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Abstract: The increasing factors of uncertainty faced by the system are due to the deep coupling of
the electric power cyber network and the physical network. Consequently, ensuring the efficient,
secure, and stable operation of the cyber–physical power system (CPPS) has become a key concern. To
achieve this, vulnerability assessment plays a crucial role, as it identifies and protects the vulnerable
points of the system. The application of complex network theory to assess the vulnerability of CPPSs
has garnered significant attention from scholars. This paper delves into the research connotation
of vulnerability assessment for CPPSs, starting with the origin, definition, and classification of
vulnerability. Subsequently, the assessment framework of vulnerability based on complex network
theory is presented, and the status of current domestic and international research in this field is
summarized. Furthermore, the interrelationship between system vulnerability and cascading failures
is analyzed from the perspective of complex network theory. In conclusion, the ideas of CPPS
coupling modeling in vulnerability assessment are summarized, the concept of situation awareness
is introduced, and a prospective approach for dynamic vulnerability assessment is proposed. This
approach is based on situation awareness combined with complex network theory. Security protection
and optimal operation of CPPSs based on vulnerability assessment are also discussed, along with the
assessment of vulnerability within integrated energy cyber–physical systems (IECPSs).

Keywords: vulnerability assessment; cyber–physical power systems; complex network theory;
cascading failures

1. Introduction
1.1. Motivation

In recent years, a gradual deepening of the transformation of energy production and
consumption from fossil energy to clean energy has been observed. This has led to a
continuous increase in the proportion of new energy generation, including centralized and
distributed solar and wind energy connected to the grid on a large scale. Additionally,
there has been a growing expansion of electricity demand due to the gradual increase in the
proportion of user-level electricity replacement consumption. This includes electrification
of rail transportation, green ports, civil cooling and heat pumps, and other similar applica-
tions. Moreover, there has been a rise in the number of prosumers [1,2], who contribute
to the grid through the development of traditional user microgeneration facilities such
as on-house solar panels and microwind turbines. This, along with an increase in user
autonomy in electricity consumption, further complicates the adaptation of the grid that
was originally built on the vertical operation principle to accommodate the ongoing energy
transition. Simultaneously, the emergence of smart grids [3] has been facilitated by the
development of wireless sensing technology, communication technology, and internet
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technology. In contrast to the traditional grid, the smart grid showcases a high degree of
integration of energy, information, service, and value flows [4,5]. Therefore, a transforma-
tion is underway, gradually turning the smart grid into a multidimensional heterogeneous
complex system, wherein the integration of the power physical system and cyber system
gives rise to a cyber–physical power system [6]. Relying on advanced communication tech-
nology, CPPS aims to enhance the operational efficiency and reliability of the power system.
However, this high degree of physical cyber coupling creates conditions that allow faults to
propagate across the system, rendering the grid vulnerable to cascading failures during
extreme conditions and leading to increased susceptibility [7]. Moreover, in the context of
the rapid development of the global energy internet, grid interconnection has emerged as
the future trajectory for power grids worldwide. Although grid interconnection facilitates
the implementation of global integrated development strategies and fosters a global eco-
nomic community of shared destiny, the extensive interconnection simultaneously imposes
greater demands on grid operations and has the potential to amplify the overall or local
vulnerability of the grid.

As a matter of fact, all research subjects essentially possess some degree of vulnerability,
ranging from individuals and organizations to large systems, each having their own
vulnerabilities (critical points). These vulnerabilities, when targeted and exploited, result
in various degrees of adverse impact (e.g., performance degradation, structural damage,
and loss of function). As a result, identifying the vulnerability of research subjects (i.e.,
vulnerability assessment) has found extensive application across diverse disciplines in
social and natural sciences, including politics and the economy [8,9], ecology and the
environment [10,11], information security [12,13], and transportation [14,15].

1.2. Necessity

In recent years, significant changes in the power supply landscape worldwide have
introduced a variety of threats that pose risks to the safe and stable operation of the power
system. Traditional natural disasters such as lightning strikes, floods, earthquakes, and
snowstorms, along with occasional accidents involving component failures, protection
failures, and personnel malfunctions, continue to pose challenges. However, new threats
are progressively emerging, such as malicious attacks on the power grid, including terrorist
attacks and cyberattacks [16–18]. These new threats exploit the system’s most vulnerable
aspects, leading to cascading failures and widespread outages. In such cases, the damaged
components prove difficult to repair within a short timeframe, sometimes resulting in
prolonged power outage situations. The consequences extend beyond the power system
alone, affecting other critical infrastructure such as water treatment, transportation, and
health services, leading to severe harm to the entire society. For instance, the 2003 U.S.
blackout affected 50 million people and resulted in a loss of 62 million kilowatts of load,
leading to socioeconomic losses of up to USD 10 billion [19]. The 2010 Iranian nuclear
power plant seismic network virus incident demonstrated how cyberattacks can cause
the failure of CPPS [20]. In 2011, the southwestern United States and northern Mexico
experienced a 12 h blackout due to line overloads, incurring a direct economic loss of
USD 118 million [21]. In 2012, a line trip in the Indian grid led to grid oscillations and a
massive outage affecting more than 600 million people [22]. The 2015 Ukraine blackout,
caused by a cyberattack, resulted from hackers sending phishing emails to power company
employees, ultimately leading to the failure of 30 substations and a massive power outage
affecting one and a half million Ukrainian residents [23]. Moreover, in 2016, the impact of
a strong typhoon caused a large number of off-grid turbines in the South Australian grid
to fail, resulting in a network-wide collapse and a load loss of 1.83 million kW [24]. On
7 March 2019, a cyberattack on Venezuela’s largest hydroelectric power plant, Simón Bolívar,
triggered a major blackout in 22 states, including the capital city of Caracas. After restoring
40% of the power, the power plant experienced an explosion, further hindering the power
restoration process. The progression of these outages often results from the failure of one
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component, especially in the context of deliberate attacks, which then initiates a chain
reaction of failures in other components.

Therefore, in the context of energy transition and the progressive development and
adoption of CPPSs, an escalating number of threats is being encountered by the system,
making the efficient, secure, and stable operation of the power grid a critical issue for power
infrastructure. The identification and mitigation of vulnerabilities within CPPSs, which
hold significant practical significance in preventing large-scale grid outages, is fundamental
to addressing this concern.

1.3. Organization

The present paper is structured as follows: An overview of the research content of
CPPS vulnerability assessment is provided in Section 2, including the definition of vulnera-
bility assessment; a discussion of distinctions between vulnerability, risk, reliability, and
resilience; and several classifications of vulnerability assessment. The research framework
for CPPS vulnerability assessment, which includes an analysis of the feasibility of com-
plex network theory in CPPS vulnerability assessment and a discussion summarizing the
general steps involved in CPPS vulnerability assessment, is introduced in Section 3. An
overview of the current status of CPPS vulnerability assessment based on complex network
theory is presented in Section 4, covering both structural and operational aspects. The
relationship between system vulnerability and cascade failures is analyzed in Section 5. A
prospect on CPPS vulnerability assessment based on complex network theory is provided
in Section 6 within the context of considering multistage coordinated cyber–physical attacks
and incorporating situation awareness. Finally, the paper is concluded in Section 7. This
review aims to summarize the existing research topic and framework of CPPS vulnerability
assessment and provide prospects for future research and applications.

2. The Connotation of CPPS Vulnerability Assessment Research
2.1. The Definition of CPPS Vulnerability Assessment

In CPPSs, vulnerability research is a necessity and holds significance as an extension of
the concept of system security [25–27]. On the one hand, with the continuous expansion of
the power grid’s scale, its spatial distribution has become increasingly extensive, rendering
it challenging to effectively monitor and provide real-time protection. Consequently, the
power grid becomes more susceptible to extreme events compared to other components
within the power system. On the other hand, from the analysis of past cascading outage
events, the importance of the coupling relationship between cyber nodes and physical
nodes within the power grid, as well as the complexity of the fault cascade relationship
between components, has been evident. Failures of cyber nodes (such as dispatch centers,
communication routing, and data acquisition equipment) and physical components (in-
cluding transmission branches, protection, and communication equipment) have emerged
as crucial factors contributing to system cascading outage events [7,18,28].

To date, power system vulnerability has been extensively studied; however, a pre-
cise and rigorous definition has not yet been established. In 1994, the concept of vul-
nerability was first introduced into the dynamic security assessment of power systems
in [29,30]. This involved using the system’s physical parameters to construct a security
assessment framework. Subsequently, the concept of vulnerability underwent further
expansion, and [26] defined power system vulnerability as the evaluation or measure-
ment of the impact of uncertain internal and external factors (e.g., hidden failures of
protection [31,32], deliberate attacks [33,34], natural disasters [35,36]) on the system for
potential large outages. Vulnerability assessment research methods are systematically
described from the perspective of major outages in [37]. These studies and definitions
demonstrate that the primary purpose of vulnerability assessment is to evaluate the neg-
ative consequences of potential threat factors on the system [38]. These negative con-
sequences represent low-probability, high-risk impacts on the system, such as a major
system outage. However, the potential threat factors lack a clear definition, leading to
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confusion between vulnerability assessment and other security assessments (especially risk
assessment). Regarding potential threat factors in vulnerability assessment, in 2002, the
U.S. Department of Energy published a report on vulnerability assessment methods for
electric power infrastructure [39]. The report’s introduction emphasizes that vulnerability
assessment is particularly concerned with terrorist attacks. Additionally, many studies
in the literature focus on high-threat events, particularly deliberate attacks, as the key
threat factors in vulnerability assessment. Hence, from the summary and analysis of the
literature, it is evident that vulnerability is an inherent property of the system and that the
essence of vulnerability research is to identify potential vulnerabilities of the system at the
system level under specific conditions. This process aims to reveal the extent of damage
to the system’s operation resulting from these vulnerabilities. The specific conditions are
as follows:

• Its triggers are high threat, such as deliberate attacks and extreme weather.
• The consequences of events with low probability and high risk include system desta-

bilization, major power outages, and severe structural damage.
• Its assessment is negative, which is a relative measure of the degree of damage to

the system.

Importantly, vulnerability is studied at the system level, with a specific focus on
the threat level posed by vulnerabilities to the system. Consequently, factors such as the
vulnerability characteristics of the vulnerability point itself, as well as whether and when
the vulnerability point is attacked, are not related to the system and are not part of the
system vulnerability assessment study.

2.2. The Difference between Vulnerability and Risk, Reliability, and Resilience

In CPPS security assessment, vulnerability, risk, reliability, and resilience represent in-
herent properties of a system that persist despite changes in external conditions. However,
these four properties are assessed with distinct focuses [40]. In this paper, the dissimilarity
between vulnerability and risk, reliability, and resilience is identified in five aspects: pre-
disposing factors I, assessment results R, operational state S, time scale T, and statistical
probability P.

Predisposing factors I: a source event that causes a loss of system functionality or
structural damage. Source events include high-threat IH and low-threat IL events, i.e.,
I = IH ∪ IL.

Assessment results R: evaluate the performance or characteristics of the system struc-
ture or function. The system function mainly refers to the power supply (outage) perfor-
mance of the system RB, i.e., RB ⊂ R.

Operational state S: This includes the normal operating state of the system SN (includ-
ing before and after recovery) and the fault operating state SF, i.e., SN ∪ SF.

Time scale T: the triggers, the operational state of the system, or the duration (or the
time of occurrence) of the system performance.

Statistical probability P: statistical probability of occurrence of predisposing factors
and assessed results.

With the above definition, (I, R, S, T, P) is used to describe the four CPPS security
assessment terms. As analyzed in 1.1.2, in the power system vulnerability assessment, the
consequences of system vulnerability points on the system under high-threat events are
mainly studied, as shown in Equation (1):

(SF, P(R), R/IH) (1)

where P(R) indicates that the assessment result R is a probabilistic statistical value, and
R/IH indicates the system assessment result under a high-risk event. The vulnerability
assessment is independent of the time scale, and the assessment result is a probabilistic
statistical value.
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2.2.1. The Difference between Vulnerability and Risk

At the system level, risk assessment has not yet been strictly defined; however, the
literature commonly characterizes it as a composite measure of the probable consequences
resulting from the occurrence of uncertainties faced by the CPPS [41,42]. This can be
expressed as Equation (2):

(SF, P(R), R/I) (2)

As observed from the definition, risk assessment encompasses a broader scope than
vulnerability assessment, and the main differences are as follows:

• Regarding predisposing factors, all uncertainties are considered in risk assessment,
whereas vulnerability assessment focuses solely on high-threat factors.

• Event consequences are the subject of risk assessment studies, encompassing events
that can have a negative impact on the system. In contrast, vulnerability assessments
concentrate on events characterized by severe negative impacts.

In summary, vulnerability assessment is considered narrower in scope compared to
risk assessment and can be seen as a special case of risk assessment [43]. Furthermore, as
the system’s vulnerability increases, its level of risk also escalates.

2.2.2. The Difference between Vulnerability and Reliability

Reliability is defined as the measure of a power system’s capability to consistently and
uninterruptedly supply electricity and power to customers at an acceptable standard and
in the required quantity [44]. Essentially, it focuses on the efficient provision of electrical
energy to meet customer demand [45]. CPPS reliability encompasses two primary aspects:
adequacy and security. Adequacy assesses the system’s ability to maintain a continuous
supply of electrical energy and meet customer demand under static conditions, whereas
security evaluates its capacity to withstand sudden disturbances and provide uninterrupted
electrical energy to customers under dynamic conditions [46]. By combining these two
aspects, the reliability index can be expressed as Equation (3):

(S, T(I, RB), P(I, RB), RB/I) (3)

where T(I, RB) represents the duration (occurrence) of the triggers and the system to
maintain power supply, and P(I, RB) represents both the triggers and the assessment
results as a probability statistic (model). From the definition, vulnerability and reliability
are fundamentally different, and the main differences are as follows:

• Regarding the predisposing factors, reliability necessitates attention to both the du-
ration (occurrence) and the probability of occurrence of these factors. These factors
can be diverse, considering not only uncertainties but also certainties, such as planned
outages of components and reasonably expected unplanned outages [44]. In contrast,
vulnerability does not concern itself with the duration and probability of the predis-
posing events, as these factors are inherently uncertain. Additionally, reliability, in
general, places more emphasis on high-probability and low-impact events [47].

• The assessment results differ for reliability and vulnerability. Reliability solely con-
centrates on the system’s continuous-time metric of continuously supplying power,
whereas vulnerability encompasses all time-independent metrics related to negative
structural and functional aspects.

• In relation to operating states, both normal and fault operating states are considered in
reliability assessment, with the fault operating state commonly regarded as an N − 1
criterion [48]. Conversely, vulnerability assessment focuses on evaluating the system
specifically in the fault operating state.

2.2.3. The Difference between Vulnerability and Resilience

The definition of resilience, as a novel assessment concept in the power system, is still a
subject of academic consideration [49]. Nonetheless, several organizations (e.g., UK Energy
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Research Center [50], National Infrastructure Advisory Council [51]), along with expert
scholars, regard resilience as a characteristic of the grid’s capability to prevent, absorb,
respond, and recover rapidly when confronted with high-threat events [52,53]. This can be
described by Equation (4):

(S, T(IH , RB, SF → SN), P(IH , RB), RB/IH) (4)

where the high-threat factor and the duration (occurrence) of maintaining the power supply
and the time taken to recover from the failed operating state to the normal operating state,
are denoted by T(IH , RB, SF → SN) . From the definition, it is evident that vulnerability and
resilience assess system performance from different perspectives, and the main differences
are as follows:

• Regarding predisposing factors, although both vulnerability and resilience concentrate
on high-threat factors, resilience is similar to reliability in that it considers the duration or
occurrence time of high-threat factors (e.g., extreme weather [54]) to some extent [17,55].

• In relation to the assessment results, resilience and vulnerability differ. Resilience,
unlike vulnerability, not only focuses on the system’s ability to continuously power
itself but also takes into account the time it takes for the system to recover from a
failure to its prefailure operational state [52]. This measurement involves continuous
time. Additionally, vulnerability can, to some extent, indicate the system’s resilience
ability [56]. As shown in Figure 1, when the power grid encounters a disturbance
event, vulnerability affects the severity of the system damage, and when the losses
reach a certain level, it becomes challenging for the system to return to a normal state.
In other words, if the system exhibits greater vulnerability, disturbances can propagate
rapidly and extensively within the system (as discussed in Section 5), resulting in
difficulties in recovery. This implies that the system possesses lower resilience.

• Regarding the operating state, resilience takes into consideration the system operating
state before, during, and after the failure, whereas vulnerability solely measures the
system’s performance during the failed operating state.
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Figure 1. Performances of CPPSs that are resilient under disruptive events. 
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2.3. Classification of Vulnerability Assessment
2.3.1. Structural Vulnerability and Operational Vulnerability

From the perspective of the system’s structural and operational characteristics, vul-
nerability assessment can be divided into structural vulnerability [57] and operational
vulnerability [58]. Structural vulnerability assessment analyzes the impact of vulnerable
points in the system’s topology on the system’s operational state and the grid characteristics
of its physical structure. On the other hand, operational vulnerability assessment primarily
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analyzes the impact on the system’s operational state caused by changes in its physical or
operational characteristics when the vulnerable points are disturbed or fail.

To illustrate the difference between the two, consider the analogy of a cup and water,
as shown in Figure 2. In this analogy, the cup represents the system’s topology, and the
water in the cup represents the system’s operating state. The system’s operating state is
heavily influenced by its structure, analogous to the height of the water surface in the figure
(although factors such as generators and loads also play a role in determining the system’s
operating state). The cracks on the cup represent the vulnerable points of the system.
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Figure 2. Differences between structural vulnerability and operational vulnerability.

In structural vulnerability assessment, the analysis primarily focuses on the impact of
the vulnerable points in the structure on the system’s operational state, i.e., the influence
of structural characteristics (robustness) on the operational state. The locations of the
different cracks in the figure correspond to the height of the water surface. On the other
hand, in operational vulnerability assessment, the vulnerable points affect the system’s
structural properties, leading to changes in both the physical and the operational prop-
erties of the system. Analogously, the cup in the figure undergoes rotation. Therefore,
operational vulnerability assessment is a comprehensive assessment that considers all
system characteristics.

It is important to note that, on the one hand, in topological vulnerability assessment,
the operational state serves as the foundation for structural vulnerability assessment, and
the latter would lack significance without considering the operational state in the system.
On the other hand, in operational vulnerability assessment, the physical, operational, and
structural properties of the system are interdependent, resulting in an integration of the
physical, operational, and structural properties. Therefore, the physical, operational, and
structural characteristics are integrated into the assessment process.

2.3.2. Spontaneous and Forcible Disturbance Vulnerability

Regarding disturbance characteristics, as depicted in Figure 3, vulnerability assessment
can be subdivided into two categories: spontaneous disturbance vulnerability assessment
and forcible disturbance vulnerability assessment.
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In spontaneous disturbances, the system experiences source events (comprising ex-
ternal factors such as severe weather or natural disasters and internal factors such as
protection malfunctions) that cause its operational deterioration [59], thus exceeding its tol-
erable range (branch overload, heavy load). Subsequently, this triggers successive failures
of the system components [60], ultimately leading to system collapse and a major outage.
Therefore, in spontaneous disturbance vulnerability assessment, a system-level perspective
places more emphasis on understanding how failures propagate between components,
indirectly leading to a chain collapse of the system. Essentially, greater attention is given to
the intrinsic mechanism of fault propagation at the vulnerable points in the system’s fault
evolution [61].

In forcible disturbance vulnerability assessment, the primary focus lies in studying the
extent of damage that is possibly caused to the system’s functionality or structure after a
deliberate attack on the vulnerable point (such as cyberattacks or physical damage) [62,63].
In CPPS, attacks on the cyber layer are stealthy, efficient, and destructive, allowing attackers
to use fewer resources while causing significant damage. As the structure and function
of the complete power grid are generally predetermined, its topology remains fixed. This
enables attackers to intentionally identify and target vulnerable points in the physical
system of power information. Deliberate attacks on vulnerable points typically result
in more severe damage [64]. Although nonspontaneous perturbations may accompany
spontaneous perturbations, vulnerability assessment primarily concerns the direct impact
of the vulnerable points on the system’s function or structure.

2.3.3. Impactability Vulnerability and Susceptibility Vulnerability

Regarding the failure mechanism, vulnerability assessment can be categorized into
susceptibility to impactability vulnerability assessment and susceptibility vulnerability as-
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sessment [65,66], as illustrated in Figure 4. Impactability vulnerability refers to a vulnerable
point in the system being prone to propagating the failure to other components when it fails,
whereas susceptibility vulnerability denotes a vulnerable point being susceptible to the
failure itself. Elaborating on these two vulnerability characteristics helps unveil the essence
of system blackouts. On the one hand, impactable points are inclined to spread faults
within the system, which to some extent determines the breadth of the system collapse.
On the other hand, susceptible points are susceptible to the propagation of faults, which
further exacerbates the system collapse and influences the depth of the system collapse to a
certain extent.
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3. The Foundation Framework for CPPS Vulnerability Assessment Based on Complex
Network Theory
3.1. Feasibility of Complex Network Theory in CPPS Vulnerability Assessment Research

Although CPPSs are often studied as a whole, cyber networks and physical networks
have their own distinct characteristics. Therefore, it is common practice to first study cyber
networks and physical networks separately before investigating their coupling. The opera-
tional status of the cyber network directly impacts the state of the power system, making
it akin to a complex system due to the significant increase in the size and complexity of
information across various services [27,67]. Likewise, the power system strictly adheres
to physical operation rules (e.g., Kirchhoff’s law) [68] and exhibits general characteristics
of a complex system [69,70]. Thus, when analyzing coupled networks at the subnetwork
level, a perspective grounded in complex systems science can be employed. Furthermore,
CPPS vulnerability assessment centers on the network’s connectivity relationships and
the interaction between its components, which affect the system’s failure evolution mech-
anism. As such, its research perspective concentrates on the system level. Consequently,
complex network theory, a branch of complexity systems science, proves feasible for CPPS
vulnerability assessment, as it examines network science at the system level. The feasibility
of applying complex network theory to CPPS vulnerability assessment research can be
demonstrated by the following points:

• Complexity: The power grid has transformed into a high-dimensional, nonlinear, and
complex artificial network [71], with a wide spatial distribution and a large range of
disturbance propagation, as a result of power grid interconnection and continuous
expansion in scale [72]. Simultaneously, the power grid’s evolution into a complex
cyber-physical system characterized by multidimensional heterogeneity and intricate
interaction mechanisms further adds to its complexity [73]. On the one hand, the
CPPS is subject to various complex and variable internal and external threat factors,
with contingencies and correlations among these factors. On the other hand, the
interrelationships between components and systems, as well as the inter-component
relationships, are closely tied to the system’s topology and operation. The convergence
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and interplay of these aspects contribute to the highly complex failure mechanism of
the system, challenging conventional analysis methods and imposing limitations on
vulnerability assessment. To address this challenge, complex network theory emerges
as a promising analytical approach from the field of complexity studies. By employing
complex network theory, one can effectively explore and elucidate the uncertainty
and intricate characteristics inherent in vulnerability assessment, thus offering a novel
perspective to tackle the complexity of the system.

• Similarity: From the perspective of basic functions, both the cyber network and the
physical network within the CPPS share similarities with other infrastructure, as
they facilitate the transportation or exchange of material, whether tangible or intan-
gible [74,75]. Considering the structural characteristics, the CPPS topology exhibits
some correlation with the system performance and operational characteristics [70].
Regarding operational attributes, CPPSs demonstrate self-organized critical properties
and kinetic characteristics in fault propagation [76]. As these properties are typical
of complex systems and tightly linked to the system’s vulnerability points, they offer
substantial guidance for the implementation of complex network theory in CPPS
vulnerability assessment.

• Holistic: The classical electrical theory has its foundation in a reductionist approach to
analysis [70], leading traditional vulnerability assessment methods for steady-state and
transient states to focus more on qualitative analysis of the local electrical–physical
characteristics of the system or individual components, as well as the operational
attributes the system [77,78]. However, assessing the vulnerability of a CPPS requires
the impact of interactions between the cyber network and the physical network to be
considered. The conventional approach of studying vulnerability in the CPPS solely
from a single network perspective (either a cyber or a physical network) has proven
quite limited [73,79]. In contrast, complex network theory represents an analytical
approach rooted in systems theory, encompassing statistical analysis of the overall
expression of the power system [80]. Consequently, it places greater emphasis on
studying the statistical characteristics of faults among components and systems from
a holistic standpoint, thereby revealing the system’s vulnerability. Thus, complex
network theory introduces a novel analytical perspective for vulnerability assessment.

3.2. Research Topics of Complex Network Theory in CPPS Vulnerability Assessment

The literature on CPPS vulnerability assessment incorporates complex network theory,
which comprehensively considers the characteristics of both the cyber and the physical
layers. The cyber layer entails the study of communication nodes (such as data collec-
tion terminals, communication routing, computing terminals, and dispatch centers) and
communication links (real or virtual circuits [81]). On the physical layer, the focus is
on bus nodes (generator nodes, transformer nodes, and load nodes) and branch circuits
(branches and transformers). The primary objective is to identify vulnerable nodes or
branches that directly or indirectly trigger system collapse (major outage) through statis-
tical analysis of cascades, which encompass fault cascade relationships and topological
cascade relationships between nodes or branches. The research framework, illustrated in
Figure 5, comprises four essential steps: model abstraction, vulnerability index construction,
assessment criteria establishment, and experimental analysis.
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In model abstraction, a statistical characteristic graph is generated to abstract the phys-
ical, operational, or structural characteristics of a system. Considering that a cyber-physical
system comprises at least a cyber network and a physical network, the way these two
networks are coupled significantly impacts the system’s operation. Various approaches,
such as interdependent networks [82–84] and hybrid systems [85,86], are employed for
model abstraction of cyber–physical systems. Interdependent networks facilitate intu-
itive exploration of cyber–physical systems from topological and operational perspectives
through the coupling of different networks via interdependent edges [87]. Consequently,
interdependent networks are widely utilized in the study of CPPSs from a complex net-
work perspective. The general process of model abstraction involves separately modeling
cyber networks and physical networks using complex network theory. Subsequently, the
coupling of these two networks is achieved through interdependent networks. For instance,
from the perspective of structural characteristics, data collection equipment and computing
equipment are considered nodes in the statistical graph of the cyber layer, whereas com-
munication links serve as edges. On the physical layer, bus nodes represent nodes in the
statistical graph, and branches act as edges. This results in separate topological graphs for
the cyber system and the physical system. By employing interdependent edges, different
connectivity patterns (one-to-one [88], one-to-many [89], many-to-many [84], etc.) are es-
tablished between nodes in the two topologies, forming a comprehensive topological graph
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of the CPPS. On this basis, the meanings and weights of edges and nodes in a statistical
graph can be defined according to the research problem and methodology.

The vulnerability index construction involves analyzing the system’s vulnerability by
examining the properties of statistical graphs using complex network theory. Subsequently,
vulnerability indices are constructed to identify the vulnerable nodes or branches within
the system. It is essential to highlight that the model abstraction and vulnerability indices
will be elaborated upon in detail in the following section.

Assessment criteria encompass both structural and functional aspects. Their primary
objective is to quantify the extent of the structural or functional impairment (destruc-
tiveness) within the system after the elimination of a vulnerable node or branch. These
criteria serve as crucial tools to validate the proposed vulnerability metrics. Structural
assessment criteria commonly utilize established metrics from complex networks (e.g.,
connectivity [61,90]). Furthermore, although CPPS needs to be analyzed as a whole, due to
the specificity of power systems, whose main purpose is to transmit the power generated
by generators to consumers, only indices from the power grid layer, such as network con-
nectivity [91] and network efficiency [92,93], are typically utilized in research to describe
the vulnerability of the entire CPPS; such indices are widely employed to gauge the level
of connectivity between generator nodes and load nodes across the system when vulnera-
ble points are removed. Presently, there is no standardized approach for devising these
assessment criteria, and different criteria are selected based on specific research objectives.
In functional assessment criteria, the load loss of the system [93] is currently the commonly
used criterion for functional assessment, since the main function of the system is to provide
electrical energy to the users. For instance, the generalized system average interruption
frequency index, generalized system average interruption duration index, generalized
expectation of energy not supply, and generalized average service availability index were
proposed in [94] to describe the power supply capability of cyber–physical power from the
perspective of functional assessment criteria after being subjected to network disturbances.

In the experimental analysis, one of the primary ways to conduct simulation stud-
ies is by attacking the system, which involves removing the target nodes or branches
from the system. Among the various attack methods, numerous studies in the literature
have demonstrated that the system exhibits high robustness when subjected to random
attacks [93,95]. Consequently, random attacks are commonly used as a benchmark to
validate the effectiveness of the proposed method. In contrast to random attacks, deliberate
attacks encompass static attacks [96,97] and dynamic attacks [92,97]. Static attacks are
mainly based on the results of structural vulnerability metrics ranking, where branches (or
nodes) are removed from the network, and the ranking results remain unchanged even
if there are changes in the network’s topology due to network failures. In comparison,
dynamic attacks involve reranking based on the current network state after certain targets
are removed from the network. Moreover, temporal relationship classification leads to
the distinction between sequential attacks and simultaneous attacks [96,98]. Sequential
attacks involve the sequential removal of a certain number of branches (or buses) from
the system, one at a time, whereas simultaneous attacks simultaneously target a specific
number of branches (or nodes) in the system. The selection of different attack methods is
contingent on the research objectives. For instance, sequential attacks simulate the cascade
occurrence of incidents to some extent, making them suitable for analyzing the impact of a
vulnerable branch (or bus) on a cascading failure. From the perspective of the defender
or attacker, simultaneous attacks offer a reasonable method to effectively analyze how the
system can be prevented from being rapidly destroyed. Additionally, comparing the two
attack methods reveals that sequential attacks possess a greater destructive capability to
some extent than simultaneous attacks [96,98].
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4. Current Status of Research on CPPS Vulnerability Assessment Based on Complex
Network Theory

In the vulnerability assessment of CPPSs using complex network theory, model ab-
straction and vulnerability index construction constitute the core elements of the assessment
system and have been extensively investigated by both domestic and international scholars.
This chapter discusses the current research status of vulnerability assessment in CPPSs
using complex network theory, focusing on the perspectives of topological vulnerability
and operational vulnerability.

4.1. Structural Vulnerability Assessment Based on Complex Network Theory

In the context of topological vulnerability assessment, the fundamental approach involves
abstracting the system’s topology into a topological graph. Subsequently, complex network
theory is utilized to construct a vulnerability index based on this topological graph, as illustrated
in Figure 6. The pure vulnerability index (PVI) focuses solely on the topological characteristics of
the system. In other words, the system’s topology is directly represented by an undirected and
weightless topological graph [99,100]. Building upon this representation, statistical measures
from complex network theory [101,102], such as betweenness [103] and degree [104], are
employed to identify the system’s vulnerability points.
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However, by focusing solely on the topological characteristics of the system and
neglecting its physical aspects, the pure vulnerability index results in one-sided assessment
outcomes. To truly reflect the system’s vulnerability characteristics, the topological graph
must be constructed with consideration of the physical features of the system, employing
weights or directed topology.

In the literature, to incorporate the physical characteristics into the topology graph,
the direction or weight of edges/nodes is generally defined based on electrical quantities of
the physical layer, as presented in Table 1. Among the weight definitions, branch reactance
(impedance) and capacitance are commonly used to measure the electrical distance between
nodes and serve as weights of the edges [102,105], and they are one of the most widely
used electrical quantities. Reactance, being an inherent property of the branch (static
property), remains unchanged with network operation state fluctuations. Furthermore,
it is a critical parameter determining the system flow distribution, with smaller branch
reactance implying higher power transmission through the branch under similar conditions.
Consequently, reactance as a weight in the topology graph can to some extent reflect
the power transmission capability of each branch. Moreover, to refine the influence of
different generators and load nodes on power transmission within each branch, the power
transmission distribution factor (PTDF), unit injection current, and other methods are
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successively employed to define branch weights. Additionally, electrical quantities such as
branch capacity and voltage level are designated as layer weights to reveal the sensitivity
of branch contributions to tidal current transmission.

Furthermore, with the development of CPPSs, it has become evident that the physi-
cal characteristics of the cyber layer also directly impact the system’s vulnerability [106].
However, defining the weight or direction of the cyber layer topology proves more chal-
lenging than that of the physical layer. Information entropy [107] in current studies is
generally employed to portray the amount of information contained in cyber nodes or
their collections. Higher information entropy in a cyber node signifies greater diversity
and uniqueness of the transmitted information, which may play a vital role in information
transmission throughout the entire network [108], making the node more susceptible to
fault propagation. Consequently, information entropy can be used to define the weights of
the cyber-layer topology graph. These weight definitions effectively reflect the essence of
branch/node transmission capability and the importance within the network.

Table 1. Definition of weights of edges/nodes.

Nodes/Edges Weights Dynamic/Static Meaning Related Literature

Edges Branch reactance
(impedance) Static

Characterize the power capacity of the
transmission (the smaller the branch

reactance, the greater the power
transmitted under the

same conditions)

[90,109–114]

Edges Branch capacity Static

Characterize the power capacity of the
transmission (the larger the capacity,

the greater the power
capacity transmitted)

[115,116]

Edges Branch voltage level Static

Characterize the power capacity
transmitted (the higher the voltage
level, the higher the corresponding

transmission capacity [117])

[117]

Edges

Branch circuit
impedance multiplied
by the inverse of the
voltage rating factor

Static Characterize the power capacity of
the transmission [68]

Edges
Branch power
transmission

distribution factor

Dynamic (changes in
generator load node

pairs)

Characterize the sensitivity of each
branch to the tidal

transmission contribution
[57,93,102,118–121]

Edges

The probability that a
branch circuit will be in
normal operation for a
certain period of time

Dynamic (branch
operation time related)

Cumulative running time of the
characterization branch [122]

Edges Branch current
sharing factor

Dynamic (injection
current and branch
voltage variation)

Characterize the effect of unit injected
power on the branch current [95,123]

Edges

Current (power)
flowing in the branch

circuit after the
generator load node
pair and injection of

current (power)

Dynamic (changes in
generator load

node pairs)

Characterize the degree of
contribution of branch flows to the

whole network
[92,97,124–126]

Nodes

Rated capacity or
output of the generator

node, actual or peak
value of the load node

Static/dynamic
(changes with

flow distribution)

Characterize the importance of node
transmission and distribution power [97,116,117,124]

Dynamic/static is characterized by whether this weight changes with the operational state of the system.
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Based on this, the abstracted topological graph, considering physical characteristics,
becomes the object of research to construct extended vulnerability indices (EVIs) utilizing
statistical characteristic quantities from complex network theory (e.g., betweenness, average
path, degree, and maximum flow), as shown in Table 2. Among these, betweenness in
complex network theory serves to reflect the role and influence of edges/nodes in the entire
network, making it one of the most widely used indices in CPPS vulnerability assessment.

Regarding the steady-state operation of the system, electrical quantities such as branch
reactance and branch capacity are incorporated into the betweenness index, leading to
the construction of expanded betweenness indices, such as electrical betweenness [97,126],
capacity betweenness [115], and power flow betweenness [125]. These indices capture the
nodes’/branches’ abilities and influence in power transmission and distribution within the
system, indirectly reflecting their impact on system outages when they fail and thereby re-
vealing vulnerable points in the system. Additionally, expanded metrics such as expanded
degree and average path are utilized to characterize the power transmission capability and
the importance of nodes/branches within the system. From the perspective of the system’s
transient operation, the impact of transient energy on the system during significant short-
period disturbances is considered in [127], and the kinetic energy injection betweenness is
proposed as a means to assess the extent of disturbance to the branches.

The use of extended statistical characteristic indices to assess the vulnerability of the
system has two advantages at the steady state level or from the transient perspective of
the system. First, the statistical characteristic quantities of the complex network define the
impact of the branches/nodes on the system topology from a system-wide perspective,
thereby characterizing the topological statistical properties of the system. Second, the
incorporation of electrical quantities characterizes the physical properties of the system,
enabling the extended indices to integrate the system topology and physical characteristics.
As a result, they align to a certain extent with the actual characteristics of the power system.
Furthermore, comprehensive utilization of different expanded metrics is enabled, as they
reveal the topological and physical characteristics of the CPPS from diverse perspectives,
allowing for a comprehensive assessment of the vulnerability of the CPPS [128].

Table 2. Extended vulnerability indices.

Basic
Characteristic

Quantity

Research
Object

Operating
State Electrical Quantity Meaning Related Literature

Betweenness Branch/node Normal Branch reactance,
branch capacity

Characterize the
importance of branch

transmission and
distribution power from a

system perspective

[57,90,93,114,115,
120,128]

Betweenness Branch Normal
Branch circuit current

(power), generator rated
(issued) power, load

Reflects the power transfer
of the branch in the

generation load node from
a system perspective

[95,97,124–126]

Betweenness Branch N-1
standard

Branch power, generator
capacity, peak load,
branch impedance,

branch capacity

Characterize the
importance of branch

transmission and
distribution power and

the coupling between the
branches from a

system perspective

[92]
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Table 2. Cont.

Basic
Characteristic

Quantity

Research
Object

Operating
State Electrical Quantity Meaning Related Literature

Betweenness Branch/node Normal
The probability of normal
operation time in a certain
period of time for a branch

Characterize the
continuous operation time

of system components
from a

reliability perspective

[122]

Betweenness Branch Normal
Branch circuit voltage

level, branch
circuit impedance

Characterize the
importance of branch

transmission and
distribution power from a

system perspective

[68]

Betweenness Branch Normal Node injection current,
branch conductance

Characterize the
importance of branch

transmission and
distribution power from a

system perspective

[123]

Betweenness Branch N-1
standard

Kinetic energy of
generator rotor

The degree of transient
impulse to the branch
circuit after the system

is disturbed

[127]

Average path Node Normal Branch reactance
Characterize the

connectivity of nodes in
the system

[110]

Degree Node Normal Node injection power,
branch voltage level

Integrated
characterization of the
topological and power

characteristics
of the system

[117]

Degree Node Normal Branch reactance
Characterize the power

transmission capability of
the node

[128]

Degree Node Normal
The probability of normal
operation time in a certain
period of time for a branch

Characterize the node’s
duration of operation from

a reliability perspective
[122]

Maximum flow Branch/node Normal Branch reactance,
branch capacity

Characterize the carrying
capacity of the

branch/node for
system flow

[112,116,118]

The table is classified by electrical quantities.

Although to some extent the extended vulnerability index considers the physical
characteristics of the power system, it is primarily constructed based on the topological
statistical characteristics of the system, thereby remaining within the domain of topological
structure fragility assessment.

Second, current research predominantly focuses on constructing vulnerability indices
in the normal operational or N − 1 fault state of the system, with limited consideration of
the N − k fault state of the system. Consequently, the resulting indices do not effectively
capture intercomponent relationships, such as fault propagation relationships, and fail to
adequately reflect the impact on the network when vulnerable components fail and when
the mechanisms lead to cascading failure propagation.

Last, the majority of topological vulnerability indices still fall under the category of
“static” indices in complex network theory, primarily relying on basic static characteristic
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statistical indices (e.g., degree, betweenness). Therefore, further investigation is needed
to effectively incorporate the dynamic theory of complex networks into the assessment of
topological vulnerability in systems.

4.2. Operational Vulnerability Assessment Based on Complex Network Theory

In contrast to general complex systems, CPPSs operate according to physical rules,
such as adhering to bandwidth constraints for power data transmission and following
Kirchhoff’s law in grid operation. Consequently, a topology-based vulnerability assess-
ment alone fails to offer a comprehensive understanding of the system’s (operational)
vulnerability characteristics. To address this limitation, operational graphs are devised by
integrating the operational, physical, and topological characteristics of the system, with
a focus on cascading faults. For instance, two types of characteristic temporal–spatial
correlation graphs [66], cascading fault graphs [98,129,130], risk graphs [96,131], influence
graphs [132], and interaction graphs [133,134] are constructed to elucidate the operational
vulnerability of the system. The assessment framework for these operational graphs is
presented in Figure 7. It is essential to note that the nodes in the operational graph represent
components in the source system at that particular point in time.
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The construction of the operational graph involves two primary approaches. First,
different combinations of components are simultaneously or sequentially removed, and
the combinations that cause significant damage to the system function or structure are
filtered to form the operational graph [96,131]. Second, cascading fault propagation
paths obtained from counting the cascading fault propagation paths in the system un-
der different fault operation states are combined and then mapped into the operational
graph [98,129,130]. In the first operational graph, a node with a high number of neighbor-
ing nodes indicates that the components in the source system corresponding to that node
have a high operational vulnerability within the network. On the other hand, the second
operational graph utilizes cascading fault propagation paths, which reflect the sequential
cascading failure relationships between components. This results in a statistical graph that
transforms spatial information from the source physical network into information that
reveals the sequential associations of component failures. The direction of the edges in
the second operational graph effectively illustrates the fault cascade relationship between
components and the fault propagation mechanism of the system under different fault
operation states. Meanwhile, the weights of the edges can reveal the propagation likelihood
between components, the degree of structural damage, or the loss of load [135].

On this basis, the operational vulnerability of the system is assessed using complex
network theory to construct vulnerability indices on the operational graph. Based on
the static characteristic statistical indices of complex networks, degree, in-degree, and
out-degree indices are utilized to identify components with distinct vulnerability charac-
teristics [98,129,130]. Components with higher out-degree indicate a higher likelihood of
propagating faults during fault propagation, making them impactable vulnerability nodes.
Conversely, components with higher in-degree are more susceptible to the influence of
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propagating faults and represent susceptible vulnerable nodes. Furthermore, in the second
type of operational graph, nodes map the importance of components in the source sys-
tem, whereas the distance between nodes illustrates the cascade propagation relationship
between components in the source system (referred to as vulnerability distance in [65],
which uses vulnerability distance as a replacement for electrical distance to measure the
relationship between nodes). Therefore, in [66], attempts are made to construct dynamic
vulnerability indices considering the importance of components and the cascade propa-
gation relationship between them from the perspective of the dynamic model of complex
network theory using the load–capacity model [136,137] This dynamic vulnerability index
is employed to identify vulnerable branches within the system.

The utilization of operational graphs in studying the vulnerability of systems effec-
tively addresses the shortcomings of topological structure graphs in accurately reflect-
ing the system’s operational characteristics among nodes or branches. In particular, the
topological characteristics of the second type of operational graph reveal the cascade fail-
ure propagation mechanisms between components in the source system, thus offering
new insights for conducting dynamic studies on the vulnerability of complex network
theory-based systems.

However, operational vulnerability assessment based on complex network theory us-
ing operational graphs still faces several challenges. Since operational graphs are essentially
statistical graphs from a type perspective, further exploration is needed to effectively select
component combinations (for the first type of operational graph) or cascade failure prop-
agation paths (for the second type of operational graph) for constructing the operational
graph. On the one hand, if the selected component combinations or cascade propagation
paths are too few, the constructed operational graph may not fully reveal the system’s
vulnerability characteristics, leading to overly simplistic assessment results. On the other
hand, if the selected component combinations or cascade propagation paths are too numer-
ous, it may not only lead to the “curse of dimensionality” but also fall into the realm of
risk assessment, resulting in insufficiently meaningful conclusions from the perspective of
vulnerability assessment.

Furthermore, the construction of operational graphs is commonly based on the op-
erational state at a specific moment and does not consider the time-evolving operational
characteristics. In actual operation, the system’s operational state changes over time, result-
ing in the operational graph being influenced by the system’s evolving state. Therefore, it
is necessary to construct time-evolving operational graphs and utilize complex network
theory to analyze graph evolution patterns, thus revealing the time-varying operational
vulnerability of the system.

5. Interrelationship between System Vulnerability and Cascading Failures

From the perspective of complex network theory, numerous studies have indicated
that the topology of CPPSs exhibits small-world network characteristics, as demonstrated
in various power grids, such as the power grid of the western United States [138], the
Brazilian grid [139], the Iranian grid [140], and the power grid of northern China [141]. The
small-world properties of the topology imply that the network possesses high clustering
coefficients and relatively short average path lengths, indicating close connections between
nodes or branches. Consequently, when nodes or branches in the network experience
failures, the high clustering coefficient facilitates the easy propagation of failures to neigh-
boring and even non-neighboring nodes, revealing the characteristics of cross-regional
propagation of cascading failures. Meanwhile, the shorter average path lengths accelerate
the speed of failure propagation.

On the other hand, by analyzing the extent of functional or structural damage to
the system after removing certain nodes or branches from the network, it is found that
specific critical nodes or branches contribute significantly to the severe disruption of sys-
tem functionality or structure (particularly in terms of functional damage). Therefore,
from the perspective of deliberate attacks, the system exhibits a scale-free nature [95].
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It should be noted that although the general topology of the system is not a scale-free
network, it displays certain scale-free characteristics under deliberate attacks. This scale-
free nature of the network indicates the presence of vulnerable points in the system.
Once these vulnerable points experience failures, they easily trigger and exacerbate the
propagation of failures.

In conclusion, as illustrated in Figure 8, the small-world characteristics of the CPPS
topology and the scale-free nature observed under deliberate attacks partially reveal the
essence of system vulnerability and cascading failures.
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Figure 8 only reveals the interrelation between structural vulnerability and cascading
failure propagation mechanisms from a topological perspective. As mentioned earlier, the
power grid is an artificial network that follows physical operating rules, and therefore,
the cascading failure mechanisms and operational characteristics of the system are closely
linked. It is necessary to analyze the cascading failure mechanisms of the system from
the perspective of its operational characteristics. A risk propagation model for the cyber–
physical system of the distribution network was constructed using a dynamic Bayesian
network in [142]. The impact after cyberattacks under different operational states was
evaluated, and the probability of fault risk propagation in the network when nodes fail
from an operational perspective was revealed. The system’s scale-free characteristics
were indirectly revealed in [98,129,130] by analyzing the topological characteristics of the
constructed cascading failure graph, indicating the existence of a small number of highly
vulnerable components in the network that, when attacked, lead to severe nonoperational
states (or even system collapse).

Furthermore, to elucidate the roles of different types of vulnerable components (i.e.,
impactable components and susceptible components) in the cascade failure propagation
process, the study conducted by [66] utilized symmetric entropy to construct the impactabil-
ity temporal–spatial correlation graph and the susceptibility temporal–spatial correlation
graph. Building upon this, as illustrated in Figure 9, the analysis of the topological charac-
teristics of these two types of graphs revealed that the impactability temporal–spatial corre-
lation graphs exhibit scale-free network properties, whereas the susceptibility temporal–
spatial correlation graphs display small-world network characteristics. Moreover, it was
observed from the scale-free properties of the impactability temporal–spatial correlation
graphs that branches with high susceptibility in terms of propagating failures are more
likely to trigger failure propagation, resulting in heightened network vulnerability and an
intensified depth of failure propagation. Conversely, based on the small-world properties of
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the susceptibility temporal–spatial correlation graphs, the cross-influence between branches
during failure propagation amplifies the breadth of failure propagation.
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From the perspective of complex network theory, one of the most significant reasons for
cascade failure propagation in a system is the presence of vulnerable points. In particular,
when the system operates at a critical state, these vulnerable points can become crucial
factors leading to system collapse. As a result, there is a close association between the
system’s self-organized criticality and vulnerable points.

Additionally, from the perspective of cyber–physical coupling, due to the influence
of interdependencies, there is a probability of interconnected vulnerable nodes/edges
between the two interconnected networks. This leads to a situation where failures on
one layer have a probability of propagating through interdependent edges to the other
layer and initiating further propagation. If the vulnerable points of both interconnected
networks are directly connected, it can cause the failure to rapidly spread throughout the
entire system, resulting in cascading failures and ultimately leading to system collapse [84].
Therefore, the vulnerability of CPPSs may be amplified through coupling characteristics,
exacerbating the propagation of cascade failures.

6. Applications and Prospects of Vulnerability Assessment Based on Complex
Network Theory

The development of smart grids has brought about a growing diversity of potential
threats and disruptions. When the physical layer of the CPPS is exposed to low probability,
high-risk extreme events, such as terrorist attacks or extreme weather, the vulnerable points
in the system are susceptible to damage. The cyber layer is vulnerable to cyberattacks,
such as denial of service (DoS) attacks, false data injection attacks (FDIAs) [143], or replay
attacks (RAs) [144,145]. Although these attack methods and principles vary, all of these
types of attacks rely on cyber communication. Attackers attempt to execute their attacks
by disrupting or deceiving cyber communication with the aim of causing cyber nodes to
fail, ultimately triggering fault propagation. It is worth noting that there is a significant
distinction between attacks and faults, and there is no inherent causal relationship. The
system does not necessarily experience a fault after an attack, and faults are not always
caused by attacks. The analysis in this section is based on the attacker’s objective, which
is to trigger a system-wide cascade failure through attacks. It assumes that the system
undergoes operational-state changes after an attack, and therefore the application and
prospects of CPPS vulnerability assessment in the context of attacks are analyzed. This
analysis considers the potential changes in the system’s operational state as a result of
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attacks without implying a direct cause-and-effect relationship between network attacks
and faults.

As the CPPS’s structure and functionality become more complex, conventional single-
layered attacks pose diminishing threats to the system. Attackers are now resorting to
coordinated cyber–physical attacks based on FDIAs, such as load redistribution (LR) [146]
and false topology attacks (FTAs) [147]. These methods can mislead the dispatching system
through false data, causing operators to make incorrect decisions and altering the normal
operation state of the grid. Concurrently, physical attacks are launched on the physical
layer, leading to cascading failures in the system [148], as shown in Figure 10.
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Figure 10. Schematic diagram of a coordinated cyber–physical attack.

Coordinated cyber–physical attacks are typically not single occurrences and are of-
ten carried out in a continuous or sustained manner. A multistage coordinated cyber–
physical attack strategy was proposed in [149], which, when directed at the CPPS, leads
to widespread cascading failures. Faced with these threats and attacks, vulnerability as-
sessment based on complex network theory can offer valuable guidance for the security
analysis of CPPS operations.

As shown in Figure 11, the first step of vulnerability assessment is to model the
system, and complex network theory can be utilized for coupling modeling of the CPPS.
However, this type of model is isolated and static, which is not entirely suitable for dynamic
CPPSs. Nevertheless, situation awareness technology enables real-time data acquisition
and an in-depth understanding of the system’s state [150], providing a new approach for
coupling modeling with complex network theory. Through real-time situation awareness,
an accurate understanding of the current system state and prediction of future states
can be achieved, leading to the establishment of a dynamic complex network model for
CPPSs. Based on situation awareness and dynamic complex network modeling, dynamic
vulnerability assessment of the system can be conducted, facilitating the identification of
vulnerable components during dynamic processes and the prediction of failure propagation
risks. The results from dynamic vulnerability assessment can be used for research on
security protection and operational optimization, thereby enhancing system reliability
and operational efficiency. Finally, with the development of the energy internet (EI),
vulnerability assessment can also be applied to an integrated energy cyber–physical system
(IECPS) to guide the safe operation of these comprehensive energy cyber–physical systems.
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6.1. CPPS Coupling Modeling and Analysis

Vulnerability assessment is often carried out for a specific system, network, or orga-
nization. When conducting vulnerability assessment of a system, the first step is system
modeling, as a well-defined model can provide a comprehensive understanding of the
system’s structure, components, and relationships. As shown in Figure 12, in CPPS vul-
nerability assessment, complex network theory is commonly used for coupling modeling
of the system. The general approach involves defining separate models for the physical
network and cyber network, abstracting them as sets of nodes and edges, and then connect-
ing the nodes of both networks to form an interdependent network. Mathematically, the
interdependent relationships can be represented using a cyber–physical association matrix
established through interdependent edges, achieving the coupling of the two networks’
topologies. The coupling connection methods can vary based on different research objec-
tives, such as one-to-one, one-to-many, many-to-one, or partial one-to-one connections.
Based on the coupled topological network, the structural vulnerability of the system can be
analyzed. Apart from the structural characteristics, the concept of weights was introduced
to the topological graphs. In studies based on complex network theory, there are gener-
ally two approaches: One is to use electrical quantities themselves as weight indices; the
other is to use complex network theory parameters as weight indices. Some studies also
combine electrical quantities and complex network parameters to form extended metrics
similar to electrical centrality [151]. These methods redefine the coupled network from an
operational perspective.
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Figure 12. CPPS coupling modeling for vulnerability assessment. 
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In addition to topological coupling, in recent years, many studies have started to
focus on functional coupling—for example, a subset of nodes in the cyber network di-
rectly controlling a specific region of the power network while having little association
with other nodes. To conduct vulnerability assessments of such functionally coupled
systems from the perspective of complex network theory, methods such as partition mod-
eling [152], community theory [153], and multilayer network modeling [154] have been
proposed. The common idea behind these methods is to treat sets of nodes in CPPS
that exhibit strong overall similarity and interaction for research purposes. Integrating
complex network theory, these methods further divide subnetworks into even smaller
subnets, where each subnet possesses its own complex network attributes, allowing for
the definition of its connectivity and network parameters. At the same time, these subnets
contribute to defining the attributes of the upper-level subnetworks, thus simplifying the
modeling complexity and reducing model calculation difficulties. These approaches are
suitable for research in scenarios such as regional dispatch, hierarchical dispatch, and
island grids, and they facilitate regional management and protection of vulnerable ele-
ments. Since complex network theory primarily adopts a static perspective, static network
models may not capture the dynamic behavior of CPPSs. Therefore, recent research has
proposed dynamic complex network models [155], where network connections and topo-
logical structures can change. This dynamic approach better describes the sequential
nature and evolution process of the system, providing insights for the assessment of the
system’s dynamic vulnerability.

Multiple studies have indicated that the aforementioned coupling modeling methods
based on complex network theory can address most of the research on vulnerability assess-
ment in CPPSs. However, there are still many aspects that warrant improvement. With the
development of the energy internet and the construction of new power systems, the applica-
tion scenarios of vulnerability assessment are continuously evolving. The way to improve
various indices in complex network theory to adapt to modeling different characteristic net-
works, such as vulnerability assessment in distribution networks with distributed energy
resources, is a critical consideration. Under the framework of the source–grid–load–storage
architecture, when large-scale new energy, energy storage facilities, and distributed energy
resources are integrated into the power system for vulnerability assessment, the type of
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new ideas that can be derived from complex network theory is an important question. In
integrated energy systems, where cyber and multienergy coupling are involved, it is crucial
to explore how to utilize complex network theory to establish a cyber–physical model of
the integrated energy system and conduct vulnerability assessments of the IECPSs. All
these issues require further research.

6.2. Dynamic Vulnerability Assessment Based on Situation Awareness

With the development of new power systems, a large number of heterogeneous data
are always generated in the system. Traditional perception techniques mainly relying on
manual analysis struggle to handle such vast and complex data. This has led to the applica-
tion of situation awareness technology in the power system. Situation awareness refers to
the capability of collecting, monitoring, and analyzing various data and information related
to the operational status of the power system to gain a comprehensive understanding of
the current state and accurately predict future development trends. Its basic framework
is shown in Figure 13. Situation awareness is divided into three stages: situation detec-
tion, situation comprehension, and situation projection, as proposed in reference [150],
which also presents a five-layer comprehensive framework of smart distribution network
situation awareness.
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Situation detection primarily focuses on acquiring real-time data from various aspects
of the power system and conducting preliminary integration and analysis to obtain a
comprehensive understanding of the current state of the power system. This involves key
technologies such as data acquisition and sensing, data processing and analysis, and data
integration. In recent years, numerous data-processing algorithms have been applied to sit-
uation detection, such as Kalman filtering [156] and neural networks [157], to optimize and
integrate measurement data and identify operational states. However, effectively extracting
real-time operational states from a large number of multidimensional heterogeneous data
while ensuring high accuracy and timeliness remains a research challenge.

Situation comprehension involves comprehensive analysis and interpretation of the
real-time data and information obtained from the power system to gain an in-depth un-
derstanding of the overall state and interrelationships of the system. It builds upon the
foundation of situation detection and further analyzes and interprets the data to gain
deeper insights into the system’s state, attributes, and operational characteristics. Currently,
some artificial intelligence algorithms have been applied to situation comprehension, en-
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abling the understanding of system states by comparing measurement data models with a
vast number of historical operational data, laying the groundwork for situation projection.
However, challenges remain in accurately conducting data mining and feature extraction
from large datasets during the situation comprehension process, as well as addressing the
accuracy and computational complexity of power data modeling. Additionally, efficiently
achieving human–computer interaction between the data and operational personnel is an
area that warrants further research.

Situation projection involves forecasting and inferring the future state and trends of
the power system based on existing data and information using established models and
methods. This includes status forecasting [158], load forecasting [159], and renewable
energy output forecasting [160], among others. It aids operational personnel and decision-
makers in devising rational strategies and plans to cope with future changes and challenges.
Moreover, situation projection guides the optimization scheduling, resource allocation, and
fault handling in the power system, promoting its reliability, stability, and efficiency.

In summary, situation awareness possesses real-time, comprehensive monitoring
and responsive capabilities, as well as an in-depth understanding of the system’s oper-
ational state, thereby providing novel insights into the application of complex network
theory in CPPSs.

Through situation awareness, various data and information related to the operation of
the power system, such as power load, generation capacity, transmission line status, and
equipment operation, can be collected. These data can be regarded as dynamic changes in
nodes and edges in the complex network model. By analyzing these data, the interactions
between nodes and the paths and patterns of information transmission in the CPPS can be
revealed, forming a dynamic complex network model of the CPPS. Based on this dynamic
complex network model, more in-depth analysis can be conducted using methods from
complex network theory. For instance, when network topology and operational status
change, the importance and influence of nodes can be re-evaluated dynamically using
indices such as node degree centrality and betweenness centrality, thereby identifying
critical nodes in the system. Simultaneously, the small-world property, scale-free character-
istics, and community structure of the network can be further investigated, uncovering the
dynamic patterns and features of CPPSs. Furthermore, situation awareness can provide
real-time monitoring and forecasting of CPPS. By continuously collecting and analyzing
system-state data, the network model can be updated in real time. By combining big data
analytics, artificial intelligence, and other technologies, future trends of system states can
be predicted. This offers real-time decision support for the operation and dispatch of the
power system, contributing to optimizing system performance and robustness. It also
provides novel approaches for risk prediction and security protection.

Situation awareness combines traditional static complex network analysis with real-
time monitoring and forecasting of dynamic systems, providing deeper insights and ef-
fective tools for the study and operation management of CPPSs. Traditional vulnerability
assessment is primarily based on static system models and static network topology, which
cannot accurately reflect the vulnerability of the system under dynamic changing environ-
ments. For instance, when attackers target the vulnerable points of a CPPS, causing node
failures, there is a probability that the connected edges or nodes may also fail, resulting in
changes to the system’s topology. Additionally, active defense mechanisms triggered in the
system may lead to local load shedding, power flow redistribution, and other behaviors,
causing changes in the operational parameters of system nodes and altering the system’s
operational characteristics.

From the perspective of complex network theory, when a CPPS experiences cascad-
ing failures or multistage attacks, the topological and operational characteristics undergo
dynamic changes, leading to changes in system properties. First, there are changes in
the system parameters; previously important nodes may lose their significance, whereas
noncritical nodes may become new important nodes. This is because changes in the sys-
tem structure may alter the degrees, betweenness, or centrality of nodes, affecting their
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status and influence within the system. Second, there are changes in the system proper-
ties; systems originally exhibiting scale-free characteristics may transition to small-world
or other forms due to the failure of critical nodes, causing localized node failures. This
is because changes in the system structure lead to a redistribution and readjustment of
node centrality and clustering coefficients. Third, there are changes in the community
structure; when system topological and operational characteristics change, the complex
network theory’s community structure of systems may be adjusted. Previous commu-
nity structures may be disrupted and new community structures may form, impacting
the local centrality of nodes and intercommunity connection patterns. Therefore, vul-
nerability assessment results under normal system conditions are no longer applicable
after the system is attacked. Similarly, if the system experiences multistage coordinated
cyber–physical attacks, the system’s vulnerability may change after each attack. Hence,
dynamic vulnerability assessment in the post-failure dynamic process of CPPSs is an area
worth researching.

This section mentions that dynamic complex network modeling can be achieved
through situation awareness, thereby enabling the dynamic study of system parameters and
attributes. Similarly, based on situation awareness and complex network theory, research on
the dynamic vulnerability assessment of CPPSs can be conducted. As shown in Figure 14,
during the dynamic process after the system is disrupted, anomalies in the data can be
immediately detected through situation detection, and then situation comprehension can
be used to identify and understand the current failure state of the system, including failure
source localization, failure type, and system losses. By combining automated dynamic
complex network modeling with highly autonomous management systems, the operating
parameters and complex network theory parameters of the current stage of the system can
be updated in real time to detect vulnerable nodes, branches, and potential vulnerability
propagation paths within the system. Based on this, the results of vulnerability assessment
can also be updated in real time, which helps identify risk areas and vulnerable points that
may exist in the system during dynamic changes, providing guidance for the safe operation
and protection of the system.

Dynamic vulnerability assessment based on situation awareness has the potential
to improve the accuracy and real-time capability of vulnerability assessment, offering a
promising approach to address vulnerabilities in CPPSs. However, there are still many
issues that need to be investigated, such as the data-processing accuracy of situation
awareness, the accuracy and applicability of dynamic complex network models, real-time
performance and quick response in practical applications, and the comprehensiveness of
multi-indicator decision-making in dynamic vulnerability assessment.

In the future, situation awareness-based dynamic vulnerability assessment can be
applied to scenarios where the CPPS faces multistage collaborative cyber–physical attacks
and dynamic attack–defense games, requiring dynamic decision-making. It can also be
applied to complex systems such as mixed AC/DC power grids, which involve multiple
couplings, multienergy systems, and multi-indicators. Moreover, in extreme natural disas-
ters, the power grid exhibits strong uncertainty and multiple risk factors, and considering
the characteristics of spatial and temporal scales is essential. In such scenarios, vulnerability
assessment can be studied based on situation awareness.
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6.3. Security Protection of CPPS Based on Vulnerability Assessment

Based on static vulnerability assessment, potential vulnerable components within the
CPPS can be identified and security risks and threats can be uncovered, thereby strength-
ening the protection of critical elements. This is of great significance for CPPS security
protection. The results of vulnerability assessment can offer guidance for CPPS security
protection. Since security protection is integral throughout the entire operational process of
CPPS, this section uses the variations in CPPS operational states as the basis and categorizes
CPPS security protection methods based on vulnerability assessment into three phases:
normal operational (pre-attack), early stages of attack (post-attack but before significant
failure), and fault operation (post-attack with severe failures). It is worth noting that in
actual CPPS systems, there is no fundamental cause-and-effect relationship between at-
tacks and faults. An attack on the system does not necessarily result in faults, and faults
are not exclusively caused by attacks. The categorization of CPPS operational states into
three phases in this paper is solely for the purpose of facilitating the discussion of security
protection techniques across different phases while assuming that the system is in a normal
state before an attack occurs and that an attack may lead to fault propagation.

As shown in Figure 15, before the attack, the system is in a normal state, and research
on risk assessment, proactive defense, online monitoring, and attack warning based on
vulnerability assessment can be conducted. First, by quantifying the vulnerability assess-
ment results, the probability of node failure after being attacked and the path of failure
propagation can be simulated, thereby assessing the risk of cascading failures in the existing
system. Second, proactive defense of the system before an attack serves as the first line of
defense against attacks. Designing influencing factors based on vulnerability assessment
results, conducting attack modeling (typically, the most severe system damage is used as
the objective function), and studying network attack path prediction can help analyze the
impact and consequences of network attacks on the system. This, in turn, allows for the
rational allocation of defense resources, enhancing the system’s ability to withstand attacks
from both layers before an attack occurs. Last, online monitoring and attack warning serve
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as the second line of defense against attacks. Since vulnerability assessment effectively
identifies system vulnerabilities, it has become an effective method for power system
monitoring and early warning. By dynamically monitoring key components, operations
personnel can take targeted measures at vulnerable nodes (or branches), strengthen data
monitoring, and improve the capability to identify and respond to abnormal data. This
helps mitigate or avoid cascading failures.
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When an attack occurs but severe failures have not yet occurred, it is referred to as
the early stages of attack. Vulnerability assessment can be used for attack identification
and prediction of failure propagation paths. During vulnerability assessment, system-
state awareness and simulated attack modeling are often involved. Based on these data,
analysis can be conducted using methods such as state estimation, trajectory prediction,
and artificial intelligence to identify attack behaviors and guide defense strategies af-
ter failures. Additionally, vulnerability assessment reveals the weak links in the system
and high-risk paths of failure propagation. This information can be used to predict fail-
ure propagation paths, analyze the consequences of system cascading failures after an
attack, and allocate redundant defense resources on both layers to reduce the breadth
of failure propagation.

When cascading failures are inevitable, to minimize economic losses caused by struc-
tural or functional disruptions of the system, critical components that are highly impactable
and susceptible must be protected to reduce propagation time and losses. Vulnerability
assessment can identify impactable and susceptible components and infection in the system.
Based on this information, adjustments can be made to the topological and operational
state after a failure occurs to mitigate failure propagation. Furthermore, the results of the
vulnerability assessment can be used for network reconfiguration after cascading failures
and provide guidance for failure recovery strategies and black start procedures.
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Additionally, the results of dynamic vulnerability assessment can be applied to dy-
namic attack–defense games. After the system experiences a network attack, it adjusts
its defense strategies to minimize losses. Subsequently, the attackers may devise new
strategies for further attacks, leading to the system adjusting its defense strategies again.
This process constitutes a multistage dynamic attack–defense game, often described using
the defend–attack–defend (DAD) model [147,161]. However, adjusting defense strategies
involves changes in topology and operational parameters, and the parameter changes in
the DAD model must be adjusted offline, making such methods inefficient in practical
applications. Based on situation awareness, dynamic vulnerability assessment can identify
critical nodes and vulnerable areas in the system in real time and monitor their operational
status, enabling the timely understanding of the current vulnerability and the prediction
of possible evolutionary trends. During the process of dynamic attack–defense games,
the changes in system topology and operations, as well as the results of vulnerability
assessment, can be updated in real time. Therefore, dynamic vulnerability assessment can
be applied to the formulation of defense strategies and the allocation of defense resources
in dynamic attack–defense games.

6.4. Optimization Operation of CPPS Based on Vulnerability Assessment

CPPS operation optimization can be carried out from two aspects: normal opera-
tion and fault operation. As shown in Figure 16, under normal operation, vulnerability
assessment can be applied to formulate risk-control strategies against attacks. Since the
results of vulnerability assessment include overall system status, weak links, and redun-
dant resources, it is possible to mobilize redundant resources to protect critical nodes—for
example, through the addition of autonomous nodes or the implementation of edge strate-
gies. Additionally, to achieve the optimization goal of simultaneously protecting critical
components and improving system operational efficiency, structural changes in the system
are often necessary, and vulnerability assessment can provide insights into network recon-
figuration strategies. For instance, based on the results of vulnerability assessment, network
topology can be adjusted, coupling methods can be modified to reduce network clustering
coefficients, and information transmission efficiency can be enhanced. The network can
also be restructured based on node importance rankings.

Energies 2023, 16, x FOR PEER REVIEW 29 of 37 
 

 

6.4. Optimization Operation of CPPS Based on Vulnerability Assessment 

CPPS operation optimization can be carried out from two aspects: normal operation 

and fault operation. As shown in Figure 16, under normal operation, vulnerability assess-

ment can be applied to formulate risk-control strategies against attacks. Since the results 

of vulnerability assessment include overall system status, weak links, and redundant re-

sources, it is possible to mobilize redundant resources to protect critical nodes—for exam-

ple, through the addition of autonomous nodes or the implementation of edge strategies. 

Additionally, to achieve the optimization goal of simultaneously protecting critical com-

ponents and improving system operational efficiency, structural changes in the system 

are often necessary, and vulnerability assessment can provide insights into network re-

configuration strategies. For instance, based on the results of vulnerability assessment, 

network topology can be adjusted, coupling methods can be modified to reduce network 

clustering coefficients, and information transmission efficiency can be enhanced. The net-

work can also be restructured based on node importance rankings. 

Critical 
nodes

Topology

CPPS

Redundant 
resources

Operation

Risk 
control 

protect

Network 
reconfiguration

Normal 
operation

Optimization 
strategy

Prioritization

Emergency 
dispatch Failure recovery

Fault 
operation

Vulnerability 
Assessment

Coordinated 
communication

Pinpointing
causes

 

Figure 16. Optimization of CPPS operation based on vulnerability assessment. 

In the event of a fault, the system’s emergency dispatch faces issues such as infor-

mation channel congestion and power imbalance. Advanced communication algorithms 

can play a critical role in emergency dispatch [162]. Furthermore, vulnerability assessment 

plays a significant role in emergency dispatch. Based on vulnerability assessment, task 

priorities in emergency dispatch can be determined, potential risks can be assessed, and 

coordinated communication in emergency dispatch can be guided to minimize the impact 

of failures. Vulnerability assessment can also provide guidance for fault recovery, pin-

pointing the cause of the failure and optimizing recovery strategies, such as prioritizing 

the restoration of critical nodes or easily impactable nodes. These optimized operational 

strategies will drive the intelligence, autonomy, reliability enhancement, and efficient op-

eration of CPPSs. 

Furthermore, based on the results of the dynamic vulnerability assessment, research 

can be conducted on distributed energy resource allocation strategies, energy storage al-

location strategies, and other multistage and multilayer optimization scheduling strate-

gies for CPPSs. This provides insights into the integration of flexible resources and enables 

access to them in scenarios such as distribution networks with distributed energy re-

sources, power grids with high uncertainties due to the integration of renewable energy 

sources, electric vehicle-charging scheduling, and microgrid dispatch. These applications 

show promising prospects. 

  

Figure 16. Optimization of CPPS operation based on vulnerability assessment.



Energies 2023, 16, 6509 30 of 38

In the event of a fault, the system’s emergency dispatch faces issues such as information
channel congestion and power imbalance. Advanced communication algorithms can play
a critical role in emergency dispatch [162]. Furthermore, vulnerability assessment plays a
significant role in emergency dispatch. Based on vulnerability assessment, task priorities in
emergency dispatch can be determined, potential risks can be assessed, and coordinated
communication in emergency dispatch can be guided to minimize the impact of failures.
Vulnerability assessment can also provide guidance for fault recovery, pinpointing the
cause of the failure and optimizing recovery strategies, such as prioritizing the restoration
of critical nodes or easily impactable nodes. These optimized operational strategies will
drive the intelligence, autonomy, reliability enhancement, and efficient operation of CPPSs.

Furthermore, based on the results of the dynamic vulnerability assessment, research
can be conducted on distributed energy resource allocation strategies, energy storage allo-
cation strategies, and other multistage and multilayer optimization scheduling strategies
for CPPSs. This provides insights into the integration of flexible resources and enables
access to them in scenarios such as distribution networks with distributed energy resources,
power grids with high uncertainties due to the integration of renewable energy sources,
electric vehicle-charging scheduling, and microgrid dispatch. These applications show
promising prospects.

6.5. Vulnerability Assessment of the Integrated Energy Cyber–Physical System

With the development of the energy internet, future energy systems will involve
the integration of energy cyber–physical systems (IECPSs) centered around the power
grid, supported by cyber technology, and coupling multiple energy networks. Due to the
characteristics of multinetwork coupling, the vulnerability and security risks of IECPSs will
increase sharply, posing new challenges to the stability and security of system structure and
operation. Some scholars have already conducted research on the vulnerability assessment
of IECPSs. A coupling model of the gas–electric cyber–physical system was established,
considering the topological and operational characteristics of multiple networks, and its
vulnerability was assessed in [163]. A key node identification method for the integrated
energy system was proposed in [164] based on complex network theory, considering the
topological and operational perspectives.

As shown in Figure 17, vulnerability assessment can be applied to the design, de-
ployment, security protection, and optimization of IECPSs. Based on the vulnerability
assessment results, it can promote the large-scale integration of highly uncertain renew-
able energy sources and improve the stability of new power systems. Additionally, it can
provide guidance for the coupling of multiple energy systems and enhance the collab-
orative operation capability of the energy internet. It helps us identify weak points in
the system, discover potential threats, and protect them to ensure the safe operation of
the system. Moreover, it can optimize the system’s operational scheduling strategies to
improve efficiency, robustness, and resilience when facing disturbances.

Currently, there is a scarcity of research on the vulnerability of IECPSs. In the future,
vulnerability assessment research can be conducted from the perspective of complex net-
work theory to enhance the reliability and stability of integrated energy networks and
achieve optimized scheduling of these networks. This involves multilayer and multiscale
modeling of multienergy networks. Such a vast network requires analyzing complexity
and uncertainty and designing effective comprehensive vulnerability assessment methods.
Additionally, applying the results of vulnerability assessment to the analysis of IECPSs
requires further research.
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7. Conclusions

The CPPS represents a complex system deeply intertwined with both information
systems and electrical power systems, and vulnerability is an inherent challenge in any
intricate system. Complex network theory possesses the capacity to comprehend complex
systems and engage in multilayered analyses, providing an efficient theoretical framework
for assessing system vulnerability. Building upon complex network theory, this paper
begins by introducing the concepts and definitions of vulnerability assessment, differen-
tiating vulnerability, risk, reliability, and resilience using five parameters and offering an
extensive analysis of vulnerability assessment classifications from various perspectives.
Subsequently, we attempt to synthesize the existing research framework for vulnerability
assessment based on complex network theory into four steps, followed by an in-depth
analysis of each step. We delve into the realm of vulnerability assessment research from
two perspectives: structural and operational. Within structural vulnerability analysis, we
outline both pure vulnerability indices and extended vulnerability indices. In operational
vulnerability analysis, we combine operational graphs and summarize an operational
vulnerability assessment framework. Furthermore, we delve into the intricate relationship
between system vulnerability and cascade failures. Additionally, we introduce the concepts
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of multistage coordinated cyber–physical attacks and situation awareness. Within the con-
text of multistage coordinated cyber–physical attacks, we assess the viability of dynamic
vulnerability assessment, incorporating situation awareness. On this foundation, we offer
a perspective on the potential applications of vulnerability assessment in enhancing the
security protection and optimization operation of CPPS. Subsequently, we extend the scope
of CPPS vulnerability assessment to IECPS.

For future perspectives, a pivotal research objective for vulnerability assessment lies
in its practical application within real systems, moving beyond mere assumptions and
simplified models. Nonetheless, current CPPS vulnerability assessment encounters certain
limitations, encompassing complexities within real systems, precision in collecting and
transmitting power data, the availability of real-time and historical data, uncertainties
within vulnerability assessment models, algorithmic efficiency, multistage dynamic vul-
nerability assessment, and more. These challenges represent the forefront of vulnerability
assessment research. High-quality guidance for the maintenance of real systems can only
be achieved through rapid, precise vulnerability assessment results. Therefore, it is im-
perative that not only theoretical research such as vulnerability assessment continue to
evolve and innovate but also that critical technologies like situation awareness and artificial
intelligence expand. Moreover, as interdisciplinary collaboration deepens, the future of vul-
nerability assessment will become an amalgamation of multiple fields, with diverse ideas
and technologies propelling the development and application of vulnerability assessment.
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