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Abstract: A wealth of data is constantly being collected by manufacturers from their wind turbine
fleets. And yet, a lack of data access and sharing impedes exploiting the full potential of the data. Our
study presents a privacy-preserving machine learning approach for fleet-wide learning of condition
information without sharing any data locally stored on the wind turbines. We show that through
federated fleet-wide learning, turbines with little or no representative training data can benefit from
accuracy gains from improved normal behavior models. Customizing the global federated model to
individual turbines yields the highest fault detection accuracy in cases where the monitored target
variable is distributed heterogeneously across the fleet. We demonstrate this for bearing temperatures,
a target variable whose normal behavior can vary widely depending on the turbine. We show
that no member of the fleet is affected by a degradation in model accuracy by participating in the
collaborative learning procedure, resulting in superior performance of the federated learning strategy
in our case studies. Distributed learning increases the normal behavior model training times by about
a factor of ten due to increased communication overhead and slower model convergence.

Keywords: wind energy; federated learning; wind turbine fleets; condition monitoring; fault diagnostics

1. Introduction

Wind energy plays a pivotal role in climate change mitigation. A massive growth in the
installed wind power capacity and grid infrastructure is required to decarbonize the power
supply [1,2]. Wind energy is rapidly growing, with new wind parks being commissioned
and planned across the globe [3–5]. Wind turbine (WT) condition monitoring plays a crucial
role in minimizing downtimes and enabling predictive maintenance of wind farms [6,7].
Yet, manufacturers are averse to sharing the required condition monitoring information due
to business strategic interests [8]. As a result, a severe lack of data persists [9,10], hindering
the full potential and development of data-driven models for diagnostic and condition
monitoring tasks.

We address this issue by presenting a distributed machine learning approach that
enables sharing condition information within a fleet of WTs from different owners while
still preserving the privacy of data stored on the wind turbines. Within our study, we define
a fleet as a set of all WTs of the same model. We demonstrate how data-driven condition
monitoring models can be trained collaboratively by a WT fleet in a manner that allows
sharing of condition information among the WTs without sharing the WTs’ condition data.
Specifically, we propose to train accurate turbine-specific models of each WT’s normal
operation behavior for fault detection tasks by making use of the condition monitoring data
of the entire WT fleet in a privacy-preserving manner. This is a highly relevant scenario
because, in practice, only the manufacturer can access the condition data from all WTs of a
fleet, whereas other stakeholders only have access to a small share of the fleet’s data from
their own WTs or even no data at all [8]. Other stakeholder groups concerned may include
operators, owners, third-party companies, regulators, and researchers.
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Thus, our study demonstrates a path toward privacy-preserving sharing of condition
information without any manufacturer, operator or owner having to grant anyone access to
their WTs’ operation and condition data. Wind farm operators usually have no access to WT
data from other operators and are, therefore, not able to make use of condition information
from other operators’ WTs for their own wind farms. The lack of data sharing (among
wind farms of different owners) within fleets is particularly unfortunate in situations where
the relevant data are scarce, for example, when the operator or other stakeholders seek to
establish a damaged database but have only a few (or even no) fault events of each fault
type in their database, or when a new WT has been commissioned and the stakeholder has
no condition data available yet for that WT type. In such situations, it would be highly
desirable to benefit from fleet-wide information sharing. Manufacturers, on the other hand,
usually have access to the operation and condition data of all operating WTs produced by
them but do not share these data.

To address the data imbalance, we propose and investigate the potential of privacy-
preserving federated learning [11] for condition monitoring and diagnostics tasks in wind
farms based on WT data distributed among multiple owners. With the introduction of the
FedAvg algorithm [11], federated learning has significantly gained relevance, especially
in the area of IoT applications and mobile devices. Numerous contributions have recently
proposed improvements building upon FedAvg, for instance, regarding efficiency [12,13] or
in enhancing its security [14,15]. Recent works also employ encryption mechanisms within
the federated learning environment (e.g., [16,17]), thereby adapting the privacy benefits of
the alternative distributed approach of sharing and training models on encrypted data, as
presented in, e.g., [18,19]. We refer the reader to [14,20–25] for more complete reviews of
recent developments and algorithms for federated learning. An application of federated
learning that is in use operationally is next-word predictions for virtual keyboards in mobile
apps [26,27]. First applications have also been proposed in other fields, such as automotive
systems [28–30]. The capabilities of federated learning are still largely unexplored in
renewable energy applications. Recently, Zhang et al. [31] proposed a federated learning
case study for probabilistic solar irradiance forecasting. Their presented FedAvg-based
framework, enhanced by secure aggregation with differential privacy, was shown to achieve
performance advantages over a setting in which data sharing between participants was
unavailable. However, the authors noted that the shared federated learning model resulted
in slightly inferior performance compared to a centralized setting with data sharing, as
it is susceptible to data distribution deviations between clients. Lin et al. [32] presented
a federated learning approach for community-level disaggregation of behind-the-meter
photovoltaic power production. To address the data heterogeneity of each community,
a layer-wise aggregation was introduced. Only the parameters of the shallow layers,
learning community-invariant features, were exchanged, while the community-specific
parameters of the deep layers remained local. This customization step was shown to
result in improvements compared to a completely shared global model. With a focus
on efficiency, Q. Liu et al. [33] demonstrated a successful federated learning application
for collaborative fault diagnosis of photovoltaic stations. To address the inefficiencies of
FedAvg, especially when computing capabilities and dataset sizes differ among participants,
the authors proposed asynchronous, decentralized, federated learning. This framework
without a central server resulted in significant reductions in communication overhead and
training time.

In the area of wind energy, Cheng et al. [34] presented the first and, to our knowledge,
so far, only study of a federated learning model for wind farms. The authors proposed an
approach for detecting blade icing by classification. A blockchain-based architecture with
a cluster-based learning module was introduced to address concerns regarding privacy
and malicious attacks, as well as data imbalance. The authors remarked that, while not
considered in their study, existing data heterogeneity may negatively affect the performance
of the model.
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Classification methods, such as Cheng et al. [34], are relatively uncommon for fault
detection tasks in wind farms in practice due to the typically small number (or even absence)
of fault observations. The more commonly used normal behavior models, which model
the normal state of the WT, do not require an extensive collection of a fault database, as
opposed to the fault classification-based approach [35]. Normal behavior modeling involves
modeling the behavior of the monitored WT under normal fault-free operation conditions.
The resulting normal behavior models (NBMs) characterize the normal operation behavior
of the monitored WT as expected under the prevailing operating conditions. These NBMs
can, for instance, output an expectation of the generator temperatures, given that the WT
is running in a normal state. Consequently, these models allow for the differentiation of
anomalous from normal behavior based on the residuals of the actual and its expected value,
thereby indicating possible faults and signalizing the need for further inspection [36–38].
In the literature, NBMs based on SCADA data have been proposed for monitoring both
single and multiple target variables [39–41].

For normal behavior modeling for fault detection and diagnosis, numerous sensor
systems are typically available, ranging from sensor systems for internal temperatures and
oil quality anemometers for environmental measurements to accelerometers for vibration
responses [42–45]. The WT’s supervisory control and data acquisition (SCADA) data
can also be used for condition monitoring tasks (e.g., [35,41,46–48], also in combination
with vibration data (e.g., [49]). As no further sensor installations are required, condition
monitoring based on SCADA data presents a cost-effective technique. On the other hand,
the WT health information provided by SCADA data may be less informative in that it can
be less component-specific, less timely and less accurate with regard to the fault diagnostics
task than dedicated sensing systems, such as accelerometers. For example, gearbox faults
can be identified from vibration measurements at an early stage of fault development
(e.g., [50,51]), whereas associated SCADA data, such as from the gearbox temperature,
would allow the fault to be detected only once it resulted in an unusual increase of the
gearbox temperature, i.e., at a late development stage. Such temperature increases typically
result from abnormal heat generation that can originate from excessive friction. Therefore,
in SCADA-based fault detection, a fault can often be detected only at a relatively advanced
fault development stage in which initial damage may have already occurred. Nonetheless,
using SCADA data for condition monitoring remains popular due to its numerous benefits,
such as its ease of use, cost-effectiveness, and the possibility to complement it with other
fault detection techniques for WTs. We refer to [35,52–55] for detailed reviews regarding
data-driven diagnostic and condition monitoring approaches.

The potential of collaborative fleet-wide learning of normal behavior models for fault
detection tasks in WTs based on SCADA data has not been discussed or investigated
despite its high relevance for practical applications. Our study addresses this research gap
by proposing federated learning of normal behavior models in a data-privacy-preserving
manner. We propose a solution to an important practical problem in wind farm monitoring
and diagnostics: How to train NBMs for detecting developing faults in WT subsystems
when SCADA and sensor data for training NBMs are missing or not representative of the
WT’s current operation. This is a major challenge in newly commissioned wind turbines
and in turbines whose operation behavior changed, for example, due to large hardware or
software updates. We demonstrate the federated learning of NBMs in two case studies for
gear-bearing temperatures and power curves in two wind farms.

The main contributions of our study are:

1. A new privacy-preserving approach to wind turbine condition monitoring;
2. A customization approach to tailor the federated model to individual WTs if the target

variable distributions deviate across the WTs participating in the federated training;
3. Federated training and customization are demonstrated in condition monitoring of

bearing temperatures and active power.
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Our study contributes to resolving a major problem: the “lack of data sharing in
the renewable-energy industry [which] is hindering technical progress and squandering
opportunities for improving the efficiency of energy markets” [8].

This study is structured as follows. Section 2 details our proposition for collaborative
privacy-preserving learning for condition monitoring and diagnostics tasks in WT fleets.
Section 3 presents two case studies of federated learning of normal behavior models in
bearing temperatures and active power. We report and discuss our results in Section 4.
Section 5 summarizes the conclusions from our study.

2. Federated Learning of Wind Turbine Conditions
2.1. Federated Learning

In conventional machine learning, all data on which a model is trained need to be
available and accessible in a central system. If the data belong to different owners, such a
centralized setting requires that the data owners give up their data privacy by sharing their
data with others. In contrast, federated learning is a machine learning approach that learns
a task from the joint data of different data owners without disclosing the data or sacrificing
their privacy. In a federated learning environment, multiple industrial systems (clients,
in our case, wind turbines) train a machine learning model in a collaborative distributed
manner such that each client’s training data remains on its local client system, thereby
preserving the privacy of the training data [11,56]. With federated learning, the training
data are distributed across multiple client systems and are not located in one central system,
as is the case with conventional machine learning. The parameters of a collaboratively
trained model are learned from the distributed data without exchanging the training data
among the client systems or transmitting them to a central system. Only updates of the
locally computed model parameters are shared with and aggregated by the central system.
The model training is collaborative in the sense that each client contributes to the joint
model training task by using its locally stored data for that task.

We adopt the FedAvg federated learning approach of McMahan et al. [11] in our study.
For a formal definition, it is assumed that a fixed number of J client WTs are participating
in the federated learning process. Each client WT j has a fixed dataset Dj of size nj =

∣∣Dj
∣∣.

In our case study, this is the dataset from the SCADA system used for training a normal
behavior model of the WT normal operation behavior. Each dataset Dj is stored locally
in the client WT and not accessible to other client WTs or the central system. The FedAvg
training proceeds in iteration rounds, at the start of which a central server transmits the
initial model parameters of the current round to the J client WTs (Table 1). Then, each client
WT j updates the received model parameters by training on its local dataset Dj, and then
transmits the update to the central server. The server updates the parameters of the global
model by aggregating the updates received from all client WTs by averaging. The objective
of the iterative FedAvg training process is to arrive at model parameters w that minimize
the sum of prediction losses Li from the J client WTs on all data points (xi, yi ) of their local
datasets Dj,

min
w

J

∑
j=1

nj

∑
i=1

nj

n
Li(xi, yi, w) (1)

In our case study, the model parameters w will be weights of a feed-forward neural
network. We compute the prediction losses Li in terms of the mean squared errors. In
each algorithm round t, the update step involves that the J client WTs perform local weight
updates in parallel, so each client WT performs a gradient descent step on its local data,

wj
t+1 = wj

t − η

nj

∑
i=1

nj

n
∇Li

(
xi, yi, wj

t

)
∀j = 1, · · · , J (2)

wherein η is the learning rate and ∇Li

(
xi, yi, wj

t

)
, i = 1, · · · , nj denotes the gradients on

Dj of client WT j with regard to the model weights wt. The central server then aggregates
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the received weights and returns an updated model state wt+1 = ∑J
j=1

nj
n wj

t+1 to the
client WTs, which ends the current training round. The training steps are repeated until a
predefined stopping criterion is satisfied. The overall training process is summarized in
Table 1.

Table 1. Steps in the training of a federated learning model based on McMahan et al. [11].

Federated model training process
The central server selects the model architecture and initial weights. Then, it iterates the
following steps:

1. The clients participating in the training are selected.

2. The central server transmits the starting weights of the current iteration to the
participating clients.

3. Each client trains a local model with stochastic gradient descent on its local training data.
The local training is performed by all clients in parallel.

4. The updated weights are transmitted to the server which averages them. The resulting
average weights are sent to the clients to serve as the new model weights and starting
weights of the next iteration.

In addition to preserving data privacy, further advantages of federated learning result
from the fact that it does not require all client data to be stored in a central location. This can
be highly beneficial when applied to complex remotely monitored power infrastructure,
such as wind farms. Modern WTs are equipped with hundreds of sensors that can collect
hundreds of gigabytes of data every day [57]. Transmitting and storing all those data
in a central system (as would be common in conventional machine learning) is expen-
sive and requires a high transmission bandwidth and data buffer. If the data are stored
centrally, the data center managers of the central storage system are also responsible for
protecting the data privacy and preventing unwanted third-party access, which entails an
additional burden.

2.2. Federated Learning for Condition Monitoring

Condition monitoring of wind turbines is often based on normal behavior models
in practice [35,40]. Normal behavior models (NBMs) can be used for applications in fault
detection and diagnostics. We propose and demonstrate the federated learning of normal
behavior models for such condition-monitoring tasks. In the following, we analyze how
NBMs for condition monitoring can be trained collaboratively by a fleet of WTs in a manner
that allows information sharing within the WT fleet without disclosing the data of any of
the WTs. SCADA-based NBMs have been presented for fault detection tasks in [39–41]. Our
case studies explore the application of the FedAvg method [11] for training accurate NBMs
for fault detection applications in WTs that have few or no representative data. We focus on
fault detection based on NBMs of drivetrain component temperatures and on active power
production [58]. The drivetrain component temperatures exhibit more heterogeneous
distributions across WTs. We investigate how federated learning can still be applied to
extract accurate NBMs for condition monitoring despite significant inter-turbine differences
in the distribution of the target variable, in our case, the gear-bearing temperature.

The temperature behavior of components and the active power form the basis of
NBMs that are key for condition monitoring in WTs [38,59–63]. We demonstrate federated
learning for NBMs of these applications.

Policies involved in the practical implementation of a federated learning process are
beyond the scope of this study. There is certainly more than one setup and distribution
of roles in the federated training process that can work in practice. For example, the
federated learning process can be orchestrated by a regulatory entity that might define the
process, the machine learning model structure, the aggregation, and distribute the software
needed for the implementation. Federated learning can be organized in a centralized way,
as presented here, but also in decentralized ways. Federated learning processes can be
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orchestrated by a central agency, such as a regulator. They may also be implemented and
orchestrated by operators to enable data access across the fleet. Federated learning can,
in principle, even be implemented by the manufacturer for customers who prefer not to
give the manufacturer access to their turbines’ data. In the centralized learning process
proposed in our study, the client WTs only need to be equipped with a client computer that
can train neural networks on their local data, with computing capacity and storage similar
to that of a laptop computer.

2.3. Customizing Federated Models to Individual WTs

A possible limitation of global federated learning models is that a single global model
is trained for application in all client WTs of the fleet. Having a single non-customized
model for all fleet members can limit the model’s performance in the fault detection task,
especially in cases in which the client WTs’ SCADA and sensor datasets follow somewhat
different statistical distributions in normal operation, requiring NBMs that are customized
to each WT. Previous research investigating the effects of non-identically distributed data
on the FedAvg algorithm has shown that data distribution differences can negatively impact
the convergence and the performance of the global FedAvg model [64–66]. We investigate
NBM customization in our case studies.

The NBM resulting from the federated training process (Table 1) is a global model
trained on the data of all client WTs, so it is not customized to a specific client WT. We
demonstrate the limitations of a single non-customized model in our case studies based on
the example of WT gear-bearing temperatures and active power. Despite all WTs being the
same model, each WT’s local dataset can present a somewhat different data distribution.
The arising data heterogeneity can be described as domain shift [67–69], where the WTs’
local datasets form diverse domains with different feature distributions. For example,
the temperature behavior of the gear bearing can differ across WTs because of differing
thermal behaviors. A single global NBM without customization learned through the
FedAvg training process can lead to poor generalizability across domains (i.e., WTs) and
to situations where, for some client WTs, the global NBM outperforms a locally trained
one, whereas, for other client WTs, the global NBM performs worse than a model trained
only on their local data. A lack of generalizability can become especially critical when WTs
that have little or no representative data are dependent on information contained in the
data of other WTs with distinct domains. Shared global models may be inadequate under
these circumstances.

Customized federated learning aims at alleviating this issue by customizing the global
model to each client WT while still participating in the distributed learning process. Cus-
tomization techniques that have been proposed for federated learning models range from
customization layers in neural networks [70] to meta-learning with hypernetworks [71].
We refer to Kulkarni et al. [72] and Tan et al. [73] for an overview and taxonomy of cus-
tomization techniques. In this study, we customize the global FedAvg model by means of
local finetuning updates [73,74], which ensures that the participating client WTs can benefit
from the federated learning process.

3. Case Studies: Federated Learning of Fault Detection Models

The goal of our case studies is to estimate WT-specific normal behavior models for
WTs that lack representative observations and to perform the estimation in a collaborative
privacy-preserving manner. A WT can suffer from a lack of representative training data for
various reasons. A lack of representative data arises at the commissioning of a WT but can
also occur after events that can affect the WT’s normal operation behavior, such as control
software updates or hardware replacements.

In the first case study, normal behavior models of the active power are developed:
Some of the WTs participating in the federated learning process have representative local
training data covering all wind conditions, whereas the training data of other WTs are
dominated by low wind speeds. The second case study focuses on federated learning
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of normal behavior models of bearing temperatures. Unlike in the first case study, the
bearing temperatures exhibit heterogeneous distributions across the WTs participating in
the federated training. We show that customizing the trained global model to individual
WTs yields the highest fault detection accuracy under such conditions.

The case studies are performed with data from two wind farms. The two wind farms
are in separate locations (with a distance of at least 900 km) with different geographical
and environmental factors. In the following Sections 3 and 4, we will describe, present, and
discuss our case studies with regard to data from the first wind farm. We then apply the
same case study design and validate our results on the dataset from the second wind farm,
which is presented in Appendix A.4.

SCADA data from ten commercial onshore wind turbines are analyzed for the case
studies. All ten WTs are of the same manufacturer and model. The WTs are a horizontal-
axis variable-speed model with pitch control and share the same technical specifications
(Table 2). The data were acquired from the WTs’ SCADA systems at a sampling rate of
ten minutes over the course of 13 months. Each WT holds around 50,000 valid data points
that contain wind speeds measured at the nacelle, the corresponding power generation,
measured rotor speeds, and gear-bearing temperatures. The measurements are provided as
average values over 10-min periods. All WTs are from the same wind farm, and we assume
that no data sharing is allowed between the WTs. One randomly selected turbine out of
the ten WTs is used only to define the network architecture with optimal hyperparameters,
as explained in Appendix A.1. The NBMs of the remaining nine client WTs are estimated
based on the SCADA data.

Table 2. Technical specifications of the wind turbines employed in the case studies.

Parameter Specification

Rotor diameter 112 m
Rated active power 3300 kW
Cut-in wind velocity 3 m/s
Cut-out wind velocity 25 m/s
Tower Steel monopole
Control type Pitch-controlled variable velocity
Gearbox Two planetary stages, one helical stage

3.1. Federated Learning of Active Power Models

The first case study demonstrates the privacy-preserving collaborative learning of
NBMs of a wind turbine’s active power generation. The trained NBMs enable the detection
of underperformance faults in the monitored WTs. The normalized 10-min average wind
speed serves as a regressor in the normal behavior model of the power generation. The
wind speed was min-max normalized such that all normalized wind speeds are in the
range of [0, 1]. In our case study setting, 5 WTs of 9 are subjected to a SCADA data scarcity.
These WTs lack representative observations from periods of high wind speeds, as their
training sets consist of only low to average wind speeds. Such a situation might happen in
practice when data is predominantly collected during a period lacking high wind speeds,
as it is possible, for instance, in central Europe, for a duration of up to months [75]. With
this scenario, we demonstrate one of the many possibilities in which there exists a lack of
representative SCADA data for training normal behavior models.

A lack of representative SCADA data from a particular WT means that accurate NBMs
can hardly be estimated for that WT with conventional machine-learning approaches. It
may take up to several months of SCADA data collection until a sufficiently representative
dataset has been collected for training a new NBM from the WT’s own SCADA data.
Active power monitoring and detection of underperformance faults are hardly possible
during this time period. We demonstrate that collaborative learning of the nine WTs can
mitigate this lack of training data and allow learning accurate power curve NBMs in a
privacy-preserving manner.
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For each WT, we set aside the last 30% of its SCADA data, i.e., the data gathered in
months ~9–13 of the 13-month data collection period, as that turbine’s test set. Further, we
assign nine randomly selected WTs as “client” turbines. The remaining WT is treated as a
public turbine in the sense that its SCADA data will serve us for the model selection. The
remaining 70% of the data of each client WT are split into a training set and a validation
set in a manner that represents the data-scarce conditions as discussed above: We define
the training set of each of the five WTs to be composed of the 10-min average wind speed
and power generation values of the four weeks with the lowest average wind speed out
of the considered 9-months measurement period. Thus, the training sets of the five WTs
are characterized by low and moderate wind speed conditions. All other time periods
form the validation set of that respective client WT. The training and validation set of the
remaining four WTs comprises all wind resources, including low, moderate and high wind
speeds. The last 30% of the training set data form the validation set for these clients. An
illustration of the training, validation and test datasets is given in Figure 1 for one of the
five data-scarce WTs and for one of the four WTs with representative training data. The
accuracy of the power curves of the five WTs is limited due to the lack of observations of
high wind speeds in their local training data.
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Figure 1. Datasets of two different client turbines. First row: Only data from the four weeks with the
lowest average wind speed were kept for the training set of this client turbine. The training set does
not contain sufficient data to represent the true power curve behavior in high wind speed situations
(upper left panel). Second row: Wind speed and power data from a client WT whose training data
contain representatively distributed wind speed observations.

Note that the data from the four WTs with representative training data are inaccessible
to the data-scarce wind turbines. So, it is not possible to derive and transfer a power curve
from any of those four WTs to any data-scarce WT because the data are local and, thus,
unavailable to standard (non-federated) learning approaches.

3.2. Federated Learning of Bearing Temperature Models

Our second case study demonstrates the federated learning of NBMs of bearing
temperatures for fault detection applications. Unusually high component temperatures
can be caused, for example, by excessive friction or undesired electrical discharges, so
excessive temperatures are key SCADA indicator variables of developing operation faults.
The normal operation behavior of gear-bearing temperatures is modeled with normalized
10-min rotor speeds and power generation as regressor inputs. Again, five of the nine
WTs are affected by a lack of representative SCADA data. Specifically, only one month
of local training data is used to train the NBMs of these WTs. Such scarcity conditions
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regularly arise in newly installed WTs and after major software or hardware updates. As
in the first case study, the last four months (30% of the SCADA data) serve as the WT’s
test set. Nine randomly selected WTs are assigned as client WTs, whereas the remaining
WT is used for the model selection. The remaining 70% of the SCADA data of each client
WT are split into a training set and a validation set in accordance with the data scarcity
conditions: The training set of each of the five WTs is defined to be composed of the 10-min
average gear bearing temperatures, rotor speeds, and active power generation values of
one month, i.e., four randomly chosen consecutive weeks. All other time periods form
the validation set of the respective WT. The datasets of the remaining four WTs comprise
a longer, more representative data collection, where the last 30% of the training set data
form the validation set for these clients. Figure 2 illustrates the training, validation and test
datasets for one of the five data-scarce WTs and for one of the four WTs with representative
training data.
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Figure 2. Datasets of two client WTs. First row: Only data from four randomly chosen consecutive
weeks were kept for the training set of this client turbine. In this case, the training set contains
insufficient data to represent the temperature behavior in low-temperature situations (upper left
panel). Second row: Gear bearing temperature and rotor speed data from a client WT whose training
data contain representative temperature observations.

3.3. Heterogeneously Distributed Target Variables

Deviations in the data distributions across the local datasets of the participating client
WTs can negatively affect the FedAvg learning process, as discussed in Section 2. Our case
studies exhibit different degrees of distribution shifts in the target variables, enabling us
to investigate the effects of deviating distributions of the monitored variables. Figure 3
shows the distributions of the active power generation and the gear-bearing temperatures
across the nine WTs participating in the federated training. The distributions of active
power (i.e., the target variable of the first case study) display only minimal differences
across the client WTs. Consequently, one expects that a global federated model should
be able to capture information that can be generalizable across WTs. We assess how this
global knowledge can be shared and utilized by WTs with scarce training datasets in the
case studies. We also evaluate how the loss of WT-specific information in the global model
affects WTs with representative training datasets and the utility of customized models
under these conditions.
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The distributions of the gear-bearing temperatures show distinct differences across all
client WTs. A globally shared model may have difficulties capturing global information
that is generalizable across WTs. Customization to individual WTs may improve the model
performance in the case of non-identically distributed datasets. We assess the effect of
the observed distribution shifts on the performance of the global model in the second
case study and whether collaborative condition information sharing across the fleet is still
possible and beneficial for the participating WTs under these conditions.

4. Results
4.1. Federated Learning Strategies and Model Architecture

The scarcity of training data is addressed by privacy-preserving information sharing
between all WTs active in the federated training: The local data of each client WT contribute
to training the global NBM and fine-tuning it to the respective client WT. Yet, the local
data remain stored in the respective client WT without exposing them to other client
WTs or the central server in the federated training process (Table 1). We compare three
privacy-preserving learning strategies (Figure 4):

A. Conventional machine learning of NBMs using only the local data of each WT,
B. Federated learning of a single global NBM for all WTs,
C. Customized federated learning of WT-specific NBMs.
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ated learning of a single global NBM (B), Customized federated learning of WT-specific NBMs (C).
Each participating client is represented as a WT with its locally stored dataset and model (distinctly
colored). The centralized server (B,C, top) aggregates and averages the client’s weights, represented
in a global model (next to the server).
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4.1.1. Conventional Machine Learning

We evaluate the training of a NBM in a conventional non-distributed machine learning
environment. Each client WT individually learns an NBM based on its own past operation
data and without any access to data from other WTs of the fleet. This constitutes the default
situation in practice. We typically lack access to data from other fleet members because
they have other owners, and no data sharing is in place.

4.1.2. Federated Learning of a Single Global Model

Our second training strategy for the NBM is a federated learning environment. In this
setting, a central server communicates with the client WTs in a privacy-preserving manner.
We implement the federated averaging approach of McMahan et al. [11], as outlined in
Table 1. First, the server broadcasts the model architecture, determined with the model
search over the server-accessible public WT, and further information, such as the optimizer,
loss, and metrics, to the client WTs in the initialization step. The iterative update step
consists of the client WTs first updating their models in parallel—which we implemented as
running three epochs over their private local training sets—and then sending their model
weights back to the server. Next, the server averages the collected client weights and
broadcasts the averaged model weights to the client WTs. The averaged model weights
represent the global FedAvg model. An additional sidestep involves that all clients evaluate
the updated global model on their validation set and send their validation losses to the
server. We repeat the update step until the average validation loss of the clients has not
improved within five repetitions, representing 15 local epochs by each client. The global
federated learning model is then evaluated by calculating the root mean squared error
(RMSE) on the test set of each client WT.

4.1.3. Customized Federated Learning of Turbine-Specific Models

A possible disadvantage of the presented federated learning approach (B) is that it
results in a single global model that is not customized to a specific client WT. The individual
client WTs may exhibit somewhat different data distribution characteristics depending,
for example, on their sites, maintenance history, or local ambient conditions. The feature
distributions of the monitored target variable may differ significantly across the fleet
(Figure 3). Such differences are not represented by the global NBM, which may result
in performance losses of the model for some client WTs. Some turbine operators might
be incentivized to opt out of the federated learning process if they find that a local NBM
trained only on their local data with conventional machine learning (A) outperforms the
global NBM (B). Training WT-specific NBMs can make it attractive for all client WTs to
join the training, so we customize the MLP that represents the global NBM to specific
client WTs. After training a single global MLP model based on FedAvg (B), we achieve the
customization by having each client WT finetune a subset of the trained layers of the global
MLP on its local dataset (Figure 5 and Appendix A.3). This turbine-specific finetuning
resembles transfer learning methods in which neural network layers of a previously trained
model are finetuned on a separate dataset [72–74,76,77]. Based on the validation set losses,
each client WT optimizes the number of layers to finetune its customized MLP. The weights
of the other layers remain fixed with the weights of the global federated learning model.
The resulting model performances are presented in Appendix A.3. The customized model
with the lowest RMSE on the client WT’s validation set was finally evaluated on each
test set.
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Figure 5. Illustration of the federated learning process with customization in step 5. Step 1: The
server initializes an empty model and broadcasts the architecture to the clients. Step 2: Each client
updates their model weights by running training epochs over their private local datasets. Step 3:
The clients broadcast their model weights to the server, which aggregates them into a server model.
Step 4: The server broadcasts the calculated model to the clients. Steps (2)–(4) are repeated until a
training stop criterion is satisfied. At the end of step 4, the server and clients share the same (“global”)
model weights. The customization step 5 involves the finetuning (*) of layer weights of the global
model trained in steps 1–4.

4.2. Federated Learning of Active Power Models

In case study 1, a feedforward neural network is trained as a NBM for the power
generation. The inputs to the model are the normalized SCADA wind speeds. The model
outputs a prediction of the active power generation in MW. In each case study, all client
WTs and federated learning strategies make use of the same feedforward multilayer per-
ceptron (MLP) model architecture to ensure fair comparisons among experiments. The
respective MLP architecture will be determined by applying a random search model se-
lection algorithm on the SCADA dataset of the public turbine. For the first case study, the
resulting model architecture is summarized in Table 3. The search algorithm and model
architecture selection are outlined in Appendix A.1. Each client WT minimizes the mean
squared error loss over the training set by applying stochastic gradient descent (SGD) in the
conventional machine learning according to strategy A. Training is stopped once the client
WT’s validation set loss has not improved within 15 epochs. The model performance is
finally evaluated as the RMSE on the test set over the client WT. The results are summarized
in Figure 6. Detailed results for each WT are presented in Appendix A.2.

Table 3. The model architecture of the Active Power NBM was used in all experiments of the first
case study.

Model Architecture (First Case Study)

• Input layer: Normalized wind speed value
• Layer 1: Fully connected, 12 units, exponential linear unit activation function
• Layer 2: Fully connected, 8 units, exponential linear unit activation function
• Output layer: Fully connected, 1 unit, Rectified Linear Unit activation function [78]
• Output: Predicted Power Value [MW]
Number of parameters: 137
Loss: Mean Squared Error
Optimizer: Stochastic Gradient Descent (learning rate = 0.013, batch size = 32)

Model performance. The performances of the three privacy-preserving NBM training
strategies (A–C) are compared with regard to the accuracy of the resulting active power
NBMs on the test sets of each of the nine client WTs and with regard to the model training
time. In conventional machine learning (strategy A), we find a significant difference in
model performance depending on the type of the training dataset. The client WTs trained
on the four weeks with the lowest wind speed average of the considered 13-month period
show a significantly higher error (mean: 0.231) than those WTs with training datasets of all
wind speed conditions (mean: 0.104), as shown in Figure 6. Due to the scarcity of high-wind
speed observations, conventional machine learning on the local client’s data cannot train a
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sufficiently accurate power curve NBM. An example of such a client WT dataset is shown
in Figure 7 (1). The corresponding model trained with gradient descent on only the local
training data (strategy A) does not capture the power curve behavior correctly at higher
wind speeds (Figure 7 (3)). For the four WT clients with representative wind speed data,
the power curve can be fit accurately even with conventional machine learning with only
the local training data.
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Figure 7. Training set (1) and test set (2) for a randomly selected one of the five WTs with few
or no high wind speed data in their training sets, and the power curve models trained for that
WT based on conventional machine learning (3), the global federated learning model (4) and the
customized federated learning model (5). As the training set of the WT contains only a few data
points for high wind speeds, the conventional machine learning model fails at modeling the true
power curve behavior for higher wind speeds, which is shown by the underlying test set data. By
privacy-preserving learning from other WTs, the global federated learning model (4) can now model
these higher ranges. The finetuning step in the customized approach slightly adjusts the global model
(dashed line) to the private training set (5).

The results of the global federated learning model (strategy B) show a contrast be-
tween the client WTs with scarce high wind speed observations and the client WTs with
representative wind speeds. For the WTs with scarce high wind speed observations, the
RMSE of the active power NBM is significantly reduced by the global federated learning
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(mean: 0.125) compared to the conventional machine learning setting. By receiving shared
model parameters from all client WTs through the server aggregation step, the client WTs
with scarce high wind speed observations are now able to also model the upper wind
speed ranges by means of the shared global model. Therefore, these client WTs benefit from
the federated learning process through a significant improvement in model performance.
Figure 7 (4) shows the accordingly improved power curve of one of the five client WTs
with few or no high wind speed data with realistic behavior in the upper ranges despite
not having any reference data points available in its own local training set.

Conversely, the model performance has slightly but noticeably decreased for all but
one of the four client WTs with representative wind speed observations (mean: 0.113) by the
global federated learning as compared to the conventional machine learning setting. The
averaging step of the global federated learning leads to a loss of individual characteristics
contained in the local models of those client WTs. Therefore, as these clients were already
locally capable of fitting a model tailored to their individual turbine characteristics, also
in the upper wind speed ranges, the averaged global federated learning model leads to a
performance loss by incorporating individual information from other turbines.

Such performance losses could discourage operators of client WTs with sufficiently
representative training data from joining the federated learning process. These client WTs
should not drop out of the federated learning, though, because they are essential to the
performance increase of the client WTs with scarce data in this example. Indeed, our results
show that a customized federated learning implementation can counteract this issue. The
local finetuning of the global federated learning model manages to revert the impact of the
global averaging and re-introduces individual characteristics into the models. Thus, the
active power NBMs include both global information as well as customized adjustments.
Figure 7 (5) shows that the active power NBM from the customized federated learning
model is very similar to but somewhat deviates from the global federated learning model
to correct for local dataset characteristics.

Comparing the average performances of the three learning strategies (A–C), the
customized federated learning approach (C) accomplished the lowest RMSEs for the
clients with scarce high wind speed observations (mean: 0.117) and achieved the same
performance as the conventional machine learning strategy (A, mean: 0.104) for clients
with representative wind speed observations. Our results suggest that a customization
method should be applied for possible performance improvements of the trained NBMs
and as an incentive for all client WTs to join the federated training process.

Compared to conventional machine learning (A), a distributed learning process, such
as federated learning, requires additional computational costs due to the communication
between server and clients, overhead operations, and slower model convergence. Figure 6
shows the measured computational time taken to accomplish the training process for the
three learning strategies. All client WTs finish training within less than three minutes in a
conventional machine learning setting (A). With a global federated learning strategy (B),
the clients require more than 9 min for the learning to be accomplished. Given this in-
crease, the training time needs to be investigated when considering federated learning
applications for more complex models and for training with a larger number of client
WTs. In customized federated learning (C), the computational costs are dominated by
the global learning step, as the customization step requires a finished federated learning
process. The added time taken by the actual customization step, i.e., the local finetuning,
becomes negligible (on average +10.4 s) in comparison. Thus, a local finetuning step is a
very cost-efficient improvement.

4.3. Federated Learning of Bearing Temperature Models

The privacy-preserving learning strategies A–C are also investigated in a second case
study. A feedforward neural network is trained to model the normal behavior of the
gear-bearing temperature using SCADA data. To ensure fair comparisons between the
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strategies, all client WTs and federated learning strategies use the same feedforward MLP
model architecture, described in Table 4.

Table 4. The model architecture of the Bearing Temperature NBM used in all experiments of case
study 2 was determined through a model search (Appendix A.1).

Model Architecture (Second Case Study)

• Input layer: Normalized rotor speed and power
• Layer 1: Fully connected, 8 units, exponential linear unit activation function
• Layer 2: Fully connected, 16 units, exponential linear unit activation function
• Output layer: Fully connected, 1 unit, linear activation
• Output: Predicted Gear Bearing Temperature [◦C]
Number of parameters: 185
Loss: Mean Squared Error
Optimizer: Stochastic Gradient Descent (learning rate = 0.00035, batch size = 32)

Model performance. The accuracies of the NBMs trained with non-collaborative
strategy A are shown in Figure 8. WTs with scarce datasets (mean RMSE: 4.29) have a
higher average RMSE than WTs with representative datasets (mean: 3.93) with this strategy.
The models trained on scarce datasets with strategy A are not capable of fully capturing
the temperature behavior. An example of this is shown in Figure 9, in which the trained
model is unable to adequately estimate temperatures in underrepresented ranges (very low
and high temperatures, as shown in Figure 9 (1)), which leads to larger errors in the lowest
and highest observed temperature values on the unseen test dataset (Figure 9 (2)).
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Figure 8. Left: Performances of the training strategies on the test set in terms of mean RMSE between
the NBM predicted temperature and the actual monitored variable in case study 2. Right: Mean
training time in seconds for all three learning strategies. The error bars display the standard deviation.

Comparing the performance of global federated learning (B) to conventional machine
learning (A) for the five client WTs with scarce datasets, the global model leads to perfor-
mance increases in only two client WTs but raises the prediction errors of the NBMs in three
other WTs. The global models result in worse NBM performance even though the three
WTs lack representative data and receive shared model parameters. This result suggests
that the substantially differing bearing temperature behavior across clients strongly affects
the generalizability of the global model, such that one global model trying to combine all
individual characteristics cannot always offer a satisfactory fit. Therefore, despite receiving
information about temperature ranges not represented in their training set, these values do
not necessarily reflect the actual bearing temperature behavior of that WT. An example is
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shown in Figure 9 (3), where the global model introduces a strong overestimation of the
lower bearing temperatures.
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Figure 9. Actual versus predicted gear-bearing temperatures based on an NBM of a WT with
scarce training data. All data points would be located on the diagonal line with a perfect model.
Panels (1) and (2) show predictions using conventional machine learning on the training set and test
set, respectively. Panels (3) and (4) show the test set predictions by the global federated learning
NBM and by the customized federated learning NBM.

For the four clients with a fully representative training set, the global federated learning
model leads to a noticeable increase in the RMSE in all cases. The global model incorporates
information from all turbines, leading to a loss of individual characteristics within the
model and, thus, to a loss in performance, as already observed in case study 1.

A customized federated learning strategy can encourage operators of client WTs
without data scarcity to participate in the federated learning process because a customized
strategy can revert potential performance degradation introduced by the global model. Both
case studies show that the customization step is a necessity to encourage clients without
data scarcity to join the federated learning process. For clients with scarce datasets, the
customized federated learning strategy achieves the best performance across all strategies.
The local finetuning enables the customized models to retain and transfer usable knowledge
from the global model (for data not represented in the scarce dataset) and additionally
incorporate individual characteristics from the private local dataset. An example is shown
in Figure 9 (4), where the bearing temperature estimates from the customized model
are now improved in the unseen low and high-temperature ranges. Our results suggest
that a customized federated learning strategy can enable fleet-wide learning of condition
information even in the presence of a significant domain shift.

The computational time taken to train the NBMs following the three learning strategies
(Figure 8) confirms the results of case study 1. We observe a strong increase in training
time of the global federated learning model compared to conventional machine learning.
Training a model according to the conventional machine learning strategy takes, on av-
erage, 43 s, while the federated learning process requires more than 10 min. In contrast,
the increase in time for the local finetuning of the global model (customization part of
strategy C) remains negligible as it only requires an additional 12.9 s of training on average.
The results of case study 2 reinforce that a disadvantage of the federated learning process is
its additional computational costs and that customized federated learning (strategy C) is a
very time-efficient model improvement strategy. Detailed results for all WTs are shown in
Appendix A.2.

All experiments were run on an Intel Xeon CPU @ 2.20 GHz with implementations us-
ing TensorFlow v2.8.3, Keras v2.8, and the TensorFlow-federated v.0.20.0 framework [79,80].
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4.4. Second Wind Farm

We further validate our findings by replicating our case studies using data from the
second wind farm. The wind turbines in the two farms belong to different fleets. They
have different manufacturers, different rated powers, and major constructional differences.
Details and results are provided in Appendix A.4. The transfer across different fleets is not
in the scope of our study.

5. Conclusions

A wealth of data is being constantly collected by manufacturers from their wind
turbine fleets. Stakeholders interested in those data can include operators, owners, manu-
facturers, third-party companies, regulators, and researchers. There are various reasons
why different stakeholders want access to information contained in a fleet’s operation data.
Benefits of making the information accessible include technological progress, for example,
through new and improved data-driven applications and economic advantages resulting
from increased transparency and competition. For example, improved machine learning
models can be trained based on a fleet’s data to provide better decision support to wind
farm operators. This may involve improved predictions of failure events and estimations
of the remaining useful lifetime of critical parts.

Conventional machine learning on local wind turbine datasets is often applied in
practice, but it cannot exploit the information contained in the operation data of distributed
wind turbine fleets. Conventional machine learning cannot overcome the lack of access to
fleet-wide data because it is incompatible with data privacy needs.

We have demonstrated a distributed machine learning approach that enables fleet-
wide learning on locally stored data of other participants in the federated learning process
without sacrificing the privacy of those data. We have investigated the potential of feder-
ated learning in case studies in which a subset of wind turbines was affected by a lack of
representative data in their training sets. The case studies involve the collaborative learn-
ing of normal behavior models of bearing temperatures and power curves for condition
monitoring and fault detection applications.

The results of our case studies suggest that a conventional machine learning strategy
fails to adequately train normal behavior models for fault detection when representative
training data are lacking. The presented privacy-preserving federated learning strategy
significantly improves the accuracy of normal behavior models for wind turbines lacking
representative training data, as they can benefit from the training on the data of other turbines.

However, when the distributions of the monitored variable differ strongly across the
fleet, a single global model shared by all turbines can deteriorate the performance of the
normal behavior models, compared to conventional machine learning, even if representa-
tive training data are lacking. We have presented a customized federated learning strategy
to address this challenge of heterogeneously distributed target variables. By customizing
the global model to each client WT by local finetuning of neural network layers, we first
successfully revert the performance losses of the global model so that no turbine suffers
from a performance loss by participating in the federated learning process. Customized
federated learning yields the best model performance across all compared learning strate-
gies. Our case studies suggest that fleet-wide learning and sharing of condition information
can be achieved even where the monitored target variable is distributed heterogeneously
across the fleet. Client WTs with scarce training sets were able to extract and customize
knowledge from other fleet members. The federated learning process increased the average
model training time by factors of seven and 14 in the presented case studies, which can be
attributed to more comprehensive communication and overhead operations and slower
model convergence in the federated learning process.

Our proposed federated learning method proposes a solution to a major problem in
energy and power system fleets: The lack of data sharing, which “is hindering technical
progress (. . .) in the renewable-energy industry” [8]. Future research directions may involve
investigating further applications of federated learning in renewable energy domains,
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various customization strategies, and different characteristics and effects of heterogeneously
distributed target variables. It should also investigate how model training times scale with
fleet size for large fleets and possibly more complex models, such as multi-target normal
behavior models.
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Appendix A

Appendix A.1. Model Selection

All experiments for all learning strategies and all turbines make use of the same
underlying neural network hyperparameters to enable meaningful comparisons among
the learning strategies and trained models in each case study. One randomly selected WT
out of the ten WTs was set aside to serve as a ‘public’ WT, with its public dataset being
used only to define the network architecture with optimal hyperparameters to model the
power generation and the gear-bearing temperature’s behaviors in normal operation. The
last 30% of the SCADA data of this WT are set aside as a test set, as with all other WTs.
The remaining 70% are used as training data in the model search. We implemented a
random search algorithm for the model search using the KerasTuner framework [81]. In
each of its trials, the algorithm randomly chooses one possible model configuration from
the search space, then trains that model using the training set and finally evaluates it on
the test set. The constructed model candidate is trained using the training set for up to
150 epochs or until the loss has not improved during 15 epochs. After finishing a number of
100 different trials, the hyperparameters of the trial with the best performance, defined here
as the lowest root mean squared error, are chosen for all further experiments. In terms of
possible configurations for each trial, we have restricted the hyperparameter search space
as follows:

1. Each fully connected neural network candidate always starts with the input layer.
2. It ends with an output layer (1 unit, ReLU activation for strictly positive power, linear

activation for the gear-bearing temperature).
3. In between, the model can contain up to 3 hidden fully connected layers, with each

layer consisting of either 4, 8, 12, or 16 units followed by an exponential linear unit
(elu) activation.

4. The algorithm samples a new learning rate (between 0.075 and 0.001 in case study 1 and
between 0.001 and 0.000005 in case study 2) in each trial for the stochastic gradient
descent optimizer (Nesterov Momentum 0.90, batch size 32), which minimizes the
mean squared error over the training set.

The best model architectures that achieve the lowest test set loss after 100 trials are
described in Tables 3 and 4.
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Appendix A.2. Detailed Case Study Results

Table A1. Performances of the training strategies on the test set in terms of RMSE between the NBM
predicted power and actual power in MW in the first case study. “Scarce” and “Repres.” denote
the WTs whose training sets consist of the four weeks with the lowest average wind speeds and
representative wind speed observations, respectively. “Conv. ML”: Conventional machine learning;
“Global FL”: Federated learning with the global model; “Cust. FL”: Customized federated learning.
“Training Time” is the time required for the model training to finish in seconds.

RMSE Training Time [s]

WT
Index

Train.
Dataset

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

1 Scarce 0.279 0.110 0.115 22 541 547

2 Scarce 0.280 0.121 0.123 17 541 548

3 Scarce 0.200 0.113 0.087 19 541 549

4 Scarce 0.174 0.112 0.113 114 541 546

5 Scarce 0.224 0.168 0.148 21 541 545

6 Repres. 0.109 0.126 0.109 156 541 557

7 Repres. 0.106 0.120 0.106 117 541 561

8 Repres. 0.099 0.107 0.099 140 541 557

9 Repres. 0.101 0.100 0.102 109 541 553

Table A2. Training strategies performance on the test set in terms of RMSE between the NBM pre-
dicted and actual gear bearing temperatures in ◦C in the second case study. “Scarce” and “Repres.”
denote the WTs whose training sets consist of four randomly chosen consecutive weeks and rep-
resentative gear-bearing temperature observations, respectively. “Conv. ML”: Conventional non-
collaborative machine learning; “Global FL”: Federated learning with the global model; “Cust. FL”:
Customized federated learning. “Training Time” is the time required for the model training to finish
in seconds.

RMSE Training Time [s]

WT
Index

Train.
Dataset

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

1 Scarce 3.85 3.95 3.79 19 627 641

2 Scarce 5.78 6.39 5.61 15 627 632

3 Scarce 3.85 3.59 3.54 25 627 632

4 Scarce 3.77 3.85 3.65 17 627 643

5 Scarce 4.19 3.92 3.91 14 627 643

6 Repres. 3.90 4.28 3.86 46 627 643

7 Repres. 3.77 3.87 3.74 133 627 647

8 Repres. 4.43 4.82 4.45 52 627 641

9 Repres. 3.62 3.68 3.62 65 627 648

Appendix A.3. Customized Federated Learning

We employed a customization approach by finetuning the global federated learning
model, as outlined in Section 4. This fine-tuning process, resembling a transfer learning
approach, involves maintaining the weights of chosen layers and only training the weights
of the remaining layers for several epochs with a lower learning rate to adjust the pre-
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trained weights to the local dataset of the client. The model consists of three layers with
trainable weights (Tables 3 and 4). Thus, we have evaluated the options of

1. Only finetuning the last layer (1 finetuned layer);
2. Finetuning the last two layers (2 finetuned layers);
3. Finetuning all trainable layers (3 finetuned layers),

While maintaining the weights of the other layers in accordance with their states in the
global federated learning model. For each of the three options, we trained the model using
a smaller learning rate (half of the learning rate used in the conventional and standard
federated learning process) until the validation loss, defined as the root mean squared
error on the validation set, did not improve for five epochs. Tables A3 and A4 show the
results of the validation set for each client WT in the case studies. For each client turbine,
we choose the best-performing model from the three options, that is, the model with the
lowest validation loss, as the customized federated learning model used for the evaluation
in Tables A1 and A2.

Table A3. The root mean squared errors calculated over the respective client WT’s validation
set of three evaluated customization experiments in case study 1. “WT”: wind turbine, “FL”:
federated learning.

WT
Index

Train
Dataset

Customized FL,
1 Layer

Customized FL,
2 Layers

Customized FL,
3 Layers

1 Scarce 0.0954 0.0954 0.0947

2 Scarce 0.1043 0.1066 0.1026

3 Scarce 0.0832 0.0825 0.0809

4 Scarce 0.1032 0.1038 0.1032

5 Scarce 0.1466 0.1473 0.1424

6 Repres. 0.0958 0.0956 0.0959

7 Repres. 0.0864 0.0859 0.0861

8 Repres. 0.0806 0.0807 0.0807

9 Repres. 0.0866 0.0864 0.0866

Table A4. The root mean squared errors calculated over the respective client WT’s validation
set of three evaluated customization experiments in case study 2. “WT”: wind turbine, “FL”:
federated learning.

WT
Index

Train
Dataset

Customized FL,
1 Layer

Customized FL,
2 Layers

Customized FL,
3 Layers

1 Scarce 3.656 4.126 3.921

2 Scarce 4.942 5.066 4.960

3 Scarce 3.678 3.767 3.779

4 Scarce 3.702 3.952 3.863

5 Scarce 4.676 4.712 4.704

6 Repres. 3.710 3.713 3.720

7 Repres. 3.733 3.735 3.745

8 Repres. 5.670 5.720 5.697

9 Repres. 3.809 3.829 3.860
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Appendix A.4. Second Wind Farm Dataset

We additionally investigated our two presented case studies (Section 3) using data
from the publicly available Penmanshiel wind farm dataset [82]. The onshore wind farm
consists of 14 identical WTs of the same configuration (Table A5). The dataset comprises
10-min averages of SCADA data recorded across a time span of 5 years. Each WT’s local
dataset contains around 150,000 valid data points per variable, which includes wind speeds
measured at the nacelle, power generation, and gear-bearing temperatures. We assume
that no data sharing between WTs is allowed.

Table A5. Technical specifications of the wind turbines from the Penmanshiel wind farm employed
in the case studies.

Parameter Specification

Rotor diameter 82 m
Rated active power 2050 kW
Cut-in wind velocity 3.5 m/s
Cut-out wind velocity 25 m/s
Tower Steel
Control type Electrical pitch system
Gearbox Combined planetary/spur

Appendix A.4.1. Case Studies

We apply the identical case study designs as outlined in Sections 3.1 and 3.2. For the
first case study, the federated learning of active power models, the normalized 10-min
average wind speed serves as a regressor of the power generation. Seven WTs, that is,
50% of the turbines in the wind farm, are affected by a lack of representative training data
in our scenario. For each WT, the last 30% of its SCADA data are set aside as a test set.
The remaining 70% are split into a training and validation set. For the seven WTs affected
by data scarcity, only the four weeks with the lowest average wind speeds comprise the
training set, with the remainder belonging to the validation set. For the other half, the
remaining 70% of SCADA data are split into a training set (the first 70% of data) and a
validation set (the last 30% of data). Figure A1 illustrates the training, validation, and test
set for one of the seven data-scarce WTs and one of the seven WTs with representative
training sets.

For the second case study, the federated learning of bearing temperature models, the
normalized 10-min rotor speeds and power generation are regressor inputs to the model
predicting the (front) bearing temperature. The WTs’ datasets were split according to the
same scheme as in the first case study, with the difference that the training sets of the seven
randomly chosen WTs affected by the data scarcity scenario now consist of only randomly
selected four consecutive weeks of data. Figure A2 illustrates the training, validation, and
test set for one of the seven data-scarce WTs and one of the seven WTs with representative
training sets.

Figure A3 shows the distributions of the monitored variables in each case study
(power generation, bearing temperature) for all 14 WTs in the wind farm. While the
distributions of the active power exhibit almost identical distributions across the wind
farm, the temperature distributions show significant differences. These characteristics are
in accordance with the discussed setting in Section 3.3.
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Appendix A.4.2. Results

We evaluate the presented strategies A–C (conventional machine learning, global
federated learning, customized federated learning) from Section 4.1 for both case studies.

Federated Learning of Active Power Models

In case study 1, an NBM of the power generation is trained. We use the same model
architecture and configuration summarized in Table 4. The results, shown in Figure A4 and
Table A6, validate our previous findings of case study 1 discussed in Section 4.2. For WTs
lacking representative training data, a conventional machine learning strategy results in a
poor fit (mean RMSE: 0.188), as the local training sets are lacking representative data for high
wind speed ranges. These WTs benefit from a significant error reduction by participating in
the global federated learning process (mean: 0.039). The global model, however, results in
a performance loss for WTs with representative training sets (mean: 0.038) compared to
strategy A (mean: 0.035). Customized federated learning reverts these performance losses
back to the original level (mean: 0.034) by enabling the WTs to adjust the global model
to their local datasets, thus resulting again in the best-performing strategy. In terms of
computational time, the average training time of the federated learning strategy increased
by a factor of 18 compared to the conventional machine learning strategy. The additional
training time for the customized federated learning strategy, i.e., the local finetuning,
remains negligible (on average +29.4 s).
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Table A6. Performances of the training strategies on the test set in terms of RMSE between the NBM
predicted power and actual power in MW in the first case study with data from the Penmanshiel wind
farm. “Scarce” and “Repres.” denote the WTs whose training sets consist of the four weeks with the
lowest average wind speeds and representative wind speed observations, respectively. “Conv. ML”:
Conventional machine learning; “Global FL”: Federated learning with the global model; “Cust. FL”:
Customized federated learning. “Training Time” is the time required for the model training to finish
in seconds.

RMSE Training Time [s]

WT
Index

Train.
Dataset

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

1 Scarce 0.182 0.032 0.031 127 1680 1688

2 Scarce 0.196 0.055 0.043 37 1680 1687

3 Scarce 0.191 0.033 0.033 40 1680 1688

4 Scarce 0.166 0.035 0.032 48 1680 1687

5 Scarce 0.240 0.031 0.031 185 1680 1687

6 Scarce 0.174 0.030 0.030 51 1680 1689

7 Scarce 0.172 0.057 0.058 79 1680 1688

8 Repres. 0.032 0.031 0.031 71 1680 1715

9 Repres. 0.031 0.039 0.031 130 1680 1737

10 Repres. 0.034 0.033 0.033 78 1680 1707

11 Repres. 0.040 0.048 0.040 84 1680 1714

12 Repres. 0.034 0.033 0.033 172 1680 1742

13 Repres. 0.033 0.032 0.032 81 1680 1763

14 Repres. 0.041 0.052 0.040 95 1680 1735
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Federated Learning of Bearing Temperature Models

In case study 2, an NBM of the bearing temperature is trained. We employ the identical
model architecture and configuration as summarized in Table 4. The results, shown in
Figure A5 and Table A7, also validate our previous findings of case study 2, discussed
in Section 4.3. A global federated learning strategy results in a significant performance
deterioration, even for the seven WTs lacking representative training data (increase in mean
RMSE from 6.10 to 7.21). These results further suggest that the strongly deviating bearing
temperature distributions across the fleet can negatively impact the generalizability of the
global model, resulting in an inadequate fit for most participants. Consistent with our
observations from Section 4.3, a customized federated learning strategy can not only revert
the performance losses for WTs with representative training data (mean RMSE by strategies:
A: 5.82, B: 7.04, C: 5.82), it also enables data-scarce WTs to retain and transfer knowledge
from the global model, such that this strategy results in the lowest error for these WTs
in this scenario (mean: 5.91). The average training time of the global federated learning
strategy increased by a factor of 7 compared to the conventional machine learning strategy,
while the efficient local finetuning step only required an average additional training time
of 30.9 s.

Table A7. Training strategies performance on the test set in terms of RMSE between the NBM
predicted and actual gear bearing temperatures in ◦C in the second case study using data from
the Penmanshield wind farm dataset. “Scarce” and “Repres.” Denote the WTs whose training sets
consist of four randomly chosen consecutive weeks and representative gear-bearing temperature
observations, respectively. “Conv. ML”: Conventional non-collaborative machine learning; “Global
FL”: Federated learning with the global model; “Cust. FL”: Customized federated learning. “Training
Time” is the time required for the model training to finish in seconds.

RMSE Training Time [s]

WT
Index

Train.
Dataset

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

Conv. ML
(A)

Global FL
(B)

Cust. FL
(C)

1 Scarce 5.857 5.413 5.407 10 588 591

2 Scarce 7.397 7.323 6.978 26 588 591

3 Scarce 6.146 7.810 6.131 35 588 598

4 Scarce 5.310 7.254 5.313 45 588 594

5 Scarce 5.918 6.968 5.700 23 588 599

6 Scarce 6.056 8.035 5.941 48 588 597

7 Scarce 6.021 7.667 5.888 18 588 593

8 Repres. 5.980 6.970 6.061 121 588 624

9 Repres. 5.962 6.503 5.910 100 588 664

10 Repres. 5.981 7.049 6.001 207 588 651

11 Repres. 6.094 6.780 6.108 115 588 611

12 Repres. 5.649 7.400 5.656 127 588 680

13 Repres. 6.128 7.826 6.013 142 588 637

14 Repres. 4.964 6.778 4.995 123 588 635
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