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Abstract: The study considers ways to ensure the quality of the functioning of power equipment as
one of the directions for ensuring the safety of energy complexes in the period of “green transfor-
mation”. Based on the analysis, it is established that for an effective “green” transformation, it is
necessary to ensure the energy safety of equipment operation, which is possible by developing effec-
tive science-based approaches to technical diagnostics of the state of power systems and individual
equipment. The main objective of the study is to develop a Safety Management Model for Life Term
Operation of power equipment, which takes into account changes in its condition at different stages
of operation and allows for the prediction of further safe operation. The paper proposes an approach
to researching the technical condition of power equipment, taking into account the deformations that
occur during operation. The results of the calculation of stress intensity coefficients for longitudinal
and transverse-postulated cracks in different modes are presented. Based on the calculated and
experimentally obtained values, an approach to predicting the operating life of power equipment
with regard to changes in technical characteristics is proposed. The results of the calculations showed
that by changing the allowable load on the material of the energy equipment to 35 kgf/mm2, the
estimated operational lifespan could be extended until 2035, ensuring all necessary safety conditions.
It has been proven that with effective management and continuous safety diagnostics, nuclear power
plants have the potential to operate beyond their standard design life of up to 30–40 years. This
approach allows for the quality and safe operation of power equipment in the context of the transition
to sustainable energy.

Keywords: sustainable energy management; safety; green energy; power equipment; long-term
operation

1. Introduction

Managing the security of energy facilities is an important strategic task for the develop-
ment of sustainable energy. To ensure the sustainability of energy processes, it is necessary
to develop a set of measures and actions that promote the development of energy and
technologies while ensuring safety. To achieve a secure shift towards a “green” trajectory,
it is essential to create a well-defined implementation plan that considers the resource
requirements of the population while accounting for economic, environmental, and social
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implications. Among the critical resource factors influencing the quality of life, energy
needs hold significant importance, and nuclear energy plays a crucial role in meeting
these demands. In fact, in 2022, the European Commission recognized nuclear energy as
green energy, acknowledging its contribution to the green transformation and the journey
towards climate neutrality. However, ensuring energy safety and the secure operation of
nuclear power plants and their equipment remains an essential prerequisite.

Ensuring the safe operation of energy facilities, both during their design and beyond
their design life, is a crucial socio-economic and environmental undertaking, not only
for Ukraine but also for the global energy industry. The significance of nuclear power
plant safety during long-term operation (LTO) has escalated due to the growing number
of licensees prioritizing assessments for the continued operation of these plants beyond
their originally intended design timeframe. By the end of 2014, there were 438 operational
nuclear power plants globally, with 225 of them having been in service for more than
30 years. A total of 68.27% of the reactors in the EU have been operational for over 30 years,
and 30.8% of them are more than 40 years old, signifying that they have been granted an
extended operational life beyond their initial design period, placing them in the category
of LTO. As these plants approach the end of their operating licenses, they undergo a
comprehensive safety review and ageing assessment of crucial structures, systems, and
components. This evaluation is essential to either validate or renew their license to continue
operating beyond the originally intended service period [1–6]. With some power units
in Ukraine reaching or nearing the end of their design life, a significant objective is to
extend their lifespan as part of the planned shift towards green energy, while prioritizing
safety and dependability. Additionally, nuclear power remains a vital component of many
countries’ energy systems, enabling support for the energy sector during the transition
to alternative energy sources. Absolutely, achieving safe and sustainable operation of
energy complexes, as well as individual elements within them, heavily relies on effective
approaches to quality assurance and safety management. These measures are essential for
ensuring the reliability, longevity, and overall success of the energy sector’s transition to
greener and more sustainable practices.

Thus, today we have some contradictions, namely, for a safe “green” transition and
further ensuring the stability of the energy sector, it is necessary to use nuclear energy,
which in turn is now considered a “green” energy resource. At the same time, a significant
number of nuclear power plants in the world have exhausted or approached their service
life, which requires the development of a strategy for a smooth and safe transition to beyond
design life and the definition of safety management mechanisms based on comprehensive
technical diagnostics for continued operation.

This study aims to present an approach to ensuring energy management for the safety
of power equipment operations. In this regard, the paper will analyze the latest research
in the field of safety and effective management approaches based on selected articles and
studies, which will help researchers and professionals in this field, and propose an energy
management model taking into account the technical condition of power equipment. Thus,
Section 2 will consider the analysis of approaches to the management of the safe operation
of power equipment, after which, Section 3 will consider the management of energy security
in the operation of power equipment, and thus, we will end with Section 4 concerning the
results and discussions, and finally, with Section 5 referring to the conclusions.

2. Analysis of Approaches to the Management of the Safe Operation of
Power Equipment

Green energy plays a crucial role in providing a sustainable source of non-carbon elec-
tricity. Safe and reliable operation of the power plant relies on advanced technologies and
continuous improvement in management practices. However, owner/operating organiza-
tions of power plants are encountering significant challenges to their financial sustainability,
especially in competitive electricity markets and with a decreasing or stagnant energy de-
mand. To address these challenges and meet the climate change goals outlined in the Paris
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Agreement, these organizations are re-evaluating their business models, adopting more
robust and resilient approaches, and striving to maintain operational excellence. In recent
decades, the energy sector has shown enhanced performance, thanks to the development
of effective management models and processes within the green industry [6].

The safety of power plants depends on the reliability of their equipment, which
includes structures, systems, and components. Achieving a high level of equipment
reliability requires correct tasking, timely actions, and sufficient resources, which are
managed through well-designed processes and programs. In the short term, a key method
of ensuring equipment reliability is to predict and identify potential problems before
they lead to unexpected equipment failure. Innovations using advanced technologies
can complement these efforts by enabling more intensive equipment monitoring, longer
trending intervals, and the use of sophisticated analytical algorithms to correlate system
parameters and establish criteria for detecting potentially abnormal equipment behavior.

Enhancing the safety of power plant equipment involves advancements in monitoring
methods and systems. From the perspective of nuclear reactor safety, research and accident
risk assessments demonstrate that adverse events occur at a low rate compared to the
overall estimated risk to human life in general. To reduce risks and elevate the safety level
of power plant equipment, continuous efforts are required to enhance safety systems, safety
management, and human resources [7,8].

Thus, nuclear energy plays a vital role in promoting sustainable economic develop-
ment and maintaining its reputation as a “green” energy necessitates the active involvement
of all stakeholders in ensuring operational safety. As indicated in references [7–12], the
shift towards a circular, “green” economy is a gradual process, and the energy sector neces-
sitates support and diligent attention to safety at every level and stage of power facility
equipment operation.

Numerous studies in the review present equipment reliability models that explicitly
incorporate not only baseline reliability but also the impact of aging, maintenance, and
testing activities [13–16].

Ukrainian researchers have extensively investigated the safety aspects of power equip-
ment operation during both its design and extended operational periods, given Ukraine’s
robust and advanced nuclear power system. Some research [17–19] has addressed the safety
concerns related to various aspects of nuclear power plant components and equipment, of-
fering diverse methods and approaches for technical diagnostics and enhancing regulatory
support for operational safety. In [20], the authors proposed equipment standardization to
distinguish methods and models for evaluating the technical condition of pipeline systems
subjected to different types of loads and coolant mediums. Furthermore, papers empha-
sized the importance of conducting a comprehensive assessment of power equipment,
considering its operational characteristics, to predict changes in technical condition and
service life beyond the design period.

Ensuring the safe operation of power plant equipment requires a comprehensive
approach to assess its quality and technical condition. For instance, for pipelines, re-
searchers have proposed a comprehensive technical diagnosis of energy equipment, which
considers structural features, defects, and stress–strain state after a specific period of op-
eration [13,20–22]. The studies employ research methods like mathematical modeling,
comparison of calculated and experimental results, identifying boundary parameters of
the technical condition, predicting service life, and monitoring and controlling the me-
chanical properties of energy equipment during operation using non-destructive testing
methods. They also involve determining the residual resource of metal structures and
equipment, considering external factors. The suggested methods and algorithms of techni-
cal diagnostics can serve as the foundation for assessing the overall condition of energy
equipment. The authors propose an actual analysis of the state of power equipment and
the main disadvantage of these methods in comparison with the proposed one is the lack
of possibility to make a comprehensive prognostic assessment taking into account possible
operational changes.
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Developing an effective mechanism to study the operational quality and assess the
technical condition of energy equipment beyond its design service life requires the consid-
eration of factors influencing both safety and economic indicators for future operations.
Some research [23–26] explored approaches to optimizing the correlation between safety
and economic indicators and criteria in this context.

Studies [27–31] have examined the challenges related to ensuring the safe operation of
power plants from various perspectives. In these studies, the authors proposed cutting-edge
information and measurement systems, smart technologies, and smart NPP concepts, along
with innovative approaches to control system design and reliability assessment. Notably,
these authors emphasize the importance of learning from past negative experiences of NPP
operation, like the Chernobyl accident and Fukushima, underscoring the need for a robust
system to ensure the safe operation of energy facilities.

However, new technologies also bring new risks to the energy industry. Thus, stud-
ies [32–34] propose Integrated Management of Safety and Security (IMSS) as a necessary
means of preventing and preparing for accidents. It considers the risks posed by the devel-
opment of digitalization and automation in high-risk industries and the resulting growing
convergence of risks related to process safety, physical safety, and cyber security, which
can lead to serious accidents. The authors of [35] propose an automatic generation control
(AGC) for nuclear power plants (NPPs) to ensure the safety of NPP operation. The study is
based on the hypothesis that with the development of the energy supply structure towards
clean energy, NPPs will be a stabilizer of the power system and an effective advanced
AGC strategy is needed, taking into account nuclear safety, relay protection of power
units, automation of grid management, the power system stabilizer (PSS), and the speed
control system.

Management of safety through the development of various models and approaches
for risk assessment is examined in works [36–38]. Indeed, for this purpose, authors pro-
pose the use of Probabilistic Safety Analysis (PSA) technology, which has emerged as the
predominant method worldwide, providing essential support for daily risk management
and safety decision-making in nuclear power plants. Absolutely, PSA technology can be
utilized to develop an aging PSA model for power plants during the license extension
period. This model helps assess the effects of system, structure, and component (SSC) aging
on the overall safety of nuclear power plants and verifies whether they still adhere to the
original design standards [39–41]. By doing so, the extended operation can be ensured to
meet the necessary safety requirements. To extend the operation license of a nuclear power
plant, it is essential to consider nuclear safety during the extended service life. The goal is
to ensure that the safety level of the power unit during the extended service life is at least as
high as that of the original design life. Indeed, while PSA technology and other approaches
have advanced the evaluation of safety and operational aspects of power equipment, there
remain several unresolved issues related to conducting technical diagnostics and ensuring
the overall quality and safety of power equipment functioning. These challenges require
further research and development to effectively address and enhance the performance and
safety of power equipment in various industries.

3. Energy Safety Management of the Power Equipment Operation

The primary document that defines the safe operation of a power unit is the techno-
logical regulation for safe operation. It establishes the limits and conditions for the safe
operation of the power unit, as well as the requirements and fundamental practices for
its safe operation. The regulation also outlines the general procedures for performing
safety-related operations at the nuclear power plant.

As an example of technical diagnostics, pipeline systems for various purposes can
serve as a crucial element of power equipment. The assessment of their technical condition
is of utmost importance for ensuring the safe and efficient operation of the energy facility.

This study is limited to power unit equipment and its components that transport
coolant at different stages of operation. The proposed approach can be used in the design,
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operation within the design life and, most importantly, in ensuring safe operation beyond
the design life. This paper does not address the issues of technical diagnostics of the reactor
and its equipment.

3.1. Analysis of Factors Affecting the Operational Safety of Power Equipment

The assessment of the technical condition and remaining lifespan of pipelines is
carried out as part of control, assessment, prediction, and management of the resource
characteristics of the nuclear power plant’s components. This process includes evaluating
and predicting the remaining resources of various elements of the nuclear power plant,
which ultimately supports the extension of the plant’s operational period.

Correct assessment of the technical condition and safety evaluations of pipeline sys-
tems involves a crucial examination of the mechanical properties of pipe metal, particularly
its changes during long-term operation compared to normative data. The degradation of
mechanical properties can significantly impact the technical condition and safe operation
of pipelines, leading to accelerated wear and activating other factors that negatively affect
the operational safety of energy equipment. Some of these factors include:

1. Increased vulnerability to fatigue and stress-induced failures.
2. Reduced material strength and structural integrity, leading to potential leaks

or ruptures.
3. Elevated susceptibility to corrosion and erosion, which can compromise the integrity

of the pipeline.
4. Diminished resistance to external forces, such as seismic events or environmental impacts.
5. Reduced ability to withstand operational stresses and dynamic loads, increasing the

likelihood of unforeseen failures.
6. Potential impact on the efficiency and performance of the overall energy system,

affecting its reliability and safety.

Therefore, a thorough understanding of the mechanical properties of pipeline metal
over time is crucial for ensuring the safe and reliable operation of energy equipment.
This knowledge aids in making informed decisions regarding maintenance, repair, and
the extension of the equipment’s service life, all contributing to the overall safety of the
energy facility.

The primary design loads for pipeline systems include internal or external pressure,
product mass and additional loads such as attached equipment, pipe insulation, etc. Other
significant loads include reactions from supports and attached pipelines, temperature
effects, and vibration-induced loads. There are no standardized methods prescribed for
determining design loads, internal forces, displacements, stresses, and deformations of the
analyzed elements. The chosen method should account for all design loads in all relevant
scenarios and enable the determination of all necessary stress categories.

3.2. Determination of the Stress–Strain State of Equipment Metal

The main challenge in ensuring the safety and longevity of nuclear power plant
equipment remains the issues of dynamics and strength. To achieve the primary goal of
assessing the remaining service life and extending the operation of pipeline systems in
power facilities under dynamic influences, it is crucial to evaluate the resistance to brittle
fracture upon crack initiation on the metal surface.

The prediction of the remaining service life is based on a method for determining the
stress–strain state of the metal, considering deformations resulting from various loads. The
methodology involves assessing the technical condition of the selected equipment based
on critical parameters and estimating the remaining service life through measurements
and/or determination of the metal’s limit state parameters, accounting for any defects that
have arisen or by modeling possible changes.
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3.2.1. Determination of the Allowable Stress Intensity

For research purposes, the main circulation pipeline of the South Ukrainian Nuclear
Power Plant with a water-cooled water-moderated power reactor WWER-1000 was chosen
as an example. The main circulation pipeline is a critical component of the overall energy
block system, subject to various types of loads.

The main characteristics of materials used in calculations are the critical stress intensity
factor KSI , critical temperature of brittleness TC, and yield strength RT

p0.2.
The condition of crack non-propagation is also considered.

KSI > Kth (1)

where Kth is the threshold stress intensity factor, which is determined from the equation

Kth = σthY
√

πα (2)

The strength condition is met when the stress intensity factor is less than the critical
stress intensity factor.

KSI < [KSI ]i (3)

where [KSI ]i is the allowable value of the stress intensity factor (MPa·m1/2).
The index “i” indicates that the allowable values of stress intensity factors are selected

differently depending on the operational conditions: i = 1—for normal operating conditions
(NOC); i = 2—for hydraulic (pneumatic) testing (HT) and violation of normal operating
conditions (VOC); i = 3—for emergency situations (ES).

To account for changes in material properties during operation, the determination of
the allowable stress intensity factor is carried out considering the critical temperature of
brittleness.

For pearlite steels, high-chromium steels, and their welded joints with a yield strength
at 20 ◦C not exceeding 600 MPa (60 kgf/mm2), the following generalized dependence of
the stress intensity factor is used:

[KSI ]1 = 13 + 18e0.02(T−Tc); (4)

[KSI ]2 = 17 + 24e0.018(T−Tc); (5)

[KSI ]3 = 26 + 36e0.02(T−Tc); (6)

The critical temperature of material brittleness is determined using the formula

Tc = Tc0 + ∆TT + ∆TN + ∆TF, (7)

where Tc0 is the critical temperature of material brittleness in the initial state; ∆TT is the
shift of the critical temperature of brittleness due to temperature aging; ∆TN is the shift
of the critical temperature of brittleness due to cyclic damage; and ∆TF is the shift of the
critical temperature of brittleness due to the influence of neutron irradiation.

3.2.2. Defect Modeling

The calculation of the resistance to brittle fracture for defect consideration is performed
by modelling a postulated defect on each calculation segment. The defect is modelled
as a longitudinal and transverse surface semi-elliptical crack with parameters l/c = 2/3,
according to the requirements (Figure 1).
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The defect modelling was performed to predict the state of the metal, taking into
account possible changes, in the event that actual tests did not reveal any changes or
degradation effects in the metal of the power equipment. The actual condition was investi-
gated using non-destructive testing methods in accordance with NPP safety standards and
regulations.

The calculation of the stress intensity factor for the elliptical surface cracks (Figure 1)
at points A and B is determined by the following formulas:

KSIA = MANASA
√

πl/Q (8)

KSIB = MBNBSB
√

πl/Q (9)

Q = 1 + 1.464α1.65 (10)

The crack parameter at point A is denoted as NA =
[
1−

(
0.89− 0.57

√
α
)3

τ1.5
]−3.25

,

MA = 1.12− 0.08α; the crack parameter at point B is denoted as NB =
(
1 + 0.32τ2)NA,

MB = (1.23− 0.09α)
√

α; l is the crack depth in millimeters; c is the crack width in millime-
ters; and α = l/c for l ≤ c; r = l/t for l ≤ 0.7t.

In the general case of any stress distribution σz = σz(x) in the wall of the element, as
well as any shape of their application, the depth of the semi-elliptical surface crack is also
divided into 2m segments. The number of points at which stresses are specified will be
K = 2m + 1.

The coordinate of each point is determined by the expression

xk = (k− 1/2m)l, (11)

where k = 1, 2, . . . , 2m + 1.
Stresses, which are specified in arbitrary form, are determined for each point xk:

σk = σz (x = xk).
The stress values for the points are determined using the following formulas:

σA =
K

∑
1k=1

(Bk,3 + αBk,4 + λBk,5)σk (12)
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σB =
K

∑
k=1

Bk,6σk (13)

λ = τ(1− 1.9 · α0.75 + 0.9 · α1.5) (14)

where Bk.3, Bk.4, Bk.5, Bk.6, for the k-th point (k = 10), the stress values are determined from
Table 1 [42].

Table 1. Coefficients for calculating crack stress.

k Bk.3 Bk.4 Bk.5 Bk.6

1 0.0189 −0.0085 0.0278 0.2700
2 0.0378 −0.0165 0.0548 0.1980
3 0.0370 −0.0160 0.0510 0.1120
4 0.0368 −0.0155 0.0472 0.0800
5 0.0367 −0.0149 0.0431 0.0620
6 0.0366 −0.0142 0.0390 0.0500
7 0.0367 −0.0134 0.0347 0.0410
8 0.0368 −0.0125 0.0303 0.0350
9 0.0371 −0.0115 0.0257 0.0290

10 0.0376 −0.0105 0.0207 0.0250

For a surface element that has curvature in the direction of the Z-axis, the coefficients
of stress intensity are determined by the ratio (longitudinal crack; radius of curvature in
the Z-axis direction, Rz = R):

K′1SIA =
1 + 4 l

Rz

(
1−
√

α
)

1 + 5 l
Rz

(
1−
√

α
)
(1 + 2τ2)

KSIA; K′SIB = KSIB (15)

3.2.3. The Results of Determining the Coefficients of Stress Intensity

Using the proposed methodology, a calculation for the resistance to brittle fracture of
the main circulation pipeline elements was performed at various sections.

The results of determining the stress intensity coefficients for the longitudinal Y-axis
and transverse Z-axis of the conditional crack for normal operating conditions (“NOC”),
violation of normal operating conditions (“NOC”) and hydraulic (pneumatic) tests (“HT”)
are presented in the form of diagrams in Figure 2.
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It is worth noting that the permissible stress intensity coefficient [KSI]I < 65, 000 MPa·m1/2.
As can be seen from the graphs (Figure 2), the values of stress intensity factors for

the considered operating conditions are three orders of magnitude lower than the stress
intensity factors that meet the operational requirements.

The defect modelling and subsequent calculation makes it possible to predict the safe
operation of power equipment under certain cyclic loads, or to assess the actual condition
of the metal of power equipment and develop recommendations for the service life. This
makes it possible to develop a Long-Term Safety Management Model.

4. Results and Discussion

Based on the proposed method of considering the defect resulting from the operation
of energy equipment and the corresponding cyclic loads, and using the determined stress
intensity coefficients, the estimation of remaining service life and safety prediction for
further operation is suggested. Some research [9,13] proposes mathematical models to
analyze the changes in the mechanical properties of the metal pipeline, such as RT

m, (ultimate
tensile strength), RT

p0.2 (yield strength), ZT (total elongation), AT (reduction of area), KSI
(stress intensity coefficients), and others, considering the regularities of metal property
changes during operation. These models take into account the geometry of the defect
and the accumulation of fatigue damage in equipment and pipelines under different
operational loads.

Taking into account the data on the material of the main circulation pipeline, we
will determine the values of permissible stresses for different calculation groups of stress
categories.

For the metal of the main circulation pipeline (MCP), with the main material being
10GN2MFA steel:

[σ] = min
{

RT
m/nm; RT

p0.2/n0.2; RT
mt/nmt

}
= min{55.1/2.6; 41.79/1.5} = 21.19 kgf/mm2

The normal operating conditions (NOC):

(σ)1 = [σ], (σ)1 = 21.19 kgf/mm2

(σ)2 = 1.3[σ], (σ)2 = 1.3× 21.19 = 27.55 kgf/mm2

(σ)RV ≤
(

2.5− RT
p0.2/RT

m

)
RT

p0.2 = 72.8 ≤ 83.58 kgf/mm2

The hydraulic (pneumatic) testing (HT):

(σ)1 = 1.35[σ], (σ)1 = 1.35× 211.92 = 28.61 kgf/mm2

(σ)2 = 1.7[σ], (σ)2 = 1.7× 211.92 = 36.03 kgf/mm2

The calculated forecast of the change in the permissible load on the material of the main
circulation pipeline (MCP) elements depending on the duration of operation is presented
in Figure 3.
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Figure 3. Calculated forecast of the change in permissible load on the material of the main circulation
pipeline (MCP) elements.

Based on the results of technical diagnostics and calculated predictions of changes in
the allowable loads, it can be concluded that the mechanical characteristics of all inspected
elements are in agreement with the specified values and meet or exceed the regulatory
requirements [43]. The refined forecast of metal changes in the energy equipment under
different loads and considering potential defects indicates the possibility of safe operation
until 2035. However, it is recommended to plan and carry out metal monitoring and assess
changes in allowable loads during the periodic safety review (PSR-2024; PSR-2029) as part
of the major overhaul in 2024 and 2029. To achieve this, a safety management scheme is
proposed for determining the technical condition and critical parameters of the pipeline
metal (energy equipment), aiming at Long-Term Operation (LTO) (Figure 4).

The Plant Safety Management Model is a system that defines the Life Term Operation
of a nuclear power plant. LTO refers to the extension of the operational lifetime of a nuclear
power plant beyond its original design life, while ensuring safety and reliability. The LTO
process involves conducting comprehensive evaluations, technical diagnostics, and safety
assessments to determine whether the plant’s components, including the pipelines, can
continue to operate safely and meet the required performance standards [44–47].

The Plant Safety Management Model includes various aspects, such as probabilistic
safety analysis, aging management programs, material property assessments, and defect
prediction models. By incorporating these elements, the model can predict the remaining
service life of the equipment, including the pipelines, and estimate their future performance
considering the effects of aging, degradation, and accumulated fatigue.

The results of the Plant Safety Management Model allow plant operators and regu-
latory authorities to make informed decisions about the continued safe operation of the
nuclear power plant. It also helps in planning maintenance, repair, and replacement activi-
ties to ensure the plant’s safe and efficient operation throughout its extended service life.
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5. Conclusions

Aging of equipment and corresponding analysis of resource characteristics are impor-
tant issues in Ukraine and worldwide. Research on the equipment’s maximum service life is
driven by a significant portion of equipment that has either reached its designed service life
or exceeded it. Forecasting the equipment’s service life, which is the subject of numerous
studies, has shown that extending the service life of objects through partial replacement
and equipment repair becomes economically and technically feasible. However, to jus-
tify extending the operational period, a thorough analysis of factors affecting the safety,
functionality, and longevity of the energy equipment is necessary. Specifically, research
on specific objects needs to be conducted regarding factors that determine the extent of
deformation during prolonged operation. To determine the equipment’s service life and
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justify the forecast for extending the operational period, data from regular monitoring of
the mechanical properties of the base metal during the operational term are required.

Based on the assessment of the technical condition of the main circulation pipeline
elements of the South Ukraine Nuclear Power Plant, the following findings regarding the
main aging processes of the equipment and pipelines have been established:

• No changes in the shape or dimensions of the construction elements of the inspected
components have been detected under the influence of operational loads.

• No metal defects or wall thinning have been observed from the beginning of the
operation until the evaluation and reassessment of the service life of the mentioned
equipment and pipelines.

A methodology for determining the stress intensity factors to account for possible
defects due to operation was proposed. For this purpose, defects were modelled, and
stress intensity factors were determined under different operating conditions. Resistance to
brittle fracture is considered to be ensured (and the defect is considered stable) if condition
(3) is met for the selected design defect in the form of a crack in the considered operating
mode. The results of the brittle strength calculation were presented in the form of diagrams
(Figure 2), which contain the values of the coefficient stress intensity factor for points A and
B for the longitudinal and transverse cracks, as well as the value of the permissible stress
intensity factor. As a result of the evaluation of the results of the performed calculation
for resistance to brittle fracture, it can be concluded that the condition of brittle strength is
met for all considered design zones and operating modes. The permissible stress intensity
coefficient [KSI ]I < 65, 000 MPa·m1/2 and as calculations show, the maximum values of
stress intensity coefficient do not exceed 60 MPa·m1/2.

The results of the calculations for the inspected elements formed the basis for predict-
ing further safe operation. It was found that considering safety factors, the investigated
equipment can be operated until 2035, and the values of mechanical characteristics and
permissible loads do not exceed the normative limits ([σ] = 20 kgf/mm2 with permissible
values [σ]limit = 35 kgf/mm2).

To refine the predicted values, it is recommended to conduct a technical diagnosis
of the state of the power equipment in 2024 and 2029 using the proposed plant safety
management model for life term operation determination. According to the proposed
model, when conducting the periodic safety review, research should take into account
changes in the stress–strain state of the equipment metal and strength calculations. In the
case when a defect is not detected, modelling of changes and calculation with consideration
of possible deformation is proposed.

Further research will be aimed at developing a regulatory methodology for technical
diagnostics according to the proposed plant safety management model for life term opera-
tion determination, which will include a step-by-step algorithm for conducting research, a
methodology for calculating the stress–strain state of power equipment and a methodology
for predicting the service life and frequency of the periodic safety review.
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