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Abstract: This article presents a time series analysis for predicting energy production in photovoltaic
(PV) power plant systems, namely fixed and solar-tracking ones, which were located in the north-east
of Poland. The purpose of one-day forecasts is to determine the effectiveness of preventive actions
and manage power systems effectively. The impact of climate variables affecting the production
of electricity in the photovoltaic systems was analyzed. Forecasting models based on traditional
machine learning (ML) techniques and multi-layer perceptron (MLP) neural networks were created
without using solar irradiance as an input feature to the model. In addition, a few metrics were
selected to determine the quality of the forecasts. The preparation of the dataset for constructing the
forecasting models was discussed, and some ways for improving the metrics were given. Furthermore,
comparative analyses were performed, which showed that the MLP neural networks used in the
regression problem provided better results than the MLP classifier models. The Diebold–Mariano
(DM) test was applied in this study to distinguish the significant differences in the forecasting accuracy
between the individual models. Compared to KNN (k-nearest neighbors) or ARIMA models, the best
results were obtained for the simple linear regression, MLPRegressor, and CatBoostRegressor models
in each of the investigated photovoltaic systems. The R-squared value for the MLPRegressor model
was around 0.6, and it exceeded 0.8 when the dataset was split and separated into months.

Keywords: renewable energy; energy forecasting; machine learning; deep learning; linear regression;
neural networks; time series analysis

1. Introduction

The increasing proportion of renewable energy sources (RES) in energy production
creates a risk of temporary blackouts [1] or a decrease in energy quality [2]. In various
countries, such blackouts are a common system failure. This is due to the fact that these
sources (solar power plants, wind power plants) are dependent on weather conditions,
which are stochastic in nature. It is therefore necessary to achieve a balance between
energy consumption and production by temporarily increasing production at, for example,
conventional or nuclear power plants.

Surpluses and deficits in energy production negatively affect the functioning of power
grids. It is essential for the proper functioning of an energy system to adapt energy
production to the current demand, which is currently practiced [3]. Although it is possible
to adjust energy production in conventional power plants based on demand, it is not
possible to adjust it in power plants based on renewable sources. For this purpose, it is
necessary to accurately forecast energy production from renewable sources, especially
when the share of such power plants is significant in relation to other sources of electricity.
The additional knowledge of the production capacity of these energy sources, discussed in
minute, hour, or even daily intervals, will allow for even more effective management and
protection of power systems [4].
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The constant development of the economy, changes in everyday life, social changes,
or environmental changes require the modernization of the energy production profile.
Increasing the share of renewable energy sources in the production of electricity brings
new challenges [5]. Therefore, it is necessary to develop methods for forecasting electricity
production by wind or solar power plants, depending on weather conditions [6].

The existing approaches to forecasting models can be classified into the following four
categories: physical, statistical, machine learning, and hybrid [7]. Physical models can be
employed without historical data sets. They are based on numerical weather predictions
(NWP) or sky images. Conventional statistical techniques include autoregressive (AR),
moving average (MA), autoregressive integrated moving average (ARIMA), seasonal
ARIMA (SARIMA), and other variants of similar models [8,9]. Statistical models are
typically linear forecasters, and as such, they are effective in areas where the frequency of
data is low, such as those with weekly patterns. For hourly values, the nonlinear behavior
of the data might be too difficult to predict. The use of machine learning methods is seen as
an alternative to conventional linear forecasting methods. Hybrid models are designed to
improve the performance of physical or statistical techniques. Recent studies have shown
that the seq2seq architecture used in the transformer model is suitable for modeling complex
relationships in sequence data and for multi-step time series forecasting. The transformer
model is a powerful tool for multi-step time series forecasting, which is a difficult task for
traditional statistical models, such as ARIMA and GARCH [10]. In the article in [11], the
prediction performance of FusFormer, a transformer-based model for forecasting time series
data, compared to that of the long short-term memory (LSTM) network, light-gradient-
boosting machine (LightGBM), residual neural network (ResNet1D), transformer, and
conv-transformer models was evaluated.

Forecasting is the process of making predictions based on past and present data.
Deterministic and probabilistic forecasting is important in the daily operation of power
systems. Given a set of input data, deterministic forecasting models provide a single-valued
expectation series of the power output. Probabilistic methods give a wider view of possible
power outputs, as the output of such models could be a percentile, a prediction interval,
or an entire prediction distribution [12]. Using observation results with actual results, it
is possible to determine the forecast quality (how it coincides with the actual state) and
improve a developed model [13]. Nowadays, neural network models can be trained using
different packages such as Keras, PyTorch, TensorFlow, and Sklearn [14].

Forecasting can be both a simple procedure and a very complex one, especially when
there are many variables influencing the prediction model (multivariate data). A time
series can be stationary or non-stationary. A trend behavior can be upward or downward,
steep or not, and exponential or approximately linear. Many time series include trends,
cycles, and seasonality. All of this, as well as data continuity and computational constraints,
should be considered when choosing a modeling technique [15].

The progress in the field of machine learning (ML) and deep learning (DL) model
development is still needed. Such models need a large training dataset and an optimal
training algorithm. This is because it is necessary to specify more unique situations,
especially considering that many problems are non-linear and there is a need for online
re-training of the model to further improve its accuracy [16,17].

In particular, the contributions of this paper are summarized as follows:

• Neural-network-based energy yield models were developed and compared with other
prediction models for two types of installed photovoltaic panels: a fixed system and a
solar tracker. These systems were located in a humid continental climate.

• A large dataset was used for the training and test processes. It was shown that tuning
the network’s hyperparameters had a significant impact on the forecast accuracy and
computational time.

• To assess the prediction performance of the regression algorithms (used with contin-
uous data) and the classification algorithms (used with discrete data), quantitative
metrics were adopted.
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• It was shown that it is not advisable to rely on one metric (R-squared) as a universal
indicator of forecast quality.

• This article focuses on forecasting electricity production in small photovoltaic systems.
Consequently, an analysis of the climate variables that affect the forecasting of electric-
ity production was also carried out, taking into account the availability of information
in historical measurement data.

2. Literature Review

There are numerous publications in the field of forecasting electricity production in
photovoltaic systems. Many of them have been created over the past few years, so it is a
timely issue. These studies describe ultra-short-, short-, medium-, and long-term forecasts
using artificial intelligence methods, most commonly artificial (ANN) or deep neural
networks (DNN). Depending on the publication, different types of networks are proposed,
such as MLP—multi-layer perceptron [18], MLP ABC—MLP network using the artificial
bee colony algorithm [19], RNN—recurrent neural network [20], LSTM network [21],
CNN—convolutional neural network [22,23], and hybrid models [16,24]. In addition,
other machine learning algorithms are distinguished, such as k-nearest neighbors (KNN),
decision trees (DT), LightGBM, CatBoost, and extreme gradient boosting (XGBoost) [25],
among others.

There are several methods used for the direct prediction of PV power output that
combine clustering, such as the K-means algorithm and prediction techniques. The main
idea is to cluster the days based on their weather characteristics and then build separate
prediction models for each cluster [26].

Depending on the publication, forecasts are made for different time horizons [27].
The dominant group is ultra-short-term (minute) forecasts; the next group is short-term
(hourly) forecasts. Medium- and long-term forecasts are few. The forecasting period usually
depends on the availability of information used for forecasting and the purpose of using
these forecasts.

Examples of forecast uses include:

• Power system management [28–30];
• Event detection, e.g., covering panels with dust [31] or partial shading [32];
• Increasing the efficiency of photovoltaic systems by optimizing the operation of

MPPT (maximum power point tracking) and intelligent-controlling-based MPPT
systems [33,34].

The key to the development of solar production forecasts is the selection of the input
variables. The literature indicates numerous weather factors that can be used. These
include, among others: irradiance, temperature, humidity, atmospheric pressure, wind
speed, wind direction, rainfall, dust accumulation, and cloudiness. Figure 1 shows the
correlation coefficients among the various variables. There is a very strong correlation,
equal to 0.99, between the PV power output and the irradiance. Furthermore, there is a
significant correlation between the temperature of the PV module and the output power
(0.57) [35]. The PV system in this example operates in Maceió, Brazil, which has a typical
tropical climate.

Basing on another publication [4], Table 1 illustrates the correlation among individual
quantities and the output power. The PV system in this example is located in the Qassim
region of Saudi Arabia, which has a typical desert climate. Again, there is a very strong
correlation, close to unity, between the output power and the irradiance. The R-squared
coefficient of the module temperature is similar to the previous case and is equal to 0.59.
In addition, a significant correlation between the wind speed and power output of 0.45
is demonstrated. In most publications, the correlation values between the irradiance and
the output power are the same as the correlation values between the temperature and the
output power [36]. Similarly, a negative correlation of humidity is clearly indicated [37].
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Figure 1. Correlation matrix showing correlation coefficients among sets of variables for a dataset
from 2019 to mid-2022 in Maceió (Brazil) [35].

Table 1. PV power output and its correlation with the inputs based on the meteorological data of the
Qassim region (KSA) [4].

Inputs R-Squared Coefficient

Irradiance on module 0.998

Module temperature 0.587

Wind speed 0.447

Relative humidity −0.362

In many articles, the results of forecasting models for different geographic locations are
presented. Forecasts were developed for plants located in Brazil [35], Israel [19], Turkey [38],
Italy [19,30], India [31], United States [23], Saudi Arabia [4], Australia [16,24], Scotland [25],
and South Korea [39]. Based on the literature, it is clear that publications of photovoltaic
systems are most common in places where their use is economically justified. This is due to
the climatic conditions in the given places. Australia, India, Saudi Arabia, and Italy have
higher numbers of sunny days than Poland or Scotland, which is directly related to the
irradiance and ultimately to the production of electricity. It is also possible to notice clearer
a periodicity and regularity of weather in different seasons in these countries.

The exemplary results of forecasts from selected publications are presented in Table 2.
Although not all the results from the analyzed publications have been highlighted, the
literature clearly supports the use of artificial neural networks to implement forecasts.

The majority of the forecasts achieved very good results, and the R2 coefficient reached
values above 0.85, even tending to almost one (for minute forecasts). The linear regression
method yielded satisfactory results, as shown in Table 2 (publication [21]), with an R2

coefficient of 0.78. The value of the R2 coefficient was worse for the same data and amounted
to 0.69. The observed differences may be due to a variety of factors, including the selection
of the network hyperparameters, the forecasting features, or the stochastic nature of the
learning process. When considering publication [21], the KNN classification method was
mentioned, and the R2 coefficient was 0.35. The data from the same publication suggested
that by bringing the forecast horizon closer (shortening the time ahead of the forecasts),
better results could be obtained. When the time was shortened to 2 and 4 h, R2 coefficients
of 0.60 and 0.48 were obtained, respectively. As shown in publication [25], it was possible
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to obtain satisfactory results using the KNN method, if appropriate forecast assumptions
were made. In Table 2, publication [19] showed that the separation of forecasting for cloudy
and sunny conditions could improve the quality of the models. The literature suggests
the creation of separate models for each month or season [40]. Some models bring better
results in early spring, late autumn, and winter [41].

Table 2. The R-squared coefficient between the actual and modeled output power.

Publication Model R2 Comments Features PV Power, Location Datasets

[19]
MLP ABC 0.95

Separate forecasting
for cloudy and

sunny conditions Total power, total irradiance,
ambient temperature, and

humidity

3.2 kWp,
Tehran, Iran,

elevation 1548 m

6895 of sunny,
3090 of cloudy,
680 for testingMLP ABC 0.83 Forecasting under

all conditions

[21]

LR 0.78 Forecast 8 h ahead Deterministic and stochastic
power, stochastic irradiance,
ambient temperature, and

panel temperature

1 MWp,
Eni Energy

Company, Italy

103,740 samples,
80% for training,
20% for testing

MLP 0.69 Forecast 8 h ahead

KNN 0.35 Forecast 8 h ahead

[25]

KNN 0.88 Forecast 1 h ahead
Year, month, day, hour,

present energy, and energy
1, 2, and 3 h(s) ago

50 kWp,
Cononsyth, Scotland 54,000 samplesMLP 0.87 Forecast 1 h ahead

LSTM 0.85 Forecast 1 h ahead

[39] DNN 0.93 Forecast 1 d ahead
Weather forecast data from
the Korean Meteorological

Administration

2.448 kWp,
Seoul, South Korea,
rooftop PV system

3798 entries,
3000 for training,

798 for testing

3. Materials and Methods

The analysis in this study was performed using data from power plants located in
a warm-summer, humid continental climate (Dfb in Köppen classification). In Bialystok,
Poland, the annual average temperature is 7.7 ◦C (46.0 F). There are, on average, around
1755 sunshine hours per year and around 1365 sunshine hours from April until September.

Using the available data from the hybrid power plant, the following assumptions
were made:

• Forecasts were made for a fixed-tilt system and a solar-tracking system due to the
identical technical parameters of both PV plants;

• Forecasts were intended to specify day-ahead energy production expressed in kWh;
• Forecasts were made on the basis of the daily maximum and minimum temperatures,

atmospheric pressure, wind speed, and an integer timestamp (a day of the year).

The variables used to predict energy production were chosen because this information
is available in short-term and medium-term weather forecasts.

In this publication, a statistical method is used, which was based on the concept of
a stochastic time series. Historical data were used for the learning process of the created
model. The forecasting models were developed on the basis of data from 2015 to 2021,
which covered the period from 1 April to 30 September, each year. Data collected in 2022
were used to test the developed forecasting models. Forecasts were made for different
variants of model parameters, and the best results were presented graphically. For all
forecasts, metrics defining their quality were determined. On their basis, a comparison of
the results was performed.

The hybrid power plant (Figure 2) was located on the campus of the Bialystok Univer-
sity of Technology, Bialystok, Poland. The components of the power plant were two wind
turbines and four PV micro-power plants. Among the plants, one can distinguish the
following [42]:

• A fixed-tilt system with panels in the optimal direction, with a nominal power of
3.0 kWp (PV1);

• A solar-tracking system, with a nominal power of 3.0 kWp (PV3);
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• A fixed-tilt system with panels that face the south-east, with a nominal power of
1.5 kWp (PV2a);

• A fixed-tilt system with panels that face the south-west, with a nominal power of
1.5 kWp (PV2b).
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panels, PV2a and PV2b—the panels on the facades, PV3—a solar tracking system.

The power plant had a telemetry system that gathered information about the elec-
tricity generated by each unit and the atmospheric parameters (Table 3). In this study,
two photovoltaic systems were selected for the analysis. The first one was a solar tracking
system (PV3) and the second one was a fixed-tilt system with optimally positioned panels
(PV1). Two installations with identical power ratings were selected.

Table 3. Technical parameters of the weather station WS501-UMB [43,44].

Measured Quantity Method Measurement Performance

Speed and
wind direction

Ultrasonic

Wind direction

Range: 0–359.9◦

Accuracy: RMSE < 3◦ at speed > 1 m/s

Wind speed

Range: 0–75 m/s
Accuracy: ±0.3 m/s or ±3% (0–35 m/s)

±5% (>35 m/s) RMS

Air temperature NTC Range: from −50 ◦C to +60 ◦C
Accuracy: ±0.2 ◦C (−20–+50 ◦C), ±0.5 ◦C (>−30 ◦C)

Relative humidity Capacitive Range: 0–100% RH
Accuracy: ±2% RH

Atmospheric pressure MEMS Range: 300–1200 hPa
Accuracy: ±0.5 hPa (0–+40 ◦C)

Irradiance Pyranometer Range: 2000 W/m2 (300–2800 nm)
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The first step in any data analysis is the proper preparation of the data. The measure-
ment data from the hybrid power plant were downloaded from the server as CSV files
(http://elektrownia.pb.edu.pl, accessed on 1 February 2023). For a given year, each file was
separate, and the data included measurements from 1 April to 30 September. The system
recorded values with a period of about 10 s, which translated into over 2.1 million records
for a given year in the analyzed period. Therefore, it was necessary to reduce the amount
of data in order to create appropriate models.

A Python script was developed for this purpose. Its task was to load a selected CSV
file and make a file with a single dataset from a given day, containing:

• The date converted to a day number from the analyzed period (timestamp);
• The energy produced by the PV1 unit (energy pv1);
• The energy produced by the PV1 unit- classified (energy pv1-class);
• The energy produced by the PV3 unit (energy pv3);
• The energy produced by the PV3 unit- classified (energy pv3-class);
• The maximal temperature (temp-max);
• The minimal temperature (temp-min);
• The atmospheric pressure (pressure);
• The average wind speed (wind-speed).

As a result, 183 items were obtained from a given year, each corresponding to one of
the days of the analyzed period in the format as presented in Table 4. Regression algorithms
were used with continuous data, and classification algorithms were employed with discrete
data. The discretization of the value of the energy produced by the individual photovoltaic
units, PV1 and PV3, relied on converting each numerical value to the nearest integer value,
from 0 upwards, with a width of 1 kWh. In subsequent computations, the width of the
discretization was 0.5 kWh. The data from 2022, which were used to evaluate the model,
were prepared similarly. The last stage of the data preparation for the model calculation
was to combine all the data into one dataset for the period 2015–2021.

Table 4. The format of the data used to develop the models.

Timestamp Energy PV1 Energy
PV1 Class

Energy
PV3

Energy
PV3 Class Temp Max Temp Min Pressure Wind Speed

Day No. kWh kWh kWh kWh ◦C ◦C hPa m/s

1 4.534 5 3.772 4 5.7 1.9 978.3 5.7

2 4.087 4 3.376 3 5.5 −0.7 984.2 3.7

3 5.009 5 4.326 4 6.5 −1.1 989.2 2.9

Based on the assumptions defined so far, programs responsible for the preparation
of the forecast models were written using MLP neural networks. The goal was to create
either medium-term or long-term forecasts. The Python scripting and Scikit-learn module
for machine learning were employed for this purpose. A fully connected MLPRegressor,
implemented as a function with a set of user-defined hyperparameters, was compared
with other ML algorithms such as the simple linear regression, KNN, and MLPClassifier
algorithms [45–48]. The predictive values of the electrical energy were obtained using
regression machine learning models based on the following algorithm libraries: the extreme-
gradient-boosting XGBRegressor model of the XGBoost library and the gradient-boosting
CatBoostRegressor model of the CatBoost library [49].

4. Model Performance Metrics and Statistical Tests

Forecasts are certain predictions based on observations or collected data that are
supported by appropriate calculations with a certain level of accuracy. Estimated time series
tend to differ from real ones to a greater or lesser extent. There are various deterministic

http://elektrownia.pb.edu.pl
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metrics and statistical tests to determine the quality of a forecast. The most relevant metrics
are presented in publications [16,22,36,43]:

• MAE (mean absolute error);
• MSE (mean squared error);
• RMSE (root mean squared error);
• The coefficient of determination, R2.

The mean absolute error expresses the average value of the absolute error in a given
set of samples. The absolute error expresses the difference between the estimated value and
the actual value expressed as a percentage. The MAE is described by the following formula:

MAE(y, ŷ) =
1
n∑n−1

i=0 |yi − ŷi|, (1)

where: n—number of samples, yi—i-th actual value, and ŷi—i-th estimated (predicted) value.
The mean squared error assesses the average squared difference between the actual

and predicted values. When a model has no error, the MSE equals zero. The formula for
MSE is as follows:

MSE(y, ŷ) =
1
n ∑n−1

i=0 (yi − ŷi

)2
. (2)

The root mean squared error measures the average difference between the predicted
values and the actual values. Mathematically, it is the standard deviation of the residu-
als. Residuals represent the distance between the regression line and the data points.
RMSE values can range from zero to positive infinity and use the same units as the
dependent variable:

RMSE(y, ŷ) =

√
1
n ∑n−1

i=0 (yi − ŷi

)2
. (3)

The R-squared (R2) value determines the proportion of variance in the dependent
variable that can be explained by the independent variable. The R-squared value is a
statistical measure of how close the data are to the fitted regression line. It is also known
as the coefficient of determination. It is always between 0 and 1. Generally, the larger the
R-squared value is, the better the regression model fits the observations. The formula for
the R-squared value is as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (4)

where: y—the mean of actual values.
The Diebold–Mariano (DM) test for predictive accuracy is often used to statistically

identify forecast accuracy equivalence for two sets of predictions [50]. It is assumed that the
difference, di, between the first list of predictions and the actual values, yi, is e1, and that of
the second list of predictions and the actual values, yi, is e2. The parameter e can represent
MSE, MAE, or MAPE (mean absolute percentage error). In this analysis, di (loss-differential
time series) is defined based on the following criterion:

di = e2
1 − e2

2 (5)

Under the null hypothesis, the Diebold–Mariano statistic (DM) follows a standard
normal distribution. The null hypothesis, H0, is that the two models (A and B) have
the same forecast accuracy (equal predictive ability), i.e., E(dA,i) = E(dB,i). The alternative
hypothesis, H1, that one is better than the other is given as E(dA,i) 6= E(dB,i). For a smaller
number of samples, n, it is better to use the Harvey, Leybourne, and Newbold (HLN)
test [51].
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5. Results and Discussion
5.1. Feature Selection

To select the irrelevant and correlated features, the correlations with the PV output
energy and intercorrelations between two features (Pearson’s correlation coefficients) were
checked and are presented in Table 5.

Table 5. Matrix of Pearson’s correlation coefficient, which presents values of correlations and inter-
correlations.

Power Plant PV1 (PV3)

energy temp max temp min pressure wind speed timestamp

energy 1 - - - - -

temp max 0.40 (0.45) 1 - - - -

temp min 0.06 (0.14) 0.83 1 - - -

pressure 0.32 (0.29) 0.06 −0.09 1 - -

wind speed −0.08 (−0.07) −0.12 −0.10 −0.07 1 -

timestamp −0.11 (−0.13) 0.36 0.47 0.12 −0.08 1

The strongest correlations existed between the energy produced and the maximum
temperature (for PV1: 0.40; for PV3: 0.45), the minimum and maximum temperature (for
PV1: 0.83), and the minimum temperature and the timestamp (for PV1: 0.47). It should be
noted that the solar irradiance was not taken into account as an input feature. This is rarely
practiced in the literature [4,19,21,24,25].

The results of numerous tests led to the development of many forecast variants. For
both the PV1 and PV3 systems, forecasts were made. In both cases, predictions were made
using the same methods.

5.2. PV1—Prediction Models and Their Performance

All the algorithms listed in Table 6 (except for linear regression) have several parame-
ters that can be tuned. For the fixed-tilt system, Table 6 summarizes the best metrics using
individual prognostic models. The most optimal training parameters and hyperparameters
of the models are listed in the table footer. For the LR model, the number of coefficients
of the polynomial, m (the variable is referred to as a degree), varied in the range from
1 to 5. The LR model provided the highest R-squared value for m = 2. The k in the KNN
model is a parameter that refers to the number of nearest neighbors. The k value creates an
environment for the data points to understand its similarities based on proximity.

The CatBoostRegressor model has several parameters, including the number of it-
erations, learning rate, L2 leaf regularization, and tree depth. XGBRegressor is an im-
plementation of the gradient-boosting decision trees algorithm, and it uses the extreme-
gradient-boosting algorithm. RandomForestRegressor is based on decision tree learners.
The estimator applies multiple decision trees to randomly extracted subsets of a dataset
and averages their predictions.

The Scikit-learn API provides several online solvers, but for the MLPRegressor and
MLPClassifier models, a batch solver called lbgfs (limited-memory Broyden–Fletcher–
Goldfarb–Shanno) is the best choice. With the same criteria as when selecting the best
variant (maximizing the R2 value), it can be said that the MLP artificial neural network in
the regression variant worked the best. As can be seen, the coefficient of determination did
not necessarily correlate with the MAE. Its lower value was not necessarily associated with
a better correlation between the forecast and the actual state. When examining the RMSE
values in Table 6, it is clear that the smaller MSE was, the higher the R2 coefficient was.
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Table 6. Summary of the best forecasts for individual methods—PV1.

Model MAE [kWh] MAE [%] MSE [kWh2] RMSE [kWh] R2

Linear regression 1 2.65 42.05 11.96 3.46 0.544

ARIMA 3.79 75.21 22.25 4.72 0.152

KNN 2 4.07 59.96 25.88 5.09 0.014

XGBRegressor 2.90 53.08 13.19 3.63 0.497

RandomForestRegressor 2.85 48.32 13.11 3.62 0.500

CatBoostRegressor 5 2.64 41.38 11.79 3.43 0.551

M
LP

Regressor 3 2.43 37.48 3.22 1.79 0.605

Classifier 4 2.87 34.94 3.80 1.95 0.450

1—variant for m = 2; 2—variant for k = 12 and weights = ‘uniform’; 3—variant for activation = ‘tanh’, solver = ‘lbfgs’,
and hidden_layers_size = 5; 4—variant for activation = ‘logistic’, solver = ‘lbfgs’, and hidden_layers_size = 100;
5—variant for iterations = 1000, loss function = ‘RMSE’, and l2_leaf_reg = 30, depth = 6.

Figures 3–6 illustrate the best forecasts. The blue line represents historical measure-
ment data, and the red and the green dotted lines represent the predicted values. The values
of the x-axis represent day numbers from the period that was studied, i.e., day number 1
is the first day of April 2022, and number 183 is the last day of September 2022. With the
visual representations of forecasts, it can be said that each of the forecasts (Figures 3–6)
was generally consistent with the measurements. However, the KNN model (Figure 3)
provided a lower-quality forecast.
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plant using the MLPRegressor model and MLPClassifier model (with a discretization width of
1 kWh).

It was possible to see upward and downward trends, but the forecast points could
be delayed in some segments. In September (Figure 3, days 153–183), when the weather
conditions significantly deteriorated, the LR forecast was much better than the KNN
method. The results of a deeper analysis of the KNN model are presented in Table 7. The
reduction in the discretization width from 1 kWh to 0.5 kWh was not accompanied by an
enhancement in terms of the metrics. The highest R-squared value of 0.014 was achieved
for k = 12 nearest neighbors, with a mean computation time of 1.7 ms.

Table 7. The RMSE, R-squared, and computation time depending of the number of neighbors for two
discretization widths (KNN model, weights = ’uniform’).

Energy PV1 Class with a Width of 0.5 kWh Energy PV1 Class with a Width of 1 kWh

Number of
Neighbors k

RMSE
[kWh] R2 Computation Time [s] RMSE

[kWh] R2 Computation Time [s]

4 6.044 −0.392 0.001 6.099 −0.418 0.002

5 6.075 −0.407 0.002 5.821 −0.291 0.002

6 6.396 −0.559 0.002 5.906 −0.329 0.001

7 6.229 −0.479 0.002 5.574 −0.184 0.002

8 6.224 −0.476 0.002 5.729 −0.250 0.002

9 6.007 −0.375 0.001 5.531 −0.166 0.002

10 5.882 −0.319 0.002 5.345 −0.089 0.002

11 5.524 −0.163 0.002 5.185 −0.025 0.002
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Table 7. Cont.

Energy PV1 Class with a Width of 0.5 kWh Energy PV1 Class with a Width of 1 kWh

Number of
Neighbors k

RMSE
[kWh] R2 Computation Time [s] RMSE

[kWh] R2 Computation Time [s]

12 5.440 −0.128 0.002 5.087 0.014 0.001

13 5.381 −0.103 0.002 5.191 −0.027 0.002

mean 0.0017 mean 0.0017

Figures 4 and 5 present the measured energy and predictions using the MLPRegressor,
MLPClassifier, and CatBoostRegressor models.

Eleven trials of forecasting with the use of the MLPClassifier are presented in Table 8.
Selected metrics and the computation time for two discretization widths are given. The
R-squared values were higher than those obtained by the KNN method and the RMSE
values were about three times smaller, but the calculation time was much longer (Table 7).

Table 8. The MLPClassifier—the values of metrics and the computation time for two discretization
widths.

Trial no. RMSE [kWh] R2 Computation Time [s]
0.5 kWh Width

Computation Time [s]
1 kWh Width

1 1.99 0.402 96.41 84.99

2 1.97 0.430 97.87 84.06

3 2.02 0.361 96.32 84.54

4 2.01 0.381 96.68 63.84

5 1.96 0.440 105.94 27.92

6 1.96 0.435 67.24 62.96

7 1.94 0.456 97.55 43.18

8 1.93 0.473 97.63 71.53

9 1.96 0.441 97.63 84.61

10 2.01 0.373 103.35 29.34

11 1.88 0.521 101.97 72.65

mean 96.24 64.51

max 105.94 84.99

min 67.24 27.92

5.3. PV3—Prediction Models and Their Performance

In Table 9, the best results are shown for the solar-tracking system. It can be said that
the best forecast was developed for the MLPRegressor model, using the same criteria as in
the previous analyses. As previously stated, it was difficult to establish a clear correlation
between the MAE and the R-squared coefficient. The PV3 results had higher RMSE values
than the PV1 ones, which is worth noting.

The forecasts for the solar-tracking system presented in Figure 6 provided analogous
observations, as in the case of the fixed-tilt system. The forecasts were generally consistent
with the measurements, and it was possible to see upward and downward trends.
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Table 9. Summary of the best forecasts for individual methods—PV3.

Model MAE [kWh] MAE [%] MSE [kWh2] RMSE [kWh] R2

Linear regression 1 4.38 47.95 32.48 5.70 0.572

ARIMA 6.16 90.51 57.37 7.57 0.244

KNN 2 6.70 71.74 74.30 8.62 0.022

XGBRegressor 4.94 61.87 37.12 6.09 0.511

RandomForestRegressor 4.70 54.13 35.60 5.97 0.531

CatBoostRegressor 5 4.33 46.38 31.75 5.63 0.582

M
LP

Regressor 3 4.35 46.73 5.65 2.38 0.576

Classifier 4 4.61 37.29 6.21 2.49 0.493

1—variant for m = 2; 2—variant for k = 2 and weights = ‘distance’; 3—variant for activation = ‘tanh’, solver = ‘lbfgs’,
and hidden_layers_size = 5; 4—variant for activation = ‘logistic’, solver = ‘lbfgs’, and hidden_layers_size = 100;
5—variant for iterations = 1000, loss function = ‘RMSE’, and l2_leaf_reg = 30, depth = 6.

5.4. PV1 vs. PV3—A Comparison of Quantitative Metrics

When forecasting using neural networks, it is impossible to use the same procedure
as in the case of the LR or KNN models to select their best parameters. This is due to the
stochastic nature of the neural network learning process. Each time, a different model is
created by using the same training dataset. Therefore, the selection of the most promising
outcomes was accomplished using an experimental approach. Numerous trials were
conducted using various combinations of hyperparameters. In Figure 7, the RMSE values
depending on the number of nodes in the hidden layers are presented. The RMSE for the
MLPRegressor model with five nodes was the lowest. For the MLPClassifier method, the
RMSE was low for the hidden layers with 30 nodes, with the lowest being at 100 nodes. In
Figure 8, the RMSE values depending on the number of iterations in the CatBoostRegressor
model are presented. A large difference in the RMSE values between the PV1 and PV3
power plants was observed.
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The mean time of computations was compared for the three models. As shown in
Table 10, the MLPRegressor and CatBoostRegressor models performed predictions up to
2 s. In the case of the MLPClassifier model, a number of nodes above 30 gave results from
14 to 64 s (CPU: AMD RYZEN 5 2600, 32 GB RAM, Windows 10 22H2 system, single-core
computations).

Table 10. The mean computation time depending of the number of nodes in the hidden layers or the
number of iterations for three prediction models.

MLPRegressor MLPClassifier CatBoostRegressor

Number of Nodes in
the Hidden Layers

Mean Time
(10 Trials)

[s]

Number of Nodes in
the Hidden Layers

Mean Time
(10 Trials)

[s]
Number of Iterations

Mean Time
(10 Trials)

[s]

1 0.006 10 1.535 100 0.490

2 0.031 20 6.737 200 0.584

3 0.105 30 3.121 300 0.743

4 0.057 40 14.346 400 0.920

5 0.210 50 13.466 500 1.028

6 0.701 60 18.697 600 1.123

7 0.616 70 30.275 700 1.261

8 0.784 80 40.475 800 1.433

9 1.858 90 37.015 900 1.535

10 2.297 100 64.509 1000 1.693

After conducting many trials, three of the best results for the MLPRegressor model
were obtained and are compiled in Table 11 with the right combinations of hyperparameters
that maximized the model’s performance.
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Table 11. The best results of regression using MLPRegressor model for the fixed-tilt system (PV1).

MLPRegressor
Variant MAE [kWh] MAE [%] MSE [kWh2] RMSE [kWh] R2

1 2.44 36.62 3.24 1.800 0.600

2 2.50 35.11 3.31 1.819 0.582

3 2.63 39.64 3.45 1.857 0.547

Variant 1—activation = ‘tanh’, solver = ‘lbfgs’, hidden_layers_size = 5. Variant 2—activation = ‘tanh’, solver = ‘lbfgs’,
and hidden_layers_size = 5. Variant 3—activation = ‘tanh’, solver = ‘lbfgs’, and hidden_layers_size = 5.

The most effective variants of the energy forecasting model for PV3 are compiled in
Table 10. The optimal combinations of hyperparameters are shown in the table footer. The
activation function of each of them was different (tanh, relu, identity).

5.5. DM Test to Distinguish the Significant Differences in the Forecasting Accuracy

Tables 11 and 12 show that similar R-squared values were obtained for the PV3
forecasting models, but all the other metrics had higher values. It was difficult to determine
which forecast model variant was better in the sense of having a better predictive accuracy.
One further step was to determine whether there was a significant difference among the
forecasts presented in rows 1, 2, and 3 of Table 12 for the measurement data shown in
Figure 6. For this purpose, the Diebold–Mariano (DM) test was used. The results for the
two-tailed and one-tailed tests are shown in Table 13.

Table 12. The best results of regression using MLPRegressor neural network for the solar-tracking
system (PV3).

MLPRegressor
Variant MAE [kWh] MAE [%] MSE [kWh2] RMSE [kWh] R2

1 4.50 52.84 5.74 2.40 0.566

2 4.56 49.77 5.80 2.41 0.556

3 4.82 56.56 5.99 2.45 0.527

Variant 1—activation = ‘tanh’, solver = ‘lbfgs’, hidden_layers_size = 5. Variant 2—activation = ‘identity’, solver = ‘lbfgs’,
and hidden_layers_size = 5. Variant 3—activation = ‘relu’, solver = ‘adam’, and hidden_layers_size = 5.

Table 13. The DM test for PV3 forecasting performance based on MPLRegressor models.

DM Test The DM Statistic (DM) The p-Value (p)

two-tailed

Variant 1 2 3 1 2 3

1 - −0.3858 −1.5601 - 0.7000 0.1205

2 0.3858 - −1.9891 0.7000 - 0.0482

3 1.5601 1.9891 - 0.1205 0.0482 -

one-tailed

Variant 1 2 3 1 2 3

1 - −0.3858 −1.5601 - 0.3500 0.0602

2 0.3858 - −1.9891 0.6500 - 0.0241

3 1.5601 1.9891 - 0.9398 0.9760 -
The forecast horizon: h = 1; loss function: MSE (5); the long-run variance estimator: auto-correlation function (acf).

The null hypothesis can be rejected if the p-value is less than 0.05. Since the DM
statistic converges to a normal distribution, the null hypothesis, H0, can also be rejected
at the 5% level if |DM| > 1.96. The findings from the DM test statistics showed that
the observed differences of the forecasting values between model variants 2 and 3 were
significant at 5% (p = 0.05), as mentioned in Table 13, and indicated that variant 2 had a
better forecasting efficiency than variant 3 (the alternative hypothesis, H1).
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5.6. Improving Regression Model Performance Using a Target Transformation

Multiple linear regression is used to estimate the relationship between two or more in-
dependent variables (features) and one dependent variable. The relationship between these
variables is functional, which is realized in a mathematical model. The variable whose value
is predicted is called the target. In the Scikit-learn package, the class called TransformedTar-
getRegressor enables the transforming of the targets before fitting a regression model.

In this application, the transformation was realized in two ways:

• Function transformation—logarithmic, log(1 + x), and exponential, exp(x) – 1, func-
tions were used to transform the targets before training a linear regression model and
using it for prediction (Table 14);

• Feature scaling data—each feature was scaled to a 0–1 range (MinMaxScaler), and
inverse transformation was used (Table 15).

Table 14. The effect of function transformation on the analysis using regression models (PV1).

Log Transformation
Regressor MAE [kWh] MAE [%] MSE [kWh2] RMSE [kWh] R2

LinearRegression 2.89 41.46 13.33 3.65 0.492

HuberRegressor 2.86 47.84 12.74 3.57 0.514

Ridge 2.89 41.46 13.44 3.67 0.492

BayesianRidge 2.89 41.55 13.33 3.65 0.492

RidgeCV 2.89 41.47 13.33 3.65 0.492

Table 15. The effect of MinMaxScaler on the analysis using regression models (PV1).

Feature Scaling Data
Regressor MAE [kWh] MAE [%] MSE [kWh2] RMSE [kWh] R2

LinearRegression 2.71 44.22 12.13 3.48 0.538

HuberRegressor 2.64 40.55 11.77 3.43 0.551

Ridge 2.76 46.42 12.50 3.54 0.523

BayesianRidge 2.71 44.36 12.15 3.49 0.537

RidgeCV 2.71 44.46 12.16 3.49 0.536

The effect of the target transformation is shown in Figure 9. The metrics shown in
Tables 14 and 15 showed a slight reduction in the MAE and RMSE and an increase in the
R-squared value. The HuberRegressor, a regression technique that is robust to outliers [52],
used with MinMaxScaler had the best effect on boosting the metrics.

5.7. The Performance of the Selected Models after Splitting the Dataset

The dataset, described in Section 2, was split and separated into months. The com-
putations were performed for each month separately. Table 16 presents the R-squared
values that indicate how well both models fit the measured output energy in the separate
months of 2022. The values of the R-squared coefficient for the MLPRegressor model
were higher than for the CatBoostRegressor model. When datasets are smaller, it has been
shown that MLPRegressor is superior to CatBoostRegressor. The MLPRegressor model
delivered best results for September 2022 (PV1, R2 = 0.827; PV3, R2 = 0.818). The results
in Table 16 illustrate the variability in the weather conditions in Poland during the most
productive months.
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Table 16. The R-squared values that indicate how well both models fit the PV output energy in the
separate months of 2022.

PV System Model April May June July August September

PV1 MLPRegressor 0.564 0.603 0.463 0.474 0.422 0.827

PV1 CatBoostRegressor 0.502 0.445 0.211 0.402 0.267 0.664

PV3 MLPRegressor 0.626 0.564 0.550 0.449 0.432 0.818

PV3 CatBoostRegressor 0.494 0.284 0.446 0.381 0.223 0.682

6. Conclusions

The selected supervised learning algorithms were provided with historical data and
used to find the relationship that had the best predictive power. Using a machine learning
framework like Scikit-learn, it was easy to fit the different machine learning models on a
predictive modeling dataset. In this article, traditional ML techniques were compared.

Considering all the models examined in this article, it can be concluded that, for
the presented dataset and the selected features, the regression models provided more
accurate forecasts than the classification models. In each of the photovoltaic units, the best
results were obtained using the regression-based models, i.e., the simple linear regression,
HuberRegressor, MLPRegressor, and CatBoostRegressor models. In general, the RMSE
values were higher for the solar-tracker power plant, PV3, than for PV1.

When the classification-based models were examined (KNN, MLPClassifier), the
forecasts were less accurate, considering the RMSE and R-squared metrics. The use of
MLP neural networks improved the quality of the forecasts, particularly in terms of the
RMSE. The results of these trials were significantly closer to those obtained using regression
methods (Table 6, Table 9). Considering the time of computation, the KNN method was
the fastest (2 ms), and the MLPClassifier method was the slowest (up to 64 s). The poor
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results for ARIMA were due to the fact that it has some limitations. The ARIMA contains
a procedural part, which creates a stationary time series from a non-stationary one. It is
designed to use univariate time series data. Therefore, this model would probably bring
better results when the correlations among the variables are lower.

The detailed conclusions are as follows:

• The number of input variables utilized in the modeling can affect the forecasting per-
formance. As evident from Table 5, the strongest intercorrelation existed between the
minimum and maximum temperatures. The minimum and maximum temperatures
had a considerable periodicity (intercorrelations with the timestamp). However, the
absence of a minimum temperature in the MLPRegressor model had a negative impact
on the forecasts, with a decrease in the value of the R-squared coefficient from 0.6 to
about 0.4.

• A single metric was not sufficient to be a universal indicator of forecast quality
(Tables 6 and 9).

• The DM test can reveal significant differences in the forecasting performance between
two variants of a model. In the case of MLPRegressor neural network models, it can
depend on the adopted activation function and solver (Tables 11 and 12).

• The performance of regression models can be improved by using a target transforma-
tion (Tables 14 and 15). This affects the metrics.

• Splitting the dataset can boost the metric values. Table 16 presents a comparison
between the MLPRegressor and CatBoostRegressor models after splitting the dataset.
The MLPRegressor model proved to be more effective for forecasting within individual
data groups (monthly data). The MLPRegressor model yielded the highest R-squared
value for September 2022, exceeding 0.8. This could mean that this month had the
most repeated weather conditions in Poland compared to the months of September in
the previous seven years.

• To enhance the model performance, the periodicity of light could be taken into consid-
eration. Also, seasonality (weekly or monthly repeating patterns) could be detected
and incorporated in the forecasting.

In addition to the traditionally used one-block models for PV power forecasting,
there are currently developed state-of-the-art models based on the encoder–decoder ap-
proach [53]. Future research could focus on developing techniques for scheduling and
forecasting renewable energy using novel robust algorithms [54], creating more advanced
DL models with an attention mechanism, or using the newest auto-regressive encoder–
decoder transformer models [55].
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