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Abstract: As autonomous vehicle technology advances, the development of energy-efficient control
methodologies emerges as a critical area in the literature. This includes the behavior control of vehicles
near signalized intersections, which still needs comprehensive exploration. Through connectivity, the
adoption of promising eco-driving approaches can manage a vehicle’s speed profile to improve energy
consumption. This study focuses on controlling the speed of an autonomous electric vehicle (AEV)
both up and downstream of a signalized intersection in the presence of preceding vehicles. In order
to achieve this, a dynamic pro-active predictive cruise control eco-driving (eco-PPCC) framework
is developed that, instead of merely reacting to the preceding vehicle’s speed changes, uses the
preceding vehicle’s upcoming data to actively adjust and optimize the speed profile of the AEV. The
proposed algorithm is compared to the conventional Gipps and eco-PCC models for benchmarking
and performance analysis through numerous scenarios. Additionally, real-world measurements are
performed and taken to consider practical use cases. The results demonstrate that when compared
to the two baseline methods, the proposed framework can add significant value to reducing energy
consumption, preventing unnecessary stops at intersections, and improving travel time.

Keywords: eco-driving; energy management; energy efficiency; pro-active predictive cruise control;
autonomous electric vehicles; self-driving vehicles; connected vehicles

1. Introduction

The transportation industry in the United States accounts for 28% of total energy con-
sumption and 26% of greenhouse gas (GHG) emissions [1]. In urban areas, approximately
25% of these emissions stem from traffic stops [2]. One way to reduce energy consumption
and emissions is ecological driving (eco-driving). Eco-driving utilizes strategies such as
optimal velocity/acceleration planning and gear shifting to improve energy efficiency. The
emergence of intelligent transportation systems (ITSs) has brought about the creation of
connected vehicles (CVs) and connected automated vehicles (CAVs), which utilize vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to improve energy
efficiency, reduce GHG emissions, and enhance driving safety and comfort. By combining
eco-driving with these recent advancements in connectivity, one can consider important
factors like signal phase and timing (SPaT) and traffic flow conditions to provide optimal
real-time commands to the vehicle, optimizing its performance [3].

1.1. Literature Review

In general, research related to driver assistance systems, speed advisory systems,
velocity planning, and eco-driving can be divided into highway and urban road strategies.
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In the area of eco-driving on highways, Han et al. developed an eco-driving system that
minimizes energy consumption using an optimal control problem (OCP) formulation for
a case study on highway roads [4]. In mixed highway-urban traffic, a real-time dynamic
predictive cruise control (PCC) system was developed based on a bi-level model predictive
control (MPC) algorithm using SPaT information to pass the nearest signal intersection
during the green light interval without stopping, reducing energy consumption levels by
8.5–15.6% compared to the Intelligent driver model (IDM) [3].

Although eco-driving on highways is important, eco-driving in urban areas presents
more difficulties due to the complex constraints imposed by SPaT on the eco-driving
problem. Since this paper focuses on eco-driving in urban areas, the following section delves
deeper into existing studies on urban eco-driving. There are three main types of urban
eco-driving: eco-driving with a focus on road conditions, eco-driving that considers traffic
signal limitations, and eco-driving that considers the behavior of the preceding vehicle.

In the first research field, dynamic programming (DP) is used to optimize fuel con-
sumption on hilly terrains with various road grades, achieving a 7–30% fuel economy
improvement [5]. In [6], a control algorithm was introduced to optimize the velocity profile
and gear shifting for fuel efficiency using a DP approach, considering the road’s topography.
Additionally, Weißmann et al. developed a system that combines adaptive cruise control
(ACC) with MPC and DP to determine the most energy-efficient speed trajectory, taking
into consideration factors like road slope and speed limitations [7].

Considerable research efforts have been dedicated to studying eco-driving near sig-
nalized intersections. It includes investigations into utilizing forthcoming traffic signal
details within ACC systems to minimize the idle time spent waiting behind traffic lights, as
explored in [8]. Furthermore, the utilization of SPaT information to decrease the frequency
of stopping at traffic lights for a group of CVs through V2V communication has been
examined, as highlighted in [9]. A bi-level eco-driving optimization for connected fuel
cell hybrid electric vehicles (FCHEVs), including speed planning as the upper level and
energy management as the lower level, is also developed, considering traffic light con-
straints during a corridor of multiple intersections [10]. Although eco-driving techniques
are mainly designed for the upstream of the intersection, as indicated in [11,12], there is
a scarcity of research focused on eco-driving strategies for the downstream of signalized
intersections, namely the departure phase after the traffic lights [13]. The best solutions for
optimizing traffic flow at a signalized intersection may differ depending on whether only
the upstream of the intersection is considered or if both upstream and downstream are
taken into account. In cases where a vehicle needs to slow down before reaching the traffic
light, a strategy focused solely on the upstream of the intersection may recommend coming
to a complete stop, as this recuperates more energy through braking. However, this results
in energy loss when the vehicle accelerates back downstream of the intersection. The joint
optimization of both upstream and downstream can prevent this energy loss. Therefore,
from a holistic point of view, eco-approach-and-departure systems [1,14] offer the potential
to enhance the effectiveness of eco-driving strategies.

The third type of eco-driving, car-following-based eco-driving, is frequently integrated
with the first two categories. In line with this, a study in [15] investigates an eco-driving
system designed for CAVs approaching a traffic signal. The system considers both the tim-
ing of the traffic signal and the behavior of the preceding vehicle to optimize fuel efficiency.
Moreover, in [16], a PCC eco-driving system is proposed. The system utilizes an MPC
framework and dynamically switches between three strategies: free driving, anticipation of
signal timing, and car following. The three-level PCC system yields energy consumption
reductions ranging from 12.5% to 30.3%, depending on the specific traffic conditions.

Previous research has focused on reducing energy consumption or GHG emissions
through velocity planning and eco-driving strategies. Some studies have indirectly aimed
to enhance energy efficiency. For example, a driving system that avoids sudden braking is
developed in [17]. Moreover, a multi-objective optimization problem that strives to enhance
speed profile smoothness while simultaneously minimizing travel time is suggested in [2].
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Another study introduced a predictive optimal velocity planning algorithm to increase the
probability of crossing intersections during green light intervals [18].

Several previous studies have directly considered energy consumption as their objec-
tive function. In [19], a time-dependent optimal speed profile was proposed to minimize the
electricity consumption of an electric vehicle (EV). In another study, a speed guidance strat-
egy combined with a car-following model is developed to optimize fuel consumption [20].
Moreover, fuel-optimized vehicle trajectory using SPaT information was introduced in [21]
for CAVs. Some studies have attempted to define multiple objectives alongside energy con-
sumption, such as minimizing the speed difference, travel time, and energy consumption
for a platoon of CVs [22]. A study on a bi-level eco-driving control strategy for connected
and automated hybrid electric vehicles (CAHEVs) to optimize safety, energy consumption,
and GHG emissions is presented in [23]. The latest research works endeavor to optimize
both energy usage and travel time at the same time. A speed plan for CAVs was developed
in [24] to optimize fuel consumption and travel time.

In order to achieve energy-efficient eco-driving, employing a precise model for es-
timating energy consumption is vital. Since eco-driving for internal combustion engine
(ICE) vehicles has been extensively studied in the literature, most of the available models
for energy consumption estimation are focused on fuel consumption. In [25], the fuel
consumption rate model introduced in [26] is employed that estimates fuel usage based on
driving inputs. Xiang et al. employed a quasi-static engine model based on power and used
the vehicle dynamics and model parameters obtained through the curve fitting of mapped
engine data [27]. In [28], a statistical fuel consumption model is applied that utilizes a
piecewise instantaneous fuel consumption model based on vehicle-specific power (VSP).
In [29], a fuel consumption rate estimation model for flat roads was developed based on
statistical data, which is also used by Wan et al. in [30]. The Virginia Tech Comprehensive
Power-based Fuel Consumption Model (VT-CPFM) is a widely recognized microscopic
model that has been utilized in multiple studies, including [21,31].

A limited number of studies in the existing literature report the development of energy
consumption models specifically for EVs and autonomous vehicles (AVs). In [32], an energy
consumption estimation for a parallel hybrid electric vehicle (PHEV) that considers the
torque and speed of the engine and motor was conducted. Other research studies, such
as [33,34], utilized vehicle dynamics to calculate the instantaneous power at the wheels to
estimate energy consumption.

Furthermore, in [35], the aim was to minimize the forces during driving and braking,
as well as the inverse of the velocity, which represents time. Assuming a constant traveled
distance, the objective functions presented in [35] are equivalent to minimizing energy
consumption and travel time. However, that particular study did not consider the efficiency
aspect of regenerative braking, which holds significance in the powertrains of today’s EVs
and hybrid electric vehicles (HEVs). Moreover, many other studies have not accounted for
auxiliary energy consumption.

Most research in this field has focused on eco-driving strategies for vehicles approach-
ing traffic lights to minimize the number of stops at red lights, reduce energy consumption,
lower GHG emissions, or achieve a combination of these objectives. However, many of
these studies have solely considered the influence of SPaT information. Only a few studies
have considered both SPaT-related information and the behavior of vehicles following
each other. For instance, in [3,16], the reference speed is determined as the maximum
feasible speed that allows the vehicle to catch the green light interval and adhere to speed
limits. These studies aim to follow this reference speed while considering the constraints
imposed by preceding vehicles. However, these reference speeds may not necessarily be the
optimal speeds in terms of energy efficiency. Other eco-driving studies that consider both
SPaT information and car-following behavior have focused on minimizing different factors.
For example, in [36], the aim is to minimize greenhouse gas emissions and acceleration
fluctuations. However, in [37], the consumption of auxiliary equipment is considered in a
hierarchical control system based on MPC. Moreover, in [38], both regenerative braking
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and auxiliary energy consumption are considered. However, it was limited to the upstream
of the signalized intersection. Hesami et al. [39] have covered the mentioned gaps by
proposing a bi-layer eco-PCC framework in which both the up and downstream of the
signalized intersection are considered.

1.2. Motivations and Contributions

Despite all the advancements in the existing studies in terms of eco-driving vehicles in
the vicinity of signalized intersections, the main literature gap is that the existing models
only react to the circumstances imposed by the immediate preceding vehicle (IPV). For
example, in the reactive models, such as the eco-PCC framework in [39], first, the reference
trajectory is optimized by considering the SPaT regardless of the IPV’s upcoming trajectory
data. Then, the framework locally imposes safety considerations based on the IPV’s
upcoming location data on the reference speed tracking to avoid collisions. On the contrary,
a pro-active framework considers the IPV’s upcoming location in the reference trajectory
optimization. It leads to a reduction in energy consumption by avoiding speed fluctuations.

This paper introduces and evaluates a robust framework designed for a pro-active
eco-driving system of connected automated electric vehicles (CAEVs), which takes into
account the SPaT of signalized intersections and the preceding vehicles’ upcoming trajectory
data through V2V and V2I communications. The main contribution of this paper is to
incorporate the IPV’s upcoming location and speed data into the reference speed planning
to obtain pro-active predictive cruise control eco-driving (eco-PPCC), avoiding unnecessary
speed fluctuations. Additionally, the eco-PPCC framework considers both the up and
downstream sections simultaneously. Furthermore, by adding one more degree of freedom,
the paper advances the analytical parameterization of energy consumption presented in
the authors’ previous research work [40] by adding one more degree of freedom. The
parameterized model establishes a relationship between the energy consumption and
kinematic variables. Therefore, the key contributions of this research are as follows:

• Proposing a pro-active algorithm that considers the IPV state data in the reference
speed planning;

• Improving existing analytical energy consumption parameterization;
• Considering both the up and downstream of the signalized intersection.

Regarding the paper’s structure, Section 2 proposes the integrated model and its
analytical parameterization procedure. Section 3 focuses on the calibration and validation
of the energy consumption model, along with presenting, benchmarking, and discussing
the outcomes of the framework. Finally, Section 4 covers the conclusion and provides
future research work directions.

2. Materials and Methods

The proposed eco-PPCC system considers the limitations imposed by the traffic lights
and the preceding IPV. The problem scenario is depicted in Figure 1, assuming that the AEV
is equipped with onboard sensors capable of real-time data perception to obtain the location
and speed of the IPV, as well as V2V and V2I communications to obtain the upcoming
IPV states and SPaT, respectively. Assuming the AEV enters the dedicated short-range
communications (DSRCs) of the traffic signal’s roadside unit (RSU) at a distance of Lu units
from the traffic light, with an initial speed of vi, the objective is to achieve a desired speed
of vd before it reaches a distance of Ld units from the stop line of the traffic light. In the
paper, the variables s(t) and sp(t) represent the traveled distance by the AEV and the IPV,
respectively. All the parameters and variables used in the paper are listed in Table 1.
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Figure 1. The schematic of a vehicle traveling through the up and downstream of a signalized
intersection in the presence of preceding vehicles.

Table 1. List of parameters and variables.

Notation Description Notation Description

Lu Upstream length Ld Downstream length
L Total length m Vehicle’s mass
ρ Air density Ca Aerodynamic drag coefficient

A f Vehicle’s frontal area g Gravitational acceleration
µ Friction coefficient θ Road grade

∆hu Elevation difference in upstream ∆hd Elevation difference in downstream
Pa Auxiliary power consumption ηD Drivetrain efficiency
ηr Recuperation efficiency E Energy consumption
τ1 Start of green light interval τ2 End of green light interval
dh Min. inter-vehicle safe distance th Safe time headway

dFF Dynamic inter-vehicle safe distance vmin Lower speed limit
vmax Upper-speed limit amin Lower acceleration limit
amax Upper-acceleration limit vi Initial speed
vd Desired speed ti Initial time
t f Final time ts Time of passing the intersection
s Controlled vehicle’s location v Controlled vehicle’s speed
a Controlled vehicle’s acceleration sp IPV’s location

vp IPV’s speed N IPV’s upcoming data horizon
Sd Gipps min. safe distance vdes Gipps desired speed
ae Gipps max. acceleration be Gipps max. deceleration
bp Gipps IPV’s max. deceleration τ Gipps reaction time

2.1. Eco-PPCC Logic

The presented eco-PPCC framework is depicted in Figure 2. Assuming that the
location information of the IPV for the next N time steps is accessible by the controlled
vehicle in real-time through V2V communication, the reference planning process calculates
the optimal trajectory for the remaining path, considering N future time steps. At each
time step, the system evaluates the distance between the AEV and the IPV, denoted as
∆s(t) = sp(t)− s(t), and compares it to the dynamic inter-vehicle safe distance, dFF. This
safe distance is determined by the relative speed between the two vehicles, as well as the
time headway, and is defined as

dFF(t) = dh + (v(t)− vp(t))th (1)

where the variable dh corresponds to the minimum safe distance between the controlled
vehicle and the IPV when both vehicles stand still. The speed of the controlled vehicle at
time step t is indicated by v(t), and the speed of the IPV at time step t is denoted as vp(t).
Additionally, th represents the duration of the safe time headway.
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Figure 2. Schematic of the proposed eco-PPCC framework.

If the vehicles are sufficiently distant, the controlled vehicle adheres to the calculated
reference speed profile. On the other hand, if the vehicles become too close, the logic
recalculates the reference trajectory using an updated N-dimensional vector of the IPV
states. This iterative process continues until the controlled vehicle reaches the endpoint at
Lu + Ld.

2.2. Reference Trajectory Planning

Calculating the optimized reference trajectory involves considering several constraints,
including real-time SPaT information, segment speed limits, acceleration/deceleration
limits, and the minimum safe distance required between vehicles. These constraints are
taken into account when formulating the problem as
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min
v,a

E =
1

ηD

∫ t f

ti

[ηr(t)c1a(t)v(t) + c2v3(t) + c3v(t) + ηDc4]dt, (2)

s.t. vmin ≤ v(t) ≤ vmax ∀t ∈ [ti t f ], (3)

amin ≤ a(t) ≤ amax ∀t ∈ [ti t f ], (4)

τ1 ≤ ts ≤ τ2, (5)∫ ti+N

ti

v(t)dt ≤ sp(t)− dh ∀t ∈ [ti ti + N]. (6)

Let c1 be equal to the vehicle’s mass m, c2 be equal to 1
2 ρCa A f where ρ represents air

density, Ca is the aerodynamic drag coefficient, and A f is the frontal area of the vehicle. c3
is defined as mg(µ cos(θ) + sin(θ)), where g represents gravitational acceleration, µ is the
friction coefficient, and θ is the road grade. In this study, the rolling resistance coefficient is
assumed to be constant throughout the road, and the road is considered flat. c4 equals to
the auxiliary power consumption, Pa. Additionally, ηD denotes the drivetrain efficiency,
and ηr represents the recuperation efficiency coefficient, equal to one during acceleration
and the recuperative efficiency of the vehicle during deceleration. vmin and vmax represent
the minimum and maximum allowed speeds, while amin and amax represent the maximum
deceleration and acceleration rates, respectively. In the equation, τ1 and τ2 correspond to
the start and end of the green light interval. v(t) and a(t) represent the vehicle’s speed
and acceleration rate at time t. ti and t f represent the initial and final times of the planned
travel, respectively. ts denotes the time when the vehicle passes the traffic light. Variables ti,
ts, and t f are functions of v(t) and a(t). In Sections 2.3 and 2.4, ti, ts, and t f are analytically
calculated and replaced as functions of speed and acceleration. sp(t) represents the location
of the IPV at time t, dh represents the minimum safe distance between vehicles, and N
represents the number of available upcoming data from the IPV. Finally,

ηr(t) =

{
ηR if a(t) < 0
1 if a(t) ≥ 0

, (7)

where the regenerative braking efficiency is denoted by ηR.
The optimization problem for eco-PPCC is formulated by considering the longitudinal

dynamics of the vehicle and auxiliary energy consumption. The objective function consists
of four terms considering the energy requirements at the wheels. The first three terms
capture kinematic energy, aerodynamic energy losses, and energy losses due to rolling
resistance and road grade. To model the energy consumption during idle mode, a time-
dependent term is included in the objective function as the fourth term. This term enhances
the model’s accuracy and integrates the energy model with travel time, aiming to minimize
energy consumption while considering the impacts on travel time. To ensure adherence
to road segment limitations and comfortable acceleration/deceleration rates, constraints
are placed on the speed and acceleration of the AEV, referred to as constraints (3) and (4),
respectively. Additionally, constraint (5) incorporates the SPaT information. Constraint (6)
is imposed to guarantee a safe inter-vehicle distance.

Solving the optimization problem makes it possible to derive an optimal reference
speed trajectory. This trajectory encompasses the optimal values for variables such as
acceleration/deceleration rates and actuation timing both before and after the intersection.

2.3. Analytical Parameterization

The calculation of the definite integral in Equation (2) poses a challenge due to the
involvement of unknown functions for velocity (v(t)) and acceleration (a(t)), as well
as the variable travel time (t f − ti) determined by the vehicle’s speed and acceleration.
To overcome this challenge, a parameterized combination of cruising and accelerating
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maneuvers is devised, allowing for analytical definition and analysis. Five expected speed
profile scenarios can be considered. These scenarios are

• Cruise (C): Maintaining a constant speed throughout the entire trajectory without any
variations;

• Accelerate (A): Increasing or decreasing speed consistently at a fixed rate throughout
the entire trajectory;

• Cruise–accelerate (C-A): Initially, cruising at a steady speed for a portion of the tra-
jectory, followed by accelerating or decelerating at a constant rate for the remaining
trajectory section;

• Accelerate–cruise (A-C): Initially, applying a constant acceleration or deceleration rate for
a portion of the trajectory and maintaining a constant speed for the remaining section;

• Accelerate–cruise–accelerate (A-C-A): In the beginning, constant acceleration or decelera-
tion occurs over a portion of the trajectory. It is followed by a phase of cruising at a
constant speed. Finally, there is another phase of constant acceleration or deceleration
occurs over the remaining trajectory section;

Assume that the controlled vehicle’s speed profile is a part of the speed profile shown
in Figure 3. In this regard, with the assumption of t1 = 0 and t2 = t3, part II shows the
cruise strategy. Similarly, assuming t1 = t2 = 0, part III stands for the accelerate strategy,
parts I-and-II show the accelerate-cruise strategy with t2 = t3, parts II and III show cruise-
accelerate with t1 = 0, and the whole speed profile shows the accelerate-cruise-accelerate
strategy. The fundamental reasoning behind this assumption is that speed fluctuations
result in energy losses, as a portion of the kinetic energy is dissipated during braking, and
a full recovery of all the kinetic energy is not feasible.

Figure 3. Cruise and accelerate combination strategies.

During the time interval [t1, t2], representing the cruising stage, the speed remains
constant, and the acceleration is zero. Whereas, during the time intervals [0, t1] and [t2, t3],
the acceleration rate is a constant non-zero value as a, and the speed is a function of time
as v(t) = at + v0, where v0 is the initial speed. The duration of each part depends on the
speed and acceleration variables corresponding to that part. One can obtain t1, t2, and t3
functions based on speed and acceleration through parameterization in each strategy. For
brevity, only the algebraic operations of parameterization of the A-C-A case, as the most
complex case, are presented as follows:

In part I, the time duration is

t1 =
v2 − v1

a1
. (8)
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The traveled distance in parts I, II, and III are

∆xI =
v2

2 − v2
1

2a1
, (9)

∆xI I = v2(t2 − t1), (10)

and

∆xI I I =
v2

3 − v2
2

2a2
, (11)

respectively. By knowing that the total traveled distance is L = ∆xI + ∆xI I + ∆xI I I , and by
substituting Equations (9)–(11) into that, after algebraic operations, we have

t2 =
L
v2

+
(v2 − v1)

2

2v2a1
+

v2
2 − v2

3
2v2a2

. (12)

Based on the time duration of part III, we have

t3 = t2 +
v3 − v2

a2
. (13)

By substituting Equation (12) into Equation (13), after algebraic operations, we have

t3 =
L
v2

+
(v2 − v1)

2

2v2a1
− (v3 − v2)

2

2v2a2
. (14)

The parameterization of the other strategies can be similarly implemented. All the
parameterized values are listed in Table 2.

Table 2. Parameterized t1, t2, and t3 for the considered five strategies.

Strategy t1 t2 t3

C 0 L
v2

L
v2

A 0 0 2L
v2+v3

C–A 0 L
v2

+ v2
2−v2

3
2v2a2

L
v2
− (v3−v2)2

2v2a2

A–C
v2−v1

a1
L
v2

+ (v2−v1)2

2v2a1

L
v2

+ (v2−v1)2

2v2a1

A–C–A
v2−v1

a1
L
v2

+ (v2−v1)2

2v2a1
+

v2
2−v2

3
2v2a2

L
v2

+ (v2−v1)2

2v2a1
− (v3−v2)2

2v2a2

With the parameterized values of the initial and final time obtained, the energy
consumption formulated in Equation (2) is converted to a definite integral as

E =
1

ηD

∫ t1

0

[
ηr(t)c1a1(a1t + v1) + (a1t + v1)

3 + (a1t + v1) + ηDc4

]
dt

+
1

ηD

∫ t2

t1

[
c2v3

2 + c3v2 + ηDc4

]
dt

+
1

ηD

∫ t3

t2

[
ηr(t)c1a2(a2t + v2 − a2t2) + c2(a2t + v2 − a2t2)

3

+ c3(a2t + v2 − a2t2) + ηDc4

]
dt. (15)



Energies 2023, 16, 6495 10 of 19

The calculation of the Equation (15) and the substitution of c1, c2, c3, and c4 yields

E =
1

ηD

[
ηr

1
2

m(v2
3 − v2

1) +
1
2

Ca A f
[v4

2 − v4
1

4a1
+ v3

2(t2 − t1) +
v4

3 − v4
2

4a2

]
+ mg(µL + ∆h)

]
+ Pat3, (16)

where ∆h is the elevation difference.

2.4. Parameterized Objective Function

The eco-PPCC problem involves optimization while considering both a signalized
intersection’s up and downstream sections. Each section is expected to have a parame-
terized speed profile, as illustrated in Figure 4, where vs represents the speed when the
vehicle passes the intersection. The decision variables in the problem vary depending
on the section. Specifically, in the upstream, the decision variables are v2u, vs, a1u, and
a2u, whereas, in the downstream, the decision variables are v2d, a1d, and a2d. In Figure 4,
variables ti and t f , which are mentioned in Equation (2), are equal to 0 and t3d, respectively,
and the variable ts mentioned in Equation (5) is equal to t3u. Using Equation (16), the
energy consumption of the up and downstream sections are

Eup =
1

ηD

[1
2

m[ηr1(v2
2u − v2

i ) + ηr2(v2
s − v2

2u)]

+
1
2

Ca A f
[v4

2u − v4
i

4a1u
+ v3

2u(t2u − t1u) +
v4

s − v4
2u

4a2u

]
+ mg(µLu + ∆hu)

]
+ Pat3u, (17)

and

Edown =
1

ηD

[1
2

m[ηr3(v2
2d − v2

s ) + ηr4(v2
d − v2

2d)]

+
1
2

Ca A f
[v4

2d − v4
s

4a1d
+ v3

2d(t2d − t1d) +
v4

d − v4
2d

4a2d

]
+ mg(µLd + ∆hd)

]
+ Pa(t3d − t3u), (18)

respectively. ∆hu and ∆hd represent the difference in elevation in the upstream and down-
stream sections, respectively. ηr1, ηr2, ηr3, and ηr4 are the regenerative braking efficiencies
of the first and second accelerated parts in the up and downstream, respectively.

Figure 4. Assumed speed profile in the up and downstream of the intersection.
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The substitution of t1u, t2u, t3u, t1d, t2d, and t3d in Equations (17) and (18) yields
fifth-degree polynomials. According to [41], obtaining analytical solutions for polynomial
problems is considerably difficult compared to numerical solutions. Additionally, the
non-convex nature of the problem, resulting from the presence of green and red timing,
adds further complexity, making it challenging to find an analytical solution. Hence, this
study employs a global numerical search approach instead.

2.5. Human Driver Simulation

In order to establish a benchmark, a comparison is conducted between the results of
the eco-PPCC approach and those obtained from the Gipps model, which emulates human
driver behavior. The Gipps model [42] provides a representation of the vehicle’s speed at
time t, as

v(t + τ) = min[vacc, vdec] (19)

vacc = v(t) + 2.5aeτ(1− v(t)
vdes(t)

)

√
0.025 +

ve(t)
vdes(t)

(20)

vdec = beτ +

√
(beτ)2 − be[2(sp(t)− s(t)− Sd)− v(t)τ −

vp2(t)
bp

] (21)

where v(t) represents the speed of the controlled vehicle at time t, ae denotes the maximum
acceleration of the controlled vehicle, be signifies the most severe deceleration rate of the
controlled vehicle, bp indicates the most severe deceleration rate of the preceding vehicle, τ
represents the reaction time, vdes(t) denotes the desired speed at time t, s(t) signifies the
location of the controlled vehicle at time t, sp(t) represents the location of the preceding
vehicle at time t, vp(t) denotes the speed of the preceding vehicle at time t, and Sd represents
the minimum safe distance between vehicles.

3. Results and Discussions

This section primarily focuses on demonstrating the calibration process. Then, the
simulation results of the eco-PPCC framework performance will be presented. Finally, the
eco-PPCC framework resilience in the presence of noise in the IPV data will be investigated.

3.1. Calibration

The real-world measurements obtained for this study are utilized in the calibration
process. In order to conduct the calibration, a BMW i3 passenger vehicle equipped with
multiple sensors was tested to accurately capture time-series data on energy consumption
and vehicle location and dynamics. Detailed information about the vehicle specifications
can be found on the manufacturer’s website. These specifications are included in this
study. The data collection was implemented in Brussels, Belgium, at 0.64 s data resolution.
Additionally, the values for the physical parameters were determined using [43]. The
corresponding values for these parameters are presented in Table 3.

Table 3. Parameter values of measurements.

Parameter Value Parameter Value

Vehicle’s mass: m 1270 (kg) Frontal area: A f 2.38 (m2)
Gravitational acceleration: g 9.81 (m/s2) Air density: ρ 1.176 (kg/m3)

Friction coefficient: µ 0.01 Air drag coefficient: Ca 0.29
Drivetrain efficiency: ηD 0.92 Regenerative efficiency: ηR 0.79

Min. speed: vmin 0 (km/h) Max. speed: vmax 70 (km/h)
Min. acceleration: amin −3.5 (m/s2) Max. acceleration: amax 3.5 (m/s2)
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The calibration process for the vehicle’s energy consumption involves utilizing real-
world data. It includes adjusting the drivetrain and regenerative braking efficiency, re-
sulting in efficiencies of 92% and 79%, respectively. Additionally, the calibration process
determines three levels of auxiliary power consumption based on the desired cabin temper-
ature and the environmental temperature. These levels are 970 W, 1760 W, and 2550 W for
low, medium, and high levels of auxiliary power consumption, respectively. Figure 5 com-
pares the actual power consumption of the vehicle and the power consumption predicted
by theoretical calculations. This comparison demonstrates the model’s accuracy, which
exhibits a normalized root mean squared error (NRMSE) of 0.0218, indicating a high level
of precision.
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Figure 5. Theoretical prediction and real−world measurement of energy consumption.

3.2. Eco-PPCC Framework Performance

The performance of the eco-PPCC framework is evaluated by subjecting it to analysis
using the validated power consumption model. The Gipps model and the eco-PCC model
presented in the authors’ previous paper [39] are chosen for benchmarking purposes.
Figure 6 illustrates two case studies that assess and compare the performance of the
evaluated eco-driving methods. The figure displays plots of the location and speed, with
the initial and desired speeds for the preceding vehicle (IPV) ranging from [0 70] km/h,
which aligns with typical urban speed limits. On the x-axis of the plots, the red and green
markings indicate information regarding the corresponding traffic signal phases.
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Figure 6. Location, speed, and energy consumption of the proposed eco-PPCC framework compared
to the eco-PCC and Gipps models. (a) The location, (c) speed, and (e) the cumulative energy con-
sumption when Pa = 970 W. (b) The location, (d) speed, and (f) the cumulative energy consumption
when Pa = 2550 W.

In Figure 6a,c,e, Lu = 300 m, which is in accordance with the normal DSRC range of
the traffic light’s RSU [15,44], Ld = 200 m, vi = 0 km/h, vd = 70 km/h, and Pa = 970 W.
Figure 6c illustrates that the proposed eco-PPCC model achieves a smooth and consistent
speed profile, which is in contrast to the reactive eco-PCC model, which exhibits numerous
speed fluctuations. The root mean squared variations (RMSVs) in the speed profile are
4.50 km/h for eco-PCC and 3.34 km/h for eco-PPCC, indicating a reduction in speed
variability with the proposed model. Furthermore, Figure 6e demonstrates that the eco-
PPCC model outperforms both the Gipps and eco-PCC models regarding energy efficiency.
The energy consumption values are 0.1857 kWh for Gipps, 0.1084 kWh for eco-PCC, and
0.0993 kWh for eco-PPCC. It indicates energy savings of 46.53% and 8.39% compared to
Gipps and eco-PCC, respectively. In addition, it is essential to reduce the impact on travel
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time while optimizing energy. In this regard, the proposed eco-PPCC model’s travel time is
67 s, which represents a 2.9% reduction over the eco-PCC model’s travel time (69 s). The
average runtime of a calculation step on an Intel(R) Xeon(R) E-2286 2.4 GHz processor
is 0.5829 s, 0.0986 s, and 0.0064 s for the eco-PPCC, eco-PCC, and the Gipps method,
respectively. In this study, since the simulation frequency is 1 Hz, computational times
shorter than 1 s can be practically considered as being in real-time. Therefore, the eco-PPCC
computational time is fast enough to meet the requirements of practical operations.

In Figure 6b,d,f, Lu = 300 m, Ld = 200 m, vi = 0 km/h, vd = 70 km/h, and
Pa = 2550 W. The proposed eco-PPCC speed profile depicted in Figure 6d shows, again,
the eco-PPCC model’s capability for smooth driving. The speed RMSV in the eco-PCC and
eco-PPCC models are 5.19 km/h and 3.30 km/h. Moreover, Figure 6f shows the improve-
ment in the energy efficiency. The energy consumption values for the Gipps, eco-PCC, and
eco-PPCC are 0.2116 kWh, 0.1461 kWh, and 0.1357 kWh, respectively. It equals 35.87% and
7.12% energy saving compared to the Gipps and eco-PCC models, respectively. Moreover,
the travel time is 63 s and 62 s for the eco-PCC and eco-PPCC models, equaling a 1.6%
travel time reduction.

In order to verify the effectiveness of the proposed eco-PPCC framework, a total
of 40 scenarios were simulated for the Gipps, eco-PCC, and eco-PPCC models. These
scenarios involve different values for variables vi, vd, Pa, and SPaT and the IPV’s location
and speed profiles. Three speed levels (standing still, moderate, and high) were considered
for the speed parameters. The vi values were generated randomly and could either be
zero or moderate, while the vd values could either be moderate or high. In order to create
randomized scenarios systematically, the moderate and high-speed values were uniformly
distributed between [30 48] km/h and [54 70] km/h, respectively. These intervals were
selected based on real-world data measurements. The Pa variable was assigned a low
or high value of 970 W and 2550 W, respectively. For each combination of (vi, vd), three
different SPaT realizations were randomly generated and simulated. Additionally, for
each combination of (vi, vd) and SPaT, three different IPV location and speed profiles were
simulated with specific speed and acceleration limits.

When compared to the Gipps model, the energy and time-saving benefits of the
proposed eco-PPCC framework in 40 different scenarios are illustrated in Figure 7. The
blue boxes in the graph depict the interquartile ranges, representing the most likely energy
and time-saving values. Meanwhile, the red lines represent the median, and the black
lines represent the min/max values. The median values in Figure 7a illustrate 5.26–40.09%
energy saving in different situations. The most savings occur when the initial and desired
speeds differ. On the other hand, Figure 7b shows the potential of up to 21.75% time-saving
in the median values.
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Figure 7. The proposed eco−PPCC framework’s (a) energy consumption saving and (b) travel time
saving in comparison to the Gipps model.
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Figure 8 depicts the energy and time saving by the proposed eco-PPCC framework, as
compared to the eco-PCC model. In terms of energy saving, as illustrated in Figure 8a, a
14.23–28.90% saving is observed in the median values. Moreover, the travel time is reduced
up to 1.93%, which means the travel time of both the eco-PPCC and eco-PCC models are
almost the same, as shown in Figure 8b. Owing to these values, one can conclude the
superiority of the eco-PPCC model when compared to the eco-PCC model.
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Figure 8. The proposed eco−PPCC framework’s (a) energy consumption saving and (b) travel time
saving in comparison to the eco−PCC model.

3.3. Eco-PPCC Framework Resilience in Presence of Noise

In the previous section, the simulation results of the eco-PPCC framework in a perfect
data exchange were investigated. This section focuses on the circumstances in which the
IPV’s upcoming data is noisy. Assuming a Gaussian noise with the average value of µ = 0
and an arbitrary standard deviation, σ, two types of negative or positive noise-caused
errors may occur. Positive noises may cause collisions because the algorithm may make
decisions based on a longer inter-vehicle distance. Therefore, to avoid such collisions, it
is necessary to guarantee that the noise value is below a certain value. By denoting this
certain value as x0, the probability of the noise value being lower than x0 is equal to the
surface of the hachured area in Figure 9. It can be mathematically calculated using the
cumulative distribution function (CDF) of the Gaussian noise [45] as

Figure 9. A Gaussian distribution and the probability of a Gaussian variable that is smaller than x0.

p = F(x0) =
1
2
[1 + er f (

x0

σ
√

2
)], (22)

where p is the probability of the noise values being lower than x0, and er f is the Gauss
error function [45]. Using the inverse function of er f , the variable x0 can be calculated as a
function of p and σ as

x0 =
√

2σ[er f−1(2p− 1)]. (23)

In order to avoid collision, with the accuracy level of p%, the value x0 should be added
to the minimum inter-vehicle safe distance, dh.
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The value x0 and its corresponding energy consumption and travel time are calculated
for nine different noise scenarios containing three different levels for p and σ, with the
parameters Lu = 300 m, Ld = 200 m, vi = 0 km/h, vd = 70 km/h, and Pa = 970 W. Table 4
shows the results of the simulations for each case. The σ values are in accordance with
the error magnitude assumed in [46]. The travel time is denoted by t, and the energy
consumption is denoted by E in Table 4.

Table 4. Different noise and accuracy cases.

Value σ = 0.05 m σ = 0.1 m σ = 0.2 m

p = 99%

Case 1
x0 = 0.12 m

t = 67 s
E = 0.0993 kWh

Case 2
x0 = 0.23 m

t = 72 s
E = 0.0767 kWh

Case 3
x0 = 0.47 m

t = 70 s
E = 0.0925 kWh

p = 99.0%

Case 4
x0 = 0.15 m

t = 72 s
E = 0.0757 kWh

Case 5
x0 = 0.31 m

t = 70 s
E = 0.0889 kWh

Case 6
x0 = 0.62 m

t = 73 s
E = 0.1129 kWh

p = 99.99%

Case 7
x0 = 0.19 m

t = 72 s
E = 0.0757 kWh

Case 8
x0 = 0.37 m

t = 70 s
E = 0.0925 kWh

Case 9
x0 = 0.74 m

t = 72 s
E = 0.1164 kWh

Figure 10 demonstrates cases 6, 7, 8, and 9 and compares them to a baseline with no
noise. The behavior of case 1 is the same as the baseline, cases 2 and 4 are the same as case
7, and cases 3 and 5 are the same as case 8. Thus, for the plotting clarity, only cases 6, 7, 8,
and 9 are depicted in Figure 10. The results show that the required minimum inter-vehicle
safe distance increases depending on the noise magnitude and the expected safety accuracy
level. An increment of either p or σ or both results in minor changes in travel time, energy
consumption, or both. For instance, for the simulated cases in Table 4, the range of changes
in travel time is from 0% to 9.0%, and the range of changes in energy consumption is from
−23.8% to 17.2%. However, the basic trajectory of the eco-PPCC does not show significant
fluctuations due to the added noise, indicating its resilience to noisy information.
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Figure 10. (a) Location and (b) speed of noise cases 6, 7, 8, and 9 in comparison to a baseline with
no noise.
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4. Conclusions

This paper presents a pro-active eco-driving framework designed to regulate the
speed profile of an AEV when encountering an IPV near a signalized intersection. In
order to obtain a pro-active eco-driving framework rather than a reactive one, instead of
using the IPV’s upcoming data in the reference trajectory tracking, the proposed eco-PPCC
framework incorporates them into the reference trajectory optimization. The primary
objective of this framework is to minimize the energy consumption of the AEV.

The findings indicate a significant decrease in energy consumption and the attainment
of smooth and consistent speed profiles when implementing the proposed framework.
Various scenario tests showed that the eco-PPCC framework significantly reduced energy
consumption by up to 68.55% when compared to the baseline Gipps model, which simulates
human driving behavior. Additionally, travel time savings of up to 34.51% were observed.
Furthermore, the utilization of joint optimization in the up and downstream directions by
the eco-PPCC framework effectively avoided unnecessary stops at intersection stop lines
by adjusting the speed profile, thereby optimizing energy consumption.

As an extension of the present study, there is potential to enhance the proposed eco-
PPCC framework by incorporating adjustments to the auxiliary consumption term to
accommodate different levels of auxiliary power consumption in various vehicle opera-
tional modes. Additionally, future research could focus on expanding the proposed method
to encompass platoons or fleets of vehicles.
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