:47), orbit number
(131/42), cloud cover (0.01%), sensor (OLI-TIRS), and spatial resolution (30 m). By employ-

http://www.gscloud.cn
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ing ArcGIS and ENVI software, the Landsat 8 satellite imagery and SRTM-DEM data were
seamlessly integrated and mosaicked into a comprehensive composite. The Landsat 8 data
underwent several digital image-processing techniques, including radiometric calibration
and atmospheric correction, to retrieve accurate land surface temperatures [33].

Seismic activity data were procured from the United States Geological Survey (USGS).
The Earthquake Hazards Program, established by the USGS in 1977, aims to prevent and
mitigate earthquake-related disasters. Data spanning the timeframe from 1977 to 2023 were
collated, encompassing details about earthquake epicenter coordinates, magnitude, and
depth. To mitigate potential detection bias and considering that data predating 1980 might
be unreliable due to technological constraints, the analysis exclusively considered seismic
activity occurring between 1980 and 2023. Given that earthquake epicenters closer to the
Earth’s surface tend to have a more pronounced impact and induce fractures, and lower-
magnitude earthquakes may be categorized as aftershocks or background noise rather than
originating events [34], earthquakes are typically classified into different categories based
on the depth of the source. These categories include very shallow-source earthquakes
(0 ≤M ≤ 30, where M represents the depth of the epicenter), shallow-source earthquakes
(30 < M < 70), medium-source earthquakes (70 ≤M ≤ 300), and deep-source earthquakes
(M > 300 km) [35]. Consequently, this analysis specifically focuses on very shallow-source
earthquakes with depths within 30 km.

Bouguer gravity anomaly data originated from the International Gravity Bureau.
The grid spans longitudes from 99◦ to 101◦ and latitudes from 25◦ to 27◦, utilizing the
WGM2012_Bouguer_ponc_2min gravity model. WGM2012 gravity anomalies are derived
from Earth global gravity models EGM2008 and DTU10, incorporating 1′ × 1′ resolution
terrain corrections sourced from the ETOPO1 model. These corrections encompass contri-
butions from various surface masses, encompassing the atmosphere, land, oceans, inland
seas, lakes, ice caps, and ice shelves [36]. The computation of these values employs a
spherical harmonic methodology, incorporating theoretical advancements to ensure precise
calculations on a global scale.

3.2. Methods
3.2.1. Geologic Map—Lithology

Lithology pertains to the physical and chemical attributes of rocks, encompassing
their composition, structure, texture, and properties [37]. A strong correlation exists
between lithology and geothermal resources [38], as rocks of diverse lithologies exhibit
distinctive traits like porosity, permeability, and thermal conductivity. These traits exert an
influence on the conveyance and retention of geothermal energy [39]. Hence, a thorough
examination and comprehension of lithology bear immense significance in the advancement
and utilization of geothermal energy.

Before superimposing the lithology map onto other layers of evidence, it becomes
imperative to allocate a value to the layer of the evidence map signifying the extent of rocks’
impact on geothermal resources within the Eryuan area. The classification of lithologies is
based on common lithologies in geology, and the lithology in the Eryuan area is categorized
into three distinct types, each assigned differing weight values based on their respective
impact on geothermal resources. Among them, the influence of lithology on geothermal
resources mainly reflects the thermal properties, porosity, permeability, and heat capacity
of rocks. In this study, the degree of influence of lithology on geothermal resources was
determined mainly via the number of geothermal hot spots contained in the distribution
location of each lithology. The reconfigured lithology map is depicted in Figure 2b. The
rocks are sequenced in a descending order of their influence on geothermal activity, with
carbonate rocks exerting the most significant influence, succeeded by clastic rocks and,
finally, metamorphic/volcanic rocks.



Energies 2023, 16, 6530 7 of 24

Energies 2023, 16, x FOR PEER REVIEW 7 of 25 
 

 

3.2. Methods 
3.2.1. Geologic Map—Lithology 

Lithology pertains to the physical and chemical attributes of rocks, encompassing 
their composition, structure, texture, and properties [37]. A strong correlation exists be-
tween lithology and geothermal resources [38], as rocks of diverse lithologies exhibit dis-
tinctive traits like porosity, permeability, and thermal conductivity. These traits exert an 
influence on the conveyance and retention of geothermal energy [39]. Hence, a thorough 
examination and comprehension of lithology bear immense significance in the advance-
ment and utilization of geothermal energy. 

Before superimposing the lithology map onto other layers of evidence, it becomes 
imperative to allocate a value to the layer of the evidence map signifying the extent of 
rocks’ impact on geothermal resources within the Eryuan area. The classification of lithol-
ogies is based on common lithologies in geology, and the lithology in the Eryuan area is 
categorized into three distinct types, each assigned differing weight values based on their 
respective impact on geothermal resources. Among them, the influence of lithology on 
geothermal resources mainly reflects the thermal properties, porosity, permeability, and 
heat capacity of rocks. In this study, the degree of influence of lithology on geothermal 
resources was determined mainly via the number of geothermal hot spots contained in 
the distribution location of each lithology. The reconfigured lithology map is depicted in 
Figure 2b. The rocks are sequenced in a descending order of their influence on geothermal 
activity, with carbonate rocks exerting the most significant influence, succeeded by clastic 
rocks and, finally, metamorphic/volcanic rocks. 

 
Figure 2. Relationship between lithology and geothermal sites: (a) lithology map; (b) reclassified 
lithology map. 

3.2.2. Landsat 8 Images 
In recent times, the utilization of remote sensing, specifically Landsat 8, has proven 

successful in acquiring information regarding land surface temperature [40] and has 
found effective applications within geothermal studies [13]. Presently, several approaches 
exist for deducing land surface temperature from thermal infrared remote sensing data. 

Figure 2. Relationship between lithology and geothermal sites: (a) lithology map; (b) reclassified
lithology map.

3.2.2. Landsat 8 Images

In recent times, the utilization of remote sensing, specifically Landsat 8, has proven
successful in acquiring information regarding land surface temperature [40] and has found
effective applications within geothermal studies [13]. Presently, several approaches exist
for deducing land surface temperature from thermal infrared remote sensing data. These
methods include (1) the atmospheric correction method [41]; (2) the single-window algo-
rithm [42]; (3) the split-window algorithm [43]; and (4) the multi-channel algorithm [44]. The
fundamental principle underlying land temperature inversion initially involves estimating
the atmospheric impact on the thermal radiation emanating from the land surface. Subse-
quently, this atmospheric influence is subtracted from the overall thermal radiation captured
by the satellite sensor, yielding the intensity of thermal radiation at the land surface, which
is subsequently converted into the corresponding land surface temperature [45].

In the process of radiative exchange between the ground and the atmosphere, the
thermal infrared radiant energy received by the satellite, denoted as Lλ, encompasses
three constituent components: atmospheric upwelling radiance Lu, energy received by
the satellite sensor subsequent to atmospheric attenuation of the actual ground radiance,
and atmospheric downwelling radiance Ld. Therefore, based on this theoretical process
described above, the radiative transfer equation [46] can be used to represent the brightness
value of thermal infrared radiation received by the satellite sensor:

Lλ = [εB(TS) + (1 − ε)Ld]τ + Lu (1)

where ε is the emissivity of the land surface; TS represents the true temperature of the
land surface, measured in Kelvin (K); τ denotes the transmissivity of the atmosphere in
infrared wavelengths; and B(TS) is the brightness of the blackbody thermal radiation at this
real temperature.

B(TS) = [Lλ − Lu − τ(1 − ε)Ld]/τε (2)

where, τ = 0.95, Lu = 0.36, and Ld = 0.62.
The true surface temperature Ts can be obtained as a function of Planck’s formula:
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Ts =
K2

ln
(

K1
B(Ts) + 1

) (3)

where K1 = 666.09 W/(m2 ×µm × sr) and K2 = 1282.71 K.
The land surface temperature map in this study was derived from Landsat 8 remote

sensing image data using the atmospheric correction method. The Landsat-8 data were
imported into ENVI, and various operations were carried out, including radiometric
calibration, atmospheric correction, the calculation of the average elevation for the study
area, image fusion, NOVI band operation, the calculation of land surface emissivity, the
computation of black body radiance, and the inversion of the land surface temperature
distribution based on the inverse function of Planck’s formula. These processes were
executed to calculate the land surface temperature in the Eryuan region.

From Figure 3b, it can be observed that geothermal anomalies are uniformly dis-
tributed in regions with higher land surface temperatures. This suggests the feasibility
of utilizing Landsat-8 data as an evidence factor for predicting geothermally favorable
areas. The inversion of land surface temperature provides essential support for identifying
and investigating areas with geothermal potential. Such information carries significant
importance for the development and utilization of geothermal resources. As depicted in
Figure 3b, approximately 66.7% (the number of hot spots with surface temperatures in the
range of 22–33 ◦C/total number of hot spots) of geothermal anomalies are concentrated in
regions with elevated land surface temperatures, indicating a robust correlation between
land surface temperature and geothermal anomalies.
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temperature.

3.2.3. Geologic Map—Faults

Faults typically create underground fractures and voids, which can act as pathways
for the transport and storage of geothermal energy [47–49]. Geothermal energy is conveyed
to the surface through fractures and pores in faults, giving rise to the creation of hot springs
and geothermal areas [50]. Positive and reverse faults emerge as a consequence of stress
distribution within the Earth’s crust. The activity of these faults within subsurface rock
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formations can profoundly influence the transport and accumulation of geothermal fluids.
Positive faults materialize due to tensile stresses in the crust, leading to both the upward and
downward displacement of rock formations along the fault plane. In geothermal systems,
positive faults can manifest as fissures and channels [51], facilitating the movement of
geothermal fluids between rock layers. This enhances hydrothermal fluid circulation and
augments the efficiency of heat transfer [52]. Moreover, the presence of positive faults can
alter the flow paths of groundwater, ultimately resulting in the warming and conveyance
of geothermal water [53].

Conversely, reverse faults arise from compressive stresses within the Earth’s crust [54],
engendering relative upward and downward shifts of rock layers along the fault plane.
These reverse faults have the potential to establish thermal reservoirs that store and amass
geothermal fluids [55,56]. Additionally, reverse faults might induce stress accumulation in
subsurface rock strata [57], thereby enhancing the stability and sustainability of geothermal
systems. The presence of faults provides easier access to geothermal energy, promoting its
utilization and development. Therefore, comprehending and studying the impact of faults
on geothermal energy hold significant importance.

By integrating the 1:200,000 geological map of Eryuan County and field survey findings,
we generated a spatial distribution map of faults. We performed multi-ring buffering analy-
sis on the faults within the ArcGIS environment, setting buffer distances of 300 m, 500 m, and
800 m, respectively, and confined the study area to the administrative boundary of Eryuan
County. The geothermal distribution map was superimposed with the faults to quantify the
relationship between geothermal anomalies and fault distribution. In Figure 4b, each grid
cell represents the distance to the nearest fault. As depicted in Figure 4a, 70.4% ((Number
of points located near faults/total number of points, below) of geothermal anomalies are
situated close to faults. This observation highlights a substantial correlation between faults
and geothermal anomalies, suggesting that the distance to faults can serve as an evidence
factor for predicting areas with geothermal potential.
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3.2.4. Earthquake Activity

Earthquakes result from crustal fractures, releasing energy that includes geothermal
energy. Earthquakes induce crustal fractures and deformations, giving rise to underground
fissures and pores. These fissures and pores act as pathways and reservoirs for the transport
of geothermal energy [58]. The geothermal energy produced from fractures and pores
formed by earthquakes is conveyed to the surface, leading to the emergence of geothermal
anomalies and hot springs. Furthermore, earthquakes can impact the flow and distribution
of subsurface water, thereby affecting the transmission and utilization of geothermal energy.
The study of seismic activity offers valuable insights into the development and utilization
of geothermal energy [28]. Analyzing seismic activity aids in identifying the location
and characteristics of areas rich in geothermal energy, offering essential guidance for
geothermal development.

To acquire representative seismic parameters, each fault is treated as an independent
seismic source. Based on the focal mechanism solution, the majority of fault planes in the
Eryuan area exhibit a dip angle of 48◦. As a result, the epicenter density value is computed
within a circular area with a radius of 27 km (30/tan48◦), centered on each seismic event.
The Gutenberg–Richter relationship, a widely employed empirical relationship in seismol-
ogy, describes the statistical correlation between the frequency of seismic events and their
magnitudes [59]. This relationship indicates that within a seismic zone or region, smaller
seismic events occur more frequently than larger ones. The Gutenberg–Richter relationship
has been extensively utilized in seismology [60], providing a statistical framework for
understanding seismic activity characteristics, predicting trends, and assessing earthquake
hazards. It is important to note that the Gutenberg–Richter relationship is empirical and
cannot forecast specific times and locations of earthquake occurrences. Nevertheless, it
offers valuable insights into the overall distribution and trends of seismic activity.

To explore the spatial relationship between seismic activity and geothermal hotspots, the
seismic events must be transformed into an epicenter density map using the following steps:

(1) Select seismic data with focal depths less than 30 km from the period between 1980
and 2023.

(2) Classify the seismic data into four ranges based on their magnitudes (3.2 ≤M ≤ 4.1;
4.2 ≤M ≤ 4.3; 4.4 ≤M ≤ 4.6; 4.7 ≤M ≤ 6.1). The categorization principle ensures an
approximately equal number of seismic events in each range.

(3) Generate four seismic epicenter density maps and compute the annual average fre-
quency λm for each density map. Seismic annual average frequency

λm =
The seismic frequency within a 5 km radius of each 100 m× 100 m grid cell.

The number of seismic recurrence cycles is 43 (seismic events occurred between 1980 and 2023).

(4) Use the mathematical expression of the Gutenberg–Richter relationship [61]:

log(λm) = a − b ×M (4)

where λm represents the number of seismic events with magnitudes greater than
or equal to M, M is the magnitude of seismic events, and a and b are constants.
Constant a is commonly referred to as the number of events at magnitude one or
as the amplitude parameter, describing the distribution density of seismic events in
magnitudes. Constant b is known as the slope parameter, representing the relationship
between the frequencies and magnitudes of seismic events.

(5) Exclude data with λm equal to zero and duplicate values. λm values equal to zero or
the same in two ranges indicate the absence of seismic events within that magnitude
range. For instance, if λ1 = λ2, it means no seismic events occurred in the range of
λ1 ≤M ≤ λ2, as λ2 would be greater than λ1 if any seismic event had occurred.

(6) Calculate the corresponding B-values for each grid cell, and use spatial interpolation
to obtain the Gutenberg–Richter B-value map (Figure 5b).
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3.2.5. Bugge Gravity Anomaly
Bouguer Gravity Anomalies and Their Relationship with Geothermal Activity

The Bouguer gravity anomaly refers to the disparity between the measured gravity
field on the Earth’s surface and the theoretical gravity field [62,63]. There exists a discernible
relationship between geothermal activity and Bouguer gravity anomalies. Geothermal
activities have the potential to induce alterations in the density and volume of subsur-
face rocks, leading to fluctuations in Bouguer gravity anomalies [64]. By assessing the
distribution of and alterations in Bouguer gravity anomalies, it becomes feasible to deduce
changes in the density and volume of subsurface rock formations, thus facilitating an un-
derstanding of the distribution and characteristics of geothermal activities. Consequently,
the measurement of Bouguer gravity anomalies holds significant value as a reference for
geothermal exploration.

Bouguer gravity anomaly maps can be instrumental in comprehending regional tecton-
ics, delineating major fault structures, and identifying potential hydrothermal activities [65].
In regions where gravity-anomaly contour lines are notably extended or form a strip shape
with lower anomaly values at the center and higher values on both sides of the low-gravity
zone, it is often indicative of the presence of low-density rock zones. These zones are fre-
quently associated with long-axis tilts and grabens that are shaped by layers of low-density
rock [66,67]. The occurrence of primary grabens can, to a certain extent, signal the presence
of geothermal resources. Many significant deposits of organic minerals are interconnected
with grabens, which are also frequent sites of groundwater emergence [68,69] and often
serve as gathering places for lakes.

In order to investigate the correlation between Bouguer gravity anomalies and geother-
mal activity, it is necessary to transform the Bouguer gravity anomaly data into a map
reflecting the distance from the primary graben. The specific steps involved in this operation
are outlined as follows:

(1) Identify areas where gravity values exhibit pronounced changes and the slope is >0.06
(mean + standard deviation), delineating these regions as the main graben linear
distribution map.
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(2) Conduct multi-ring buffer analysis of the primary graben system within the ArcGIS
environment.

(3) Generate a distance map to the primary graben.

As depicted in Figure 6b, approximately 29.6% of the geothermal hotspots are situated
within a distance of less than 800 m from the primary graben. This suggests that the
correlation between the primary graben and geothermal hotspots is comparatively weak
when contrasted with other evidential factors. It is important to note, however, that this
does not preclude the potential impact of the primary graben on the geothermal system
through other means, such as influencing the pathways of hydrothermal fluids or affecting
the distribution of the geothermal field.

1 
 

 

Figure 6. Relationship between main grabens and geothermal hotspots: (a) spatial distribution of
main grabens; (b) map of the distance to main grabens.

3.2.6. SRTM-DEM Images

SRTM-DEM (Shuttle Radar Topography Mission–Digital Elevation Model) data are
obtained from radar instruments onboard space shuttles, providing elevation information
about Earth’s surface [70,71]. The SRTM-DEM data offer valuable insights for terrain
analysis in geothermal exploration [72]. Terrain features such as mountains, rivers, and
faults have a significant impact on the distribution and flow of geothermal energy, affecting
underground water pathways and geothermal energy transmission [73]. Analyzing SRTM-
DEM data enables us to understand topographical undulations and variations, thereby
inferring the distribution and characteristics of geothermal resources.

A close relationship exists between water systems and geothermal phenomena. Water
systems are essential sources and mediators of geothermal energy, transferring this energy
to the surface through groundwater circulation and flow [74]. Groundwater within water
systems can also store geothermal energy, forming geothermal reservoirs. Therefore,
understanding the connection between water systems and geothermal energy is crucial for
developing and utilizing geothermal resources.

Commonly used surface runoff and overland flow models employ digital elevation
models (DEMs) to determine the flow direction of each grid cell in a depression-filled
DEM. This is followed by the computation of the accumulation of grid cells along the flow
direction, representing flow accumulation. Assuming each grid cell contributes to water
flow, flow accumulation represents the water volume of that grid cell.
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Based on the aforementioned approach, the two SRTM-DEM images within the study
area were merged into a comprehensive dataset using ArcGIS. Further steps included
depression filling, flow direction analysis, flow accumulation statistics, the determination
of minimum flow paths, and river connectivity. To investigate the relationship between
water system distribution and geothermal hotspots, water system distribution was analyzed
using buffer analysis to determine the distance to water systems as an influencing factor.

As depicted in Figure 7b, 77.8% of the water system distribution lies within a distance
of 800 m from water systems, indicating a strong relationship between water systems and
geothermal hotspots. The distance to water systems can be considered as a supporting
factor in the geothermal prediction model.
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3.2.7. Establishing Evidence Factor Weights via AHP

The Analytic Hierarchy Process (AHP) is an effective method for addressing multi-
objective decision-making systems, seamlessly integrating qualitative and quantitative
analyses in a systematic and hierarchical fashion [75]. By delving deeply into the essence,
influential factors, and internal relationships of intricate problems, AHP mathematically
formalizes the decision-making process using limited quantitative information, offering
a straightforward evaluation approach for complex decision problems characterized by
multiple objectives, criteria, and unstructured attributes.

To construct a prediction model of geothermal potential using AHP, the following
steps can be undertaken [76]:

(1) Build the hierarchical structural model [77]: The objective layer pertains to the predic-
tion of geothermal potential zones. This layer comprises a single element representing
the model’s prediction outcomes and objectives. The criterion layer encompasses
elements like lithology, surface temperature, distance to faults, seismic epicenter den-
sity, distance to main grabens, and proximity to water systems. This layer includes
multiple elements, functioning as an intermediary to achieve the objective layer and
serving as evidential factors for the prediction model. The alternative layer comprises
diverse measures and schemes for achieving the objective layer.
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(2) Develop the judgment matrix: Assuming the elements in the objective layer are
denoted as C and the elements in the criterion layer are denoted as A1, A2, . . . , Am,
and using the elements in the objective layer C as criteria, the relative significance of
the elements in the criterion layer is compared to establish their weights. This process
forms the judgment comparison matrix, as demonstrated below:

A =


a11 = A1

A1 a12 = A2
A2 · · · a1m = A1

Am
a21 = A2

A1 a22 = A2
A2 · · · a2m = A2

Am
...

...
...

...
am1 = Am

A1 am2 = Am
A2 · · · amm = Am

m1

 (5)

The notation “aij” represents the importance of A1 relative to A2 with respect to the
objective C. The numerical values and their corresponding meanings are presented in the
following table (Table 2):

Table 2. Significance of the elements of the judgment matrix.

aij Values Meaning

1 Indicates that both factors are equally important
3 Indicates that the former is slightly more important than the latter when compared to the two factors
5 Indicates that the former is significantly more important than the latter when compared to the two factors
7 Indicates that the former is particularly more important than the latter when compared to the two factors

(3) Calculate the maximum eigenvalue λmax and the corresponding normalized eigen-
vector W = (w1, . . . , wm)T for the judgment matrix A. The vector W represents the
weights of each criterion element relative to a certain element in the previous level.

The calculation of λmax and W is as follows [78]:
Compute the product Mi for each row of the judgment matrix:

Mi = ∏m
j=1 aij(I = 1, 2...m) (6)

Calculate the mth root of Mi Wi =
[
W1 W2 · · · · · · Wi] Tand normalize Wi, i.e.,

Wi= Wi/∑m
i=1 Wi (7)

then, Wi =
[
W1 W2 · · · · · · Wi]T is the desired eigenvector;

Calculate the maximum characteristic root λmax of the judgment matrix:

λmax= ∑m
i=1

(AW)i
mWi

(8)

where (AW)i denotes the i-th element of vector AW.
The steps of the consistency test of the judgment matrix are as follows:

(1) Calculate the consistency index CI:

CI =
λmax−m

m− 1
(9)

(2) Find the corresponding average random consistency index RI:
(3) Calculate the consistency ratio CR:

CR =
CI
RI

(10)

(4) When CR < 0.01, the consistency of the judgment matrix is considered acceptable,
indicating that the weight assignment is reasonable and credible.
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3.2.8. Weighted Stacking Technology

The weighted overlay technique is a commonly used mathematical and engineering
method for combining multiple signals or data to obtain a comprehensive result [79]. It
finds wide applications in various fields, such as signal processing [80], image process-
ing [81], machine learning [82], and more. In this study, the weighted overlay technique is
employed to spatially integrate multiple evidence weight factors and generate the geother-
mal potential map of the research area. This tool needs to be run in the ArcGIS environment,
and the application of standard value ratios across all different input data is crucial for
effective integration [83].

The weighted overlay method consists of the following steps:

(1) Reclassify the values in the input raster to have the same assessment level (suitability
or priority and risk) or some similar unified level. In this study, the input rasters
include lithology, surface temperature, distance to faults, distance to the main grabens,
seismic epicenter density, and distance to water systems(Figure 8).

(2) Multiply the pixel values of each input raster by their respective importance weights.
(3) Sum up the results of each weighted input raster to generate the output raster.
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The mathematical expression of the weighted overlay technique [84] can be repre-
sented as

Output = w1 × Input1 + w2 × Input2 + . . . + wn × Inputn (11)

where output is the final comprehensive result; w1, w2, . . . , wn are the corresponding
weights; and Input1, Input2, . . . , Inputn are the input signals or data.

4. Results

By utilizing GIS, remote sensing, and geophysical techniques, multiple data were
transformed into evidence factor layers, which were then integrated using the weighted
overlay tool, and the results were presented in map format.
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4.1. Lithology and Surface Temperature

In the study area, sedimentary rocks are widely distributed [23], with carbonate rocks
being the predominant lithology for potential thermal reservoirs. Taking this geological
background into consideration, the analysis of lithology prioritizes carbonate rocks. Conse-
quently, various rock types in the study area were classified, leading to the creation of a
reclassified lithology map based on the 1:200,000 geological map (Figure 2b). Based on field
exploration, carbonate rocks, clastic rocks, and volcanic/metamorphic rocks are assigned
high, medium, and low importance levels for geothermal resources, respectively.

A thorough examination of the lithology map (Figure 2b) and the surface temperature
map (Figure 3b) reveals that the areas with the greatest geothermal significance, character-
ized by carbonate rocks, are exposed in Niu Street Township, Sanying Township, Yousuo
Township, and Dengchuan Township. In the western region beyond Luoping Mountain,
extensive outcrops of clastic rocks with medium importance are identified. In the eastern
region east of Luoping Mountain, extensive exposures of volcanic/metamorphic rocks
with low importance are observed. Figure 3b highlights that the surface temperature in the
eastern region of Eryuan is relatively higher than that in the western region. Along the line
connecting Niu Street Township, Sanying Township, Yousuo Township, and Dengchuan
Township, elevated surface temperatures are recorded, indicating that the eastern region of
Eryuan exhibits the most favorable geothermal conditions.

4.2. Distance to Faults and Seismic Epicenter Density

The distribution of faults in the Eryuan area is illustrated in Figure 4a, revealing
widespread fault development, with the greatest density observed near Yousuo Township.
Most known geothermal hotspots align with fault lines. Figure 4b displays the distance to
faults, with white denoting a distance of 300 m, gray representing a distance between 300
and 500 m, and yellow indicating a distance between 500 and 800 m.

As portrayed in Figure 5a, earthquakes with a magnitude of 4.3 or higher have oc-
curred in the Sanying–Niu Street and Qiaohou–Fengyu regions. Upon combining the
distribution of geothermal hotspots, it is evident that geothermally favorable areas correlate
with seismic epicenter magnitudes. Regions with relatively higher seismic epicenter magni-
tudes are more prone to having hot springs. Furthermore, areas with varying magnitudes
of seismic epicenter are more susceptible to geothermal events (Figure 5b). The B-value can
be utilized to describe the frequency distribution of seismic events at distinct magnitudes.
A higher B-value indicates a more frequent occurrence of smaller-magnitude earthquakes,
along with a rarer occurrence of larger-magnitude earthquakes. Conversely, a lower B-value
suggests a more frequent occurrence of larger-magnitude earthquakes, coupled with a rarer
occurrence of smaller-magnitude earthquakes. Therefore, in the southern part of the study
area, where seismic events of larger magnitudes are most frequent, conditions are more
prone to geothermal events.

4.3. Distance to Main Streams and Distance to Water Systems

Through an analysis of the spatial distribution of the primary stream system (Figure 6a,b),
it becomes evident that extensive systems of primary stream are present in the central
region of Eryuan County, with the greatest concentration observed in locations like Cibi
Lake Town, Fengyu Town, and Dengchuan Town, among others. This pattern points
towards a substantial potential for geothermal occurrences in the central part of Eryuan
County, particularly in the central-southern areas where prospects are the most promising.
The notably high geothermal potential recorded in these regions can be attributed to the
prevalence of well-developed karst carbonate rocks in the surrounding vicinity. For instance,
in the proximity of Cibi Lake Town, the presence of limestone with robust solubility
characteristics has been identified, indicating the likelihood of these areas evolving into
high-quality reservoirs.

Turning to the water system distribution map (Figure 7a), distinct colors denote
varying grades of water systems. The grading of water systems is based on factors such as
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river flow and morphology. Different tiers of river networks signify differing accumulative
flow rates, with higher grades corresponding to primary streams and lower grades aligning
with tributaries. Along the pathways stretching from Dengchuan Town to Sanying Town,
and from Liantie Township to Qiaohou Town, two primary water flows exist, while the
remainder represent tributaries. It can be discerned from the map that geothermal hotspots
align with the main water flows, indicating a robust correlation between water systems
and the potential for geothermal events.

In the map of the distance to water systems (Figure 7b), it is evident that the density of
geothermal hotspots intensifies as the proximity to the primary water systems diminishes.
The majority of geothermal events occur within the yellow region, which corresponds to
the vicinity of approximately 300 m from the water systems.

4.4. Hierarchical Structure Model and Weights

To guarantee the precision and dependability of the prediction model, a multivariate
correlation analysis of the impacting factors was conducted within the ArcGIS environment
using the “Band Set Statistics” tool. The objective of this analysis is to validate whether
a high degree of correlation exists among the influencing factors, thereby ensuring their
independence within the model. The resultant correlation matrix depicts the correlation
coefficient value, elucidating the interrelationship between the two datasets. The correlation
linking two layers serves as a gauge of their interdependence. This correlation is the
quotient of the covariance between the two layers divided by the product of their standard
deviations. As a correlation is a ratio, it is dimensionless. The formula for calculating
correlation is outlined as follows:

Corrij =
Covij

δiδj
(12)

Correlations span a range from −1 to +1. Positive correlations signify a direct relation-
ship between two layers; for instance, when the pixel value of one layer increases, the pixel
value of the other layer may also increase. Conversely, a negative correlation indicates an
inverse relationship, where one variable varies as the other changes. A correlation of 0
denotes no dependency between the two layers. Upon observing the generated correlation
matrix (Table 3), it becomes apparent that the absolute value of the correlation coefficient
between the two layers is nearly equal to 0. This suggests the absence of significant co-
variance issues among the influencing factors in our study. The outcome of this analysis
further reinforces the credibility of our predictive model. By addressing multicollinearity,
we have ensured that each influencing factor in our model can autonomously contribute
valid information to predict geothermal potential. Consequently, our prediction model is
deemed reliable when considering each individual influencing factor.

Table 3. Correlation matrix.

Evidence Factor Rockiness Surface
Temperature

Distance to
Fault

Earthquake
Epicenter Density

Distance to the
Main Graben

Distance to
Water System

Rockiness 1.000000 0.053698 −0.000004 −0.003819 0.000544 −0.134754
Surface temperature 0.053698 1.000000 0.390524 0.00823539 −0.031003 −0.158195

Distance to fault −0.000004 0.390524 1.000000 0.0765821 −0.000823 0.005423
earthquake

Epicenter density −0.003819 0.00823539 0.076582 1.000000 0.001141 0.102617

Distance to the
main graben 0.000544 −0.031003 −0.000823 0.001141 1.000000 0.004903

Distance to
water system −0.134754 −0.158195 0.005423 0.102617 0.004903 1.000000

The constructed hierarchical structure model is shown in Figure 9. The objective layer
represents the prediction of areas with geothermal potential, while the criteria layer consists
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of evidence factors such as lithology, surface temperature, distance to faults, seismic focal
density, distance to main streams, and distance to water systems. These evidence factors
play different roles in predicting the occurrence of geothermal events to varying degrees.
By constructing the evidence weight matrix (Table 4), pairwise comparisons are made
among the evidence factors. Finally, the weights of each evidence factor in the geothermal
prediction process are determined.
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Table 4. Evidence weighting matrix.

Evidence Factor Rockiness Surface
Temperature

Distance to
Fault

Earthquake
Epicenter Density

Distance to the
Main Graben

Distance to
Water System

Rockiness 1 3 3 3 5 3
Surface temperature 1/3 1 1/3 3 5 1/3

Distance to fault 1/3 3 1 3 5 1/3
Earthquake

epicenter density 1/3 1/3 1/3 1 3 1/3

Distance to the
main graben 1/5 1/5 1/5 1/3 1 1/7

Distance to
water system 1/3 3 3 3 7 1

After the hierarchical structure model was constructed based on the identified evidence
factors, the weights of each evidence factor were determined as accurately as possible
through expert scoring and other methods (Table 5). It can be observed that the weights
of lithology, surface temperature, distance to faults, seismic focal density, distance to
main streams, and distance to water systems are 0.35576, 0.1153, 0.1674, 0.0716, 0.0338,
and 0.2546, respectively. It is evident that lithology and distance to water systems have
the most significant impact among the various influencing factors affecting geothermal
events. Therefore, in the subsequent geothermal potential area prediction process, particular
attention should be given to these two factors.

Table 5. Weighting of evidence factors.

Evidence Factor Rockiness Surface
Temperature

Distance to
Fault

Earthquake
Epicenter Density

Distance to the
Main Graben

Distance to
Water System

/ 0.35576 0.1153 0.1674 0.0716 0.0338 0.2543

5. Discussion

The geothermal potential map (Figure 10), created by integrating various input layers
(thematic maps), depicts diverse ranges of favorable areas to varying extents. The research
area has been classified into four levels based on geothermal potential values: Level 1 (red)
signifies the extremely favorable area, Level 2 (yellow) represents the highly favorable
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area, Level 3 (yellow-green) indicates the moderately favorable area, and Level 4 (blue)
designates the less favorable area. Overall, as depicted in Figure 10, with the exception of
the central region, Dali County exhibits high geothermal potential values across varying
degrees. Particularly noteworthy are the areas encompassing Niu Street–San Ying–Cibi
Lake Town and Liantie Township–Qiao Hou Town, which manifest exceedingly high
geothermal potential due to the prevalence of carbonate rocks and clastic rocks. Carbonate
rocks boast good solubility, while clastic rocks feature favorable porosity, rendering them
ideal for heat reservoirs. The inversion map of surface temperatures signifies these two
zones as having the highest surface temperatures. Furthermore, significant faults and
primary water systems are prominently developed in these regions. The geothermal
potential values are marginally lower in Ruo Shuo Town, Deng Chuan Town, and Xi
Xiang Town. Figure 9 reveals that all known geothermal hotspots are situated within the
areas with high potential value projected by the model, thus affirming the accuracy and
dependability of the model.
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In comparison to prior studies conducted in analogous geological settings, this study
amalgamates multiple factors such as lithology, seismicity, fault distribution, and Bouguer
gravity anomaly. This comprehensive approach provides a deeper understanding of in-
fluencing factors on geothermal potential, thereby enhancing the insights compared to
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previous studies of a similar nature. This study conducts geothermal potential prediction
within the Eryuan area of Dali. Despite variations in the geological context, the successful
prediction of geothermal potential areas is achieved by employing interdisciplinary meth-
ods encompassing remote sensing, GIS, and geophysics. The hierarchical model is utilized,
and the model’s accuracy is validated based on existing hot spring sites, showcasing the
novelty and applicability of this research.

Nevertheless, it is important to acknowledge a significant limitation that emerged
during the course of this study. Due to the confidential nature of magnetic anomaly data,
our access to these crucial data was restricted. This limitation could potentially impact
the accuracy of our predictive modeling of geothermal potential. Magnetic anomaly data
typically play a pivotal role in geological exploration by providing insights into subsurface
rock and strata, influencing the assessment and distribution of geothermal resources. The
unavailability of magnetic anomaly data may have led to the underutilization of this
essential information during the modeling process. Despite this limitation, the study
adopts a multidisciplinary approach, integrating various data sources such as lithology,
seismic epicenter data, fault distribution, Bouguer gravity anomalies, SRTM-DEM images,
Landsat 8 remote sensing images, and hierarchical modeling with the AHP method, to
achieve an effective prediction of geothermal potential. Rigorous efforts were made to
conduct a thorough analysis within the constraints of available data in an attempt to
mitigate potential impacts stemming from this limitation.

Future research endeavors could aim to access more comprehensive geologic and
geophysical data to offset existing limitations. Concurrently, data providers are encouraged
to consider open data sharing, fostering further advancements in geothermal resource
research. Despite data limitations, this study has yielded significant results in the estab-
lishment and application of predictive models, offering valuable insights and guidance for
future studies of a similar nature.

6. Conclusions

Through a geothermal case study in Eryuan County, we have successfully employed a
multi-criteria assessment methodology to preliminarily explore geothermal potential, thus
contributing to the global pursuit of renewable energy exploration. This study has identified
areas with promising geothermal potential, such as Sanying Town and Commonwealth
Lake Town, which warrant further investigation. These surface geothermal indicators have
validated the accuracy of the potential geothermal map.

This study has underscored the significance of GIS as a crucial tool for integrating
diverse data sources to map significant geothermal prospects, thereby furnishing essential
information for geoscientists and the sustainable energy sector to advance the global
development of sustainable energy. The integration methods of GIS streamline exploration
analysis, mitigate computational complexity, and facilitate cost-effective exploration. These
methods offer utility in situations with limited data and can serve as a valuable reference
for development in other regions.

In the future, more refined lithology analysis can be conducted in conjunction with
geothermal potential prediction to examine the impact of various lithologies on the distri-
bution of geothermal resources, thereby enhancing the precision of the prediction model.
Additionally, geological and geophysical data can be incorporated to comprehensively
analyze the formation and distribution mechanisms of geothermal resources, leading to the
optimization of the prediction model. A more thorough investigation into the transporta-
tion and storage mechanisms of geothermal fluids underground is recommended. This
should encompass the exploration of fluid flow paths, permeability, and reservoir charac-
teristics, providing a deeper theoretical foundation for the exploration and development of
geothermal resources.
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