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Abstract: The growing penetration of electric vehicles (EVs) introduces both opportunities and
challenges for power grid operators. Incentivization is considered a viable option to tempt EV owners
to participate in supporting the grid during peak load intervals while receiving compensation for
their services. Therefore, this study proposes a two-step incentive mechanism to reduce the peak
load of the grid by enabling power trading among the microgrid, EVs and the utility grid. In the
first step, an incentive price is determined for EVs considering the grid-loading conditions during
different hours of the day. In the second step, a multi-objective optimization problem is formulated
to optimize trading among different entities, such as EVs, the microgrid and the utility grid. The two
objectives considered in this study are the operation cost of the microgrid and the revenue of EVs.
Monte Carlo simulations are used to deal with uncertainties associated with EVs. Simulations are
conducted to analyze the impact of different weight parameters on the energy-trading amount and
operation cost of EVs and MG. In addition, a sensitivity analysis is conducted to analyze the impact
of changes in the EV fleet size on the energy-trading amount and operation cost.

Keywords: electric vehicles; energy trading; equipment overload; incentive price; microgrid;
multi-objective optimization

1. Introduction

Carbon emissions have been a major challenge for different sectors, including trans-
portation, during the last few decades [1]. Several countries have ambitious plans to
reduce emissions, such as net-zero emissions by 2050 [2]. It has been reported that the
transportation sector contributes to carbon emissions by about 24% [3]. Electric vehicles
(EVs) can aid in the decarbonization of transportation, as they produce lesser emissions
throughout their life cycle as compared to combustion engine-based vehicles [4]. To reach
the net-zero emissions goal by 2050, it is estimated that approximately 60% of worldwide
new car sales must consist of electric vehicles by the year 2030 [5]. As the number of EVs
on the roads grows, so does the demand for energy. At present, EVs account for roughly
0.3% of worldwide energy consumption. This figure is projected to rise to between 2% and
4% by the year 2030 [6]. According to [7], with the increment of 10% of the EVs penetration,
up to 5% of the load demand from the grid increases. The increase in electricity demand
may adversely impact the grid equipment and result in overloading.

To minimize this impact, vehicle-to-grid (V2G) technology has been introduced. Under
the V2G framework, EVs can provide stored energy back to the grid [8]. V2G is beneficial
for society and individuals, as it can flatten the grid load, and it can be a source of income
for EV owners by selling the stored energy [9]. V2G is currently being practiced in different
parts of the world [10]. An overview of V2G technology, highlighting the progress made so
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far and identifying the future challenges, is presented in [11]. The successful adoption of
V2G service is not only dependent on the development of technology but also the willing-
ness of EV owners to take part and utilize this technology [12]. The study [13] explored the
perceptions and attitudes of EV owners towards the adoption of V2G technology at work-
places. EV owners may be concerned about battery degradation due to continuous charging
and discharging that hinders the adoption of the V2G service. It was demonstrated in [14]
that frequent charging and discharging for the V2G service result in battery degradation
and life cycle shortening. Thus, some effective mechanism should offset the cost of battery
degradation and motivate EV owners to provide the V2G service. A computational model
of EVs with battery degradation was examined in the study [15]. The results reveal the
benefits of V2G technology, allowing EV owners to make a profit by outweighing the costs
related to battery degradation. The study evaluates the time-of-use (TOU) pricing in [16],
where EV owners are provided with an incentive to charge EVs during off-peak intervals. A
profit maximization problem for EV owners to sell their excess energy is formulated in [17].
In [18,19], control algorithms are proposed to maximize the profit for EV owners by selling
power to the grid. The EV charging coordination is analyzed by Yao et al. [20] based on
the incentive and price-based demand response. Moreover, a linear optimization model
to maximize the profit obtained by EV aggregators, including grid services is formulated
in [21]. Similarly, a linear planning model is introduced to assist EV aggregators to par-
ticipate in the ancillary service market in [22]. This model also determines the optimal
incentives for EV owners. In addition to V2G, vehicle-to-everything (V2X) is used to cre-
ate new opportunities for EV owners to generate revenue through participation in grid
services [23,24].

Meanwhile, microgrids (MGs) can also participate in energy markets to trade electricity
with the grid. MGs and EVs can be integrated to further enhance the local power trading
and serve as energy storage in MG [25,26]. This integration forms part of an energy-
management framework for communities that includes multiple independent energy
storage system service providers, and it requires a cost-effective energy flow management
among them [27,28]. Several studies have considered the integration of EVs with the MG
system [29–31]. This is especially beneficial for commercial buildings, where several EVs
are parked at a time [32], for example, from 9:00 a.m. to 6:30 p.m. [33]. In [34], vehicle-to-
MG (V2M) is realized considering different EV architectures. A two-stage optimization
framework is purposed for EVs to provide ancillary services to MG in [35]. The major
objectives considered in this study are to minimize fluctuations in the MG load, maximize
the use of renewable energy, and maximize the benefits to EV users. In [36], a two-stage
optimization framework is proposed to integrate large-scaled EV fleets with MGs. The
MG dispatch center develops a cluster-based day-ahead optimal EV charging/discharging
strategy. This strategy aims to reduce costs for both the MG operator and EV owners. A
multi-objective optimization framework that considers EV owners’ participation in V2M
and carbon emission cost is proposed in [37].

Recently, the concept of internal trading was introduced to facilitate trading among
MGs and other local entities. Internal trading is beneficial for both local entities and the grid.
For local entities, it provides a better price for trading power locally as compared to the
grid. Similarly, it can reduce the dependence of MGs on the grid, thus relieving the external
grid during peak load intervals [38]. In [39], a centralized energy management system
(EMS) is formulated for the optimization of internal trading between MGs. I.A. Umoren
et al. [40] use blockchain technology to enable peer-to-peer energy trading between EVs
and MGs in a local network, utilizing the capabilities offered by the 5G network. In [41],
the author investigates local energy market structures, their mechanisms, and participants,
along with an analysis of the existing infrastructure’s challenges and prospective research
directions in the field.

It can be observed from the literature survey that plenty of literature exists on enabling
energy trading among local entities and with the grid. However, there are a limited number
of studies on incentivizing EVs to participate in V2G services and to compensate them for
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battery degradation. Additionally, the reluctance of EV owners to share private information,
such as vehicle details, arrival, departure, or battery status adds a layer of complexity. This
underscores the need for an effective incentive mechanism that both encourages EV owners
to engage in V2G services, thereby alleviating the grid load during peak demand, and
assists in offsetting the costs related to EV ownership. Importantly, this mechanism should
have minimum dependence on private information from the EV owners. Furthermore,
with the inclusion of internal trading and incentivized pricing, a complex trading structure
can emerge among entities, such as the utility grid, EVs, and the MG that need to be
explored. In addition, the objectives of EV fleets and microgrids could be different due
to differences in ownership. Consequently, there is a need for an effective model that can
adeptly capture this complexity and offer optimal solutions based on the preferences of the
diverse stakeholders involved.

To overcome the limitations of existing studies, a trading framework is proposed in
this study that incorporates an incentivized selling price for EV owners to promote the
voluntary participation and ensures that EV owners get compensated for the price of their
involvement in V2G services; also, it does not depend on any sensitive information related
to EV owners. Our proposed analysis addresses the trading mechanism among different
entities, such as microgrids, EVs, and the utility grid. It employs a mixed-integer linear
programming model to optimize the trading interactions, considering the operational cost
of the MG and the potential revenue for EV owners. The proposed approach can be used to
formulate a trading mechanism among the grid, EVs, and MGs. The following are the key
contributions of the study:

• An incentivized pricing scheme for EV owners is developed that encourages them to
sell their stored energy back to the grid during peak load periods. This scheme not
only incentivizes EV owners but also takes into account the potential financial strain
on the grid.

• A multi-objective optimization model is developed to balance the two contradictory
objectives: minimization of the MG cost and maximization of the EV owners’ revenue.
This model is designed to simultaneously address the needs of multiple entities.

• Monte Carlo simulations (MCSs) are performed to deal with uncertainty in EV pa-
rameters. By employing MCSs, this study accounts for real-world variability and
complexities, ensuring that the developed model is both practical and reliable.

• Finally, a detailed analysis is conducted to analyze the impact of different weights
assigned to the objectives and EV fleet size. This analysis recognizes that different
stakeholders may prioritize objectives differently and that the fleet size may change
over time. Through this analytical approach, it provides insights into how different
factors influence the performance of the model.

The remainder of the paper is organized as follows. Section 2 outlines the system
configuration, along with a discussion of the trading mechanism and the structure of trading
prices, which includes the incentivized selling price. In Section 3, uncertain parameters
associated with EVs are discussed, using MCS. The purposed optimization method is
presented in Section 4. The simulation results and analysis of results are presented in
Section 5. Section 6 analyzes the influence of different weight parameters and the effects of
increasing the fleet size. Finally, the conclusion is presented in Section 7.

2. Proposed Trading Mechanism
2.1. System Configuration

The proposed system consists of a network of three entities: an MG, a parking lot for
EVs, and the distribution system operator (DSO). The MG system consists of two diesel
generators (DGs), a renewable distributed generation (RDG), a battery storage system
(BESS), and the electric load of a commercial building. The purposed network framework is
shown in Figure 1. Energy trading among different entities is carried out via the power link.
However, the trading price information from the DSO, including incentivized selling price
CES

t for EV owners, is communicated to the community energy management system (EMS)
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via the communication link. Having the price information from DSO and considering the
internal trading price signals between MG and EVs, EMS is responsible for performing
optimization based on the given operational objectives.

Figure 1. System configuration of the proposed network.

It should be noted that EVs in the parking lot can only be used during their parking
periods. The usable window for EVs present in the parking lot is different for commercial
and residential vicinities with reference to the time of arrival (ta) and departure (td). In this
study, a parking lot for a commercial area is considered, in which the arrival at the parking
place is usually in the morning and departure is in the evening.

2.2. Pricing Structure

Energy trading among different entities is divided into two levels in this study, external
and internal. For the external level, DSO is responsible for determining the trading prices
for MG and EV owners at each interval. The trading prices consist of grid buy price (CGB

t ),
grid sell price (CGS

t ), and incentivized selling price (CES
t ). The incentivized selling price

is offered to EV owners during peak demand intervals; the details are discussed in the
subsequent sections. Contrarily, the internal market prices consist of the internal buy price
(CIB

t ) and internal sell price (CIS
t ). These prices are determined such that they are in between

CGB
t and CGS

t . This is to encourage internal trading while maximizing the profitability of
internal trading entities.

2.3. Incentivized Selling Price for EV Owners

To overcome equipment overloading of DSO during peak load intervals and to en-
courage the adoption of V2G service among EV owners, an incentivized selling price (CES

t )
framework is formulated in this study. The design of this pricing scheme must consider
various factors to ensure that it remains within the boundaries of CGB

t and CGS
t , thereby

preventing unnecessary financial strain on the DSO. Moreover, the CES
t should be adaptable

and responsive to changes in demand, enabling dynamic adjustments that motivate EV
owners to engage in V2G services while maintaining grid stability and efficiency.

In the proposed approach, we used a sigmoid function S(zt) to formulate CES
t . The

sigmoid function has a smooth and continuous nature that ensures gradual changes [42].
This property ensures that small changes in the input lead to small changes in the output,
providing a gradual transition. This helps avoid abrupt jumps that could lead to instability.
Other traditionally used functions, like piecewise linear function, can create abrupt changes
at the transition points between different segments. These discontinuities at the threshold
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may not accurately reflect the changes in inputs, leading to unrealistic representations of
the output. Thus, the sigmoid function provides more reliable modeling of CES

t in our
energy trading context. It provides a smooth transition between CGB

t and CGS
t based on the

demand of DSO. Mathematically, it can be represented as

S(zt) =
1

1 + e−zt
(1)

To facilitate scaling, demand is normalized and subjected to a sigmoid function. Then,
grid price weights are computed through the application of the sigmoid function as shown
in Equations (2) and (3):

αt = S(zt) · CGB
t (2)

βt = 1− S(zt) · CGS
t (3)

In Equations (2) and (3), the buy price weight (αt) and sell price weight (βt) are
calculated by applying S(zt). It means that when the demand is high, αt is closer to CGB

t
and the corresponding βt will be low and vice versa:

CES
t = αt · CGB

t + βt · CGS
t (4)

After the calculation of weights, the CES
t is calculated as the weighted sum of CGB

t and
CGS

t using Equation (4). Thus, the CES
t is adjusted based on the demand. The procedure for

the calculation of CES
t is shown in Algorithm 1.

Algorithm 1: Calculation of incentivized selling price for EV owners

Input: T = 24, DSO demand profile, CGB
t , CGS

t
1 Define high demand intervals t1 and t2
2 Apply sigmoid to normalized DSO demand (1)
3 for t < T do
4 if t1 ≤ t ≤ t2 then
5 Calculate the sigmoid weight for CGB

t (2)
6 Calculate the weight for CGS

t (3)
7 Compute CES

t as the weighted average of CGB
t and CGS

t , using respective
weights (4)

8 else
9 Set CES

t equal to CGS
t

10 Store the calculated CES
t

11 t = t + 1

Output: Values of incentivized price for EVs (CES
t )

In this algorithm, we first initialize the time horizon T = 24 h, DSO demand profile,
CGB

t and CGS
t . Then, we define the high-demand intervals from t1 to t2. After the normal-

ization of the DSO demand, the algorithm iterates through each hour of the day. During
high-demand intervals, the sigmoid weight is calculated using Equations (2) and (3), then
CES

t is calculated as a weighted sum using Equation (4). For non-peak intervals, the CES
t is

assigned the same value as the CGS
t .

2.4. Trading Mechanism

The trading mechanism consists of two market levels based on the pricing structure
described previously. An overview of the trading mechanism is shown in Figure 2.
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Figure 2. An overview of trading mechanism among different entities.

2.4.1. External Level

At the external level, both the MG and EVs can trade power with the utility grid. The
MG can buy power from the utility grid (Grid-to-MG: G2M) at CGB

t when local generation
is insufficient, and it can sell excess power to the utility grid (MG-to-Grid: M2G) at CGS

t .
Similarly, EVs can also interact with the utility grid, buying power for charging (grid-to-EVs:
G2V) at CGB

t and selling the surplus stored energy at CES
t , through the V2G mechanism.

2.4.2. Internal Level

At the internal level, the MG and EVs can trade power with each other through (EVs-
to-MG: V2M) and (MG-to-EVs: M2V) mechanisms. Both entities can buy power from each
other at CIB

t and sell their excess power at CIS
t .

The bi-level trading between these three entities occurs simultaneously. The simulta-
neous bi-level trading mechanism enables a flexible response to varying the generation,
load, and energy storage conditions. In addition, it provides an efficient solution for energy
management in this networked system.

3. Electric Vehicles Parameters Calculation

There are several parameters related to EVs, which include uncertainty, such as arrival
time ta, departure time td, and the initial state of charge SOCini. These parameters play a
crucial role in the assessment of the EV charging demand. The accurate consideration of
these factors leads to the precise decision making and scheduling of the energy resources.
To cope with these random parameters, Monte Carlo simulation (MCS) is used. The
MCS method is a computational technique that employs random sampling to simulate
and analyze complex systems. Based on the probability theory, this stochastic algorithm
can accurately model real-world phenomena and physical experimental procedures [43].
The predictive accuracy largely depends on the quality of the historical data. However,
this method effectively simulates random processes, apt for forecasting the unpredictable
behaviors of EVs [44].

3.1. EV Arrival and Departure Times

Our model features a parking lot designated for commercial areas. In these types of
parking lots, EVs typically arrive in the morning and leave in the evening. It is assumed
that the arrival time ta and departure time td follow a normal distribution, which can be
represented mathematically as in Equations (5) and (6):
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f (ta) =


1√

2πσta
exp

(
− (ta−µta )

2

2σta
2

)
, 0 < ta ≤ µta + 12

1√
2πσta

exp
(
− (ta−24−µta )

2

2σta
2

)
, µta + 12 < ta ≤ 24

(5)

f (td) =


1√

2πσtd
exp

(
− (td−µtd )

2

2σtd
2

)
, 0 < td ≤ µtd − 12

1√
2πσtd

exp
(
− (td−24−µtd )

2

2σtd
2

)
, µtd + 12 < td ≤ 24

(6)

where µta and µtd are the mean of the arrival and departure times, and σta and σtd are
the standard deviations, respectively. The data of the arrival and departure times of the
vehicles are taken from [45], and the corresponding density functions are shown in Figure 3.

Figure 3. MCS results of arrival and departure times of EVs based on PDF of historical data.

3.2. Daily Mileage of EVs

The SOCini is influenced by the distance traveled by EVs before reaching the parking
lot. The distance traveled by the vehicle to reach the parking lot is represented by d. It is
assumed that the daily driving distance follows a log-normal distribution, which can be
mathematically expressed as in Equation (7):

f (d) =
1

d · σd ·
√

2π
exp
−(lnd− µd)

2

2σd
2 (7)

where µd represents the mean and σd represents the standard deviation of the driving
distances. The daily driving mileage of vehicles is taken from [46], and only private
vehicles are analyzed. The PDF of the daily driving distance is shown in Figure 4.
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Figure 4. MCS results of daily driving distances of EVs based on PDF of historical data.

3.3. Monte Carlo-Based EV Parameter Estimation

Monte Carlo simulation comprises three steps: distribution determination, random
number generation, and result analysis. In this study, MCS is used to estimate the random-
ness in the EV parameters based on the initial probability distribution. The following steps
outline the process of extracting the probable driving distance and arrival/departure times
for EVs:

• Initialize the dataset that includes N EVs. Initialize the PDF mean and standard
deviation of the driving distance, arrival time and departure time of the EVs. Set the
number of iterations.

• Generate random samples based on the log-normal distribution for the daily driving
distance and normal distribution for arrival and departure times.

• Analyze the results and select random iteration from the collection of outcomes.

The histograms in Figure 3 represent the generated data using MCS according to the
given PDFs. It can be seen from the results that most of the EV owners usually arrive at
the parking lot at approximately 9 a.m. and depart at 6 p.m. These results align with the
traveling behavior of daily commuters. Similarly, Figure 4 represents the histogram of the
daily mileage of EVs, where most of the vehicles travel less than 80 km.

3.4. EV SOC Computation

The SOCini refers to the remaining battery capacity of an EV when it arrives at the
parking lot. It is influenced by the SOC at the time of leaving home SOCstart and the
distance traveled before reaching the parking lot d:

SOCini = SOCstart − d
D

(8)

In Equation (8), D represents the maximum driving range of the EV, and d represents
the daily driving distance of the EV that is extracted from MCS. Finally, by putting these
values in Equation (8), SOCini can be determined.

4. Problem Formulation

The problem is formulated as a multiobjective optimization problem considering two
main objectives. The first objective is to minimize the cost for the MG, and the second
objective is to maximize the revenue for EV owners through energy trading.
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4.1. Cost Minimization Function for Microgrid

The aim of the MG objective function is to minimize its operational cost. The objective
function of MG shown in Equation (9) consists of the costs incurred by buying the energy
to fulfill its local demand and the revenue (PM2V

t,n , PM2G
t ) generated by selling its surplus

energy. The cost component consists of three terms: the first term is associated with the
cost of DG (CDG

k,t ), the second term corresponds to the cost of purchasing energy from the
grid (PG2M

t ), and the third term represents the cost of purchasing energy from EVs (PV2M
t,n ).

On the revenue side, the first term signifies the income generated from selling energy to the
grid (PM2G

t ), while the second term captures the revenue obtained from supplying energy
to EV owners (PM2V

t,n ):

f1(x) = min
T

∑
t=1

(
K

∑
k=1

CDG
k,t · P

DG
k,t

)
+ CGB

t · PG2M
t +

(
N

∑
n=1

CIB
t · PV2M

t,n − CIS
t · PM2V

t,n

)
− CGS

t · PM2G
t (9)

4.2. Revenue Maximization Function for EV Owners

The objective function for EV owners is to maximize their revenue represented in
Equation (10). The first two terms represent the revenue generated by selling stored energy
to other entities (PV2G

n,t , PV2M
n,t ) and the incurred cost is represented by the next two terms,

i.e., buying energy from other entities (PG2V
n,t , PM2V

n,t ):

f2(x) = max
T

∑
t=1

N

∑
n=1

CES
t · PV2G

n,t + CIS
t · PV2M

n,t − CGB
t · PG2V

n,t − CIB
t · PM2V

n,t (10)

4.3. Constraints

The above-given objective function is subjected to several constraints, which are
discussed in the following subsections.

4.3.1. Distributed Generators (DG)

Equation (11) represents the operating bounds of DG, where PDG
min represents the

minimum operation value and PDG
max represents the maximum operating value of DG:

PDG
min ≤ PDG

k,t ≤ PDG
max (11)

4.3.2. BESS Charging and Discharging

Equations (12)–(15) represent the constraints of BESS related to charging, discharging,
and SOC estimation (SOCB

t ) of the BESS:

SOCB
min ≤ SOCB

t ≤ SOCB
max (12)

0 ≤ PB+
t ≤

PB
cap · (1− SOCB

t−1)

ηB+ (13)

0 ≤ PB−
t ≤ PB

cap ·
(

SOCB
t−1

)
· ηB− (14)

SOCB
t = SOCB

t−1 +
ηB+ · PB+

t − 1
ηB− (PB−

t )

PB
cap

(15)

The charging (ηB+) and discharging (ηB−) efficiencies of the BESS are considered,
following the approach used in [47]. During the discharging periods, the BESS functions as
an energy source, while it acts as a load during the charging periods. Equation (12) ensures
that SOCB

t remains within a specified range at each time interval. Moreover, to ensure
that BESS charging (PB+

t ) and discharging (PB−
t ) are within the maximum capacity (PB

cap)
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limit of the BESS, Equations (13) and (14) are formulated. These constraints prevent the
overcharging and deep discharging of BESS. SOCB

t is updated using Equation (15).

4.3.3. EV Charging and Discharging

The charging and discharging mechanisms of EVs is similar to that of BESS, with some
additional modifications to account for their specific characteristics and requirements. The
charging and discharging constraints of EVs are formulated as Equations (16)–(20):

SOCEV
min ≤ SOCEV

n,t ≤ SOCEV
max (16)

0 ≤ (PM2V
n,t + PG2V

n,t ) ≤
PEVn

cap · (1− SOCEV
n,t−1)

ηEV+
(17)

0 ≤ (PV2M
n,t + PV2G

n,t ) ≤ PEVn
cap ·

(
SOCEV

n,t−1

)
· ηEV− (18)

SOCEV
n,t = SOCEV

n,t−1 +
ηEV+ · (PM2V

v,t + PG2V
v,t )− 1

ηEV− (PV2M
n,t + PV2G

n,t )

PnEV
cap

(19)

SOCEV
n,td
≥ SOCEV

min (20)

Similar to BESS, the charging and discharging efficiencies of EVs are considered.
Equation (16) ensures that the SOC of EVs (SOCEV

n,t ) remains within a specified range.
EVs can gain energy from the MG (PM2V

n,t ) and grid (PM2G
n,t ) for charging. Similarly, EVs

can be discharged to supply energy to the MG (PV2M
n,t ) and the grid (PV2G

n,t ) when needed.
Equations (17) and (18) are designed to ensure that EVs charge and discharge within their
bounds while trading power with MG and the grid. Equation (19) is formulated to update
(SOCEV

n,t ) of EVs. Furthermore, Equation (20) is formulated to guarantee that the SOC of the
EVs at the time of departure (SOCEV

n,td
) meets the specific requirements of the EV owners,

ensuring their needs are satisfied.

4.3.4. Power Balance

The power balance of the MG is illustrated in Equation (21). It indicates that power
generation must be equal to the power consumption for each time interval:

PG2M
t + PRDG

t +
K

∑
k=1

PDG
k,t +

N

∑
n=1

(PV2M
n,t − PM2V

n,t ) + PB−
t − PB+

t − PM2G
t = PLoad

t (21)

It ensures that MG local demand PLoad
t can be met by generation from DGs, RDG,

BESS charging/discharging, and energy exchanges with the grid and EVs.
The formulated problem consist of various types of decision variables and constraints;

the decision variables represented in Equations (9) and (10) are continuous and non-
negative. They typically represent the power flow between the MG, N number of EVs,
and the grid, as well as the K number of DGs power for a total time step of T. The con-
straints given in Equations (11)–(21) are categorized into bounding, equality, and inequality
constraints:

• The bounding constraints, defined in Equations (11)–(14) and (16)–(18), encompass the
operating bounds of the K number of DGs, BESS, and N number of EVs for charging
and discharging for a total time step of T.

• The inequality constraints are specified in Equation (20) to ensure that the SOC of the
N number of EVs meets specific requirements on the departure for a total time step
of T.
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• Lastly, the equality constraints are presented in Equations (15), (19) and (21), represent-
ing the SOC estimation of BESS and N number of EVs, as well as the power balance in
the MG system for a total time step of T.

Overall the total number of the decision variables and constraints depends on the
values of K, N and T, representing the total number of DGs, EVs and time step, respectively.

4.4. Optimization Method

The scalarization or weighted sum method is used to solve this multi-objective op-
timization problem. In this method, weights are assigned to each objective as shown in
Equation (22) [48], and then the weighted sum is optimized:

min f (x) = min
n

∑
i=1

wi · fi(x) (22)

In this formulation, f (x) represents the overall objective function, while wi denotes
the weights assigned to the objectives such that the sum of all the weights is equal to 1 as
shown in Equation (23):

n

∑
i=1

wi = 1 (23)

The weighted sum method simplifies complex problem solving with its straightfor-
ward approach, outperforming multi-step alternatives. It excels in handling programming,
software use, computational complexity, and preference information as noted in [49]. The
weighted sum can be mathematically represented as

min f (x) = min[w1 · f1(x)− w2 · f2(x)] (24)

w2 = 1− w1 (25)

where the selection of w1 and w2 is in the range [0,1].
By using this approach, multi-objective problems can be changed into a single objective

problem. As a result, the optimal solutions of single-objective problems are like Pareto
optimal solutions of multi-objective problems.

5. Numerical Simulation

The performance of the proposed optimization method is tested for a scheduling
horizon of 24 h with a time interval of 1 h. This formulated multi-objective optimization
problem is based on mixed-integer linear programming (MILP) and is implemented in
Visual Studio 2019 with the integration of IBM CPLEX 22.1.0 [50]. The simulations are
conducted on a Core i5 PC equipped with 8 GB of RAM.

5.1. Input Parameters
5.1.1. Trading Prices

Trading prices for MG and EVs are composed of grid prices and internal prices. Both
grid and internal price signals are the same as in [38], as shown in Figure 5. The CIS

t at the
DSO level depends on three factors: CGB

t , CGS
t , and DSO demand. The DSO demand data

are derived from [51] and are shown in Figure 6.
The CES

t is equal to CGS
t at non-peak demand intervals and higher than CGS

t during the
peak demand periods. In this analysis, peak demand intervals for the DSO are assumed to
occur when the demand exceeds 6500 kW, specifically within 10–19 intervals. Algorithm 1
is employed to calculate the CES

t . The results are shown in Figure 7.
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Figure 5. External and internal trading prices.

Figure 6. Utility grid demand data of 24 h at DSO.

Figure 7. Calculated incentivized selling price data for EV owners.

5.1.2. EV Parameters

In this study, a dataset of 20 EVs is selected from [52]. The dataset includes EV
parameters, such as EV ID, name, capacity and maximum driving range, denoted by D. An
overview of these parameters is shown in Table 1.

In addition, other EV parameters, such as arrival time, departure time, and the initial
SOC are essential for evaluating EV performance. In this study, MCS was employed to esti-
mate the daily driving distance, arrival, and departure times, as depicted in Figures 3 and 4.
These uncertain parameters for 20 EVs were randomly selected from MCS by using a seed
value of 25 to ensure reproducibility, displayed in Table 2. The random selection of these
parameters based on the given PDF provides a glimpse into potential real-world scenarios
and facilitates a more realistic representation.
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To compute the SOCini of EVs, (8) is utilized. The SOC of EVs when they begin their
trip to reach a parking lot SOCstart is randomly chosen between 60 and 90 percent as shown
in Table 2, with a seed value of 25. This range indicates that it satisfies the daily driving
needs of EV owners. In a similar fashion, 20 EVs were chosen from the MCS for daily
driving distances (d), as illustrated in Figure 4, using a seed value of 25. Using these data,
the SOCini was calculated, presented in Table 2. The charging and discharging efficiencies
of EV batteries are considered to be 95% for all the EVs.

Table 1. Parameters of selected EVs for simulations.

EV-ID Name Capacity (kWh) Range ( km)

1 Hyundai IONIQ 6 Standard Range 54 360
2 Kia EV6 GT 74 370
3 Mini Cooper SE 28.9 180
4 Tesla Model 3 57.5 380
5 BMW iX3 74 385
6 Ford Mustang Mach-E GT 91 425
7 Honda e Advance 28.5 170
8 Volkswagen ID.3 Pro 58 350
9 Lexus UX 300e 45 235

10 Porsche Taycan Turbo S 83.7 400
11 Nissan Leaf 39 235
12 Kia e-Soul 39.2 kWh 39.2 230
13 Polestar 2 Long Range Performance 78 410
14 Dacia Spring Electric 45 25 165
15 Jeep Avenger Electric 50.8 300
16 Mercedes EQE 350+ 90.6 525
17 Audi e-tron GT RS 85 405
18 Toyota Proace City Verso Electric L1 46.3 210
19 Genesis GV70 Electrified Sport 74 350
20 Renault Twingo Electric 21.3 130

Table 2. Arrival/departure time and SOC of EVs.

EV-ID Arrival Time
(h)

Departure Time
(h)

Starting SOC
(%)

Initial SOC
(%)

1 9 17 71 52
2 11 17 88 71
3 6 24 85 60
4 11 17 66 53
5 13 18 86 78
6 1 19 79 66
7 8 21 61 33
8 8 13 89 84
9 8 17 68 48

10 12 22 69 57
11 9 24 73 49
12 4 19 78 44
13 10 12 64 51
14 10 21 81 59
15 10 16 85 72
16 6 18 75 66
17 14 17 84 72
18 12 18 79 70
19 8 20 85 74
20 11 16 65 24
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5.1.3. Microgrid Parameters

The local load profile of the MG is a scaled version of [53], and is shown in Figure 8.
The MG has two DGs: DG1 with a 100 kW capacity at a cost of 80 KRW/kWh, and DG2
with a 150 kW capacity at a cost of 100 KRW/kWh. The BESS capacity is 100 kWh with
95% charging and discharging efficiency. Moreover, the initial state of charge of BESS is
considered 20%. The output of RDG in MG is a scaled version of [54] and is shown in
Figure 9.

Figure 8. Load profile of microgrid.

Figure 9. Renewable distributed generation (RDG) output power profile.

5.2. Simulation Results

In this section, two cases are analyzed, each reflecting different weight parameters for
the cost minimization function of MG and the revenue maximization function of EVs. In
the first case, a higher weight is assigned to the MG cost minimization function compared
to the EV owners’ profit. In the second case, more weight is assigned to the revenue of
EVs as compared to the MG cost. RDGs are photovoltaic systems that are available and
can contribute to the energy supply during daylight hours. DGs are utilized throughout
the day. BESS is charged during periods of low demand and discharged during peak
times. Some variations are observed in energy trading among EVs, grid and MG due to
different weights.

5.2.1. Case 1

In this scenario, a weight of 0.7 is assigned to the cost function of the MG, while a
corresponding weight of 0.3 is assigned to the revenue of the EVs. Figure 10a presents the
optimal results from the MG perspective. Energy trading from the MG to the grid occurs
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during intervals 1–6, 9, and 21–24. Similarly, energy transfer from MG to EVs occurs during
intervals 5, 6, 8, and 22–24, as the local generation cost is lower than the CGS

t and CIS
t ; also,

the local demand of the MG is less than the local generation. The MG receives energy from
EVs during the intervals 15–17, as CIS

t is lesser as compared to CGB
t .

Figure 10b illustrates the optimal energy trading with the EVs perspective. Upon
arrival, EVs tend to purchase energy from the MG during intervals 5, 6, and 8 and from
the grid during intervals 7–9 to charge to the targeted SOC level. Before departure, EVs
buy power from the grid and MG during intervals 19 and 21–24 to meet their energy
requirements. As in this case, the MG cost function is prioritized so the model is operating
such that it tends to be more focused on the cost minimization of MG. That is why more
energy is traded from EV to MG at peak hours because it is more economical for MG to
buy from EVs instead of buying from the grid.

(a)

(b)
Figure 10. Optimal results for microgrid and EV owners for case 1: (a) microgrid perspective; (b) EV
owner perspective.

5.2.2. Case 2

In this case, a weight of 0.3 is assigned to the cost function of the MG, while the
corresponding weight for EVs is set at 0.7. Figure 11a,b present the optimal operation and
energy trading results. Energy trading from the MG to the grid takes place during intervals
1–6, 9, and 21–24. Similarly, energy transfer from MG to EV occurs during intervals 5, 6
and 8, as the local generation cost of the MG is lower than CGS

t and CIS
t . Energy trading

from the grid to EVs occurs upon arrival at intervals 7–9 and during interval 19 to meet the
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energy requirements for departure. Energy trading from EVs to the grid takes place during
intervals 13–15 and 19, specifically during peak intervals of the grid demand from 13 to
15, as high CES

t is offered to EV owners during these periods. Notably, at interval 13, the
maximum number of EV owners tend to sell their energy, as the CES

t offered to them is the
highest compared to other intervals. In this case, the revenue function of EV is prioritized,
so more EVs are engaged in trading with the grid because CES

t at peak intervals is greater
than the CIS

t .

(a)

(b)
Figure 11. Optimal results for microgrid and EV owners for case 2: (a) microgrid perspective; (b) EV
owner perspective.

These results demonstrate the impact of varying weight allocations on the energy-
trading patterns among the MG, EVs, and the grid. The energy trading dynamics vary
depending on the prioritization of the objectives. When the MG cost function is prioritized,
it tends to buy more energy from the EVs, as CIB

t is less compared to CGB
t . Conversely,

when the EVs revenue function is given more weightage, the energy trading from EVs to
the grid increases, especially during peak intervals when high CES

t is offered. The findings
demonstrate the trade-offs between the objectives of the MG and EV owners, optimizing
their operations in accordance with their respective preferences.

6. Discussion and Analysis
6.1. Impact of Weight Parameters

In this section, we examine five different cases through simulation, focusing on the
total amount of energy traded within a 24 h span as detailed in Table 3. For the first
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two cases, the weight assigned to the cost minimization of the MG, represented by w1,
is set higher compared to the weight of the EVs profit, denoted by w2. When the MG
cost minimization is emphasized, the MG tends to trade more energy with the EVs than
with the grid, thereby minimizing its costs. This is because the value of CIB

t is lower as
compared to CGB

t , allowing the MG to purchase energy at a more affordable rate. Moreover,
the CIS

t is higher than CGS
t , enabling the MG to sell its energy at a higher price. In the third

case, equal weights are assigned to the MG cost minimization function and the EVs profit
maximization functions. During periods of peak demand, the MG acquires power from
the EVs to reduce its costs. Simultaneously, EVs sell power to the grid when CES

t is at its
maximum, thereby maximizing their revenue. The last two scenarios are characterized by
assigning more weight to the EVs profit. This focus on maximizing the EVs profit leads to
less energy trading with MG as compared to the grid because during peak intervals, CES

t is
higher compared to CIS

t .
Figure 12 provides a clear depiction of the cost trends both for the EVs and the MG

across five different cases. In the case of MG, an increasing trend in the total operation cost
is observed from cases 1 to 5. Contrarily, a declining cost trend can be seen for EVs as we
move from case 1 to case 5. The trends suggest a trade-off between the cost incurred by the
EVs and the MG. Lower EV costs correspond with higher MG costs and vice versa. This
indicates the varying balance between cost minimization and profit maximization in each
case, influenced by the different weights assigned to each entity’s objectives.

Table 3. Energy trading with different weights.

Cases
Weights Total Amount of Energy Traded (kWh)

w1 w2 = 1 − w1 M2V V2M M2G G2M G2V V2G

1 0.9 0.1 279 685 1049 503 513 14
2 0.7 0.3 251 224 1077 964 45 27
3 0.5 0.5 99 62 1214 1113 24 33
4 0.3 0.7 99 0 1215 1175 24 95
5 0.1 0.9 111 0 1192 1167 12 95

Figure 12. Total operational cost of microgrid and EVs.

Electric Vehicle Energy Trading Reference Indices

In this section, reference indices (IV2G
x , IV2M

x ) are formulated for each case relative to
case 3, in which equal weights are assigned to both objectives. These indices represent
the relative change in energy trading from EVs to the grid and MG, taking into account
variations in the weight parameters. The formulation is detailed in Equations (26) and (27),
where (EV2G

ref , EV2M
ref ) are the total amount of energy traded from EVs to the grid and MG
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in the reference case, and (EV2G
x , EV2M

x ) are the total amount of energy traded for cases
referenced from case 3:

IV2G
x =

EV2G
ref − EV2G

x

EV2G
ref

(26)

IV2M
x =

EV2M
ref − EV2M

x

EV2M
ref

(27)

Figure 13 illustrates the variations in energy trading across different indices. In cases
1 and 2, the amount of energy trading from EVs to the grid is reduced, while trading to
MG is increased with respect to reference case as represented by index 1 and 2. This occurs
because the MG objective is prioritized, and CIB

t is more favorable compared to the CGB
t ,

prompting MG to buy more energy from EVs as compared to the reference case.
Conversely, in cases 4 and 5, the EV owner objective is prioritized, resulting in greater

amount of energy trading with the grid rather than MG with respect to reference case, as
represented by index 3 and 4. This trend emerges due to the grid’s higher CES

t compared to
the CIS

t . In an effort to maximize revenue, EV owners are consequently more inclined to
sell their energy to the grid as compared to the reference case.

Figure 13. Energy-trading dynamics from EVs: case 3 reference.

6.2. Impact of Increase in Fleet Size

This section examines the influence on operational costs and the volume of energy
exchanged as the fleet size expands. In this section, equal weights of 0.5 are designated
for both the MG and EVs. By increasing the fleet size, we analyze the impact on the total
amount of energy traded between these entities and the overall operational cost for the MG
and charging cost for EVs.

Table 4 displays the cumulative quantity of energy traded between these entities based
on the fleet size. It can be observed that as the fleet size increases, the energy interchange
between the MG and EVs increases, while energy trading between MG and grid decreases.
This is because the value of CIB

t is lower than the CGB
t , allowing each entity to procure

energy at a reduced rate. Moreover, the value of CIS
t is higher than the CGS

t , which enables
these entities to sell their power at higher rates. Additionally, the energy exchange between
EVs and the grid increases due to an increase in the fleet size. With increases in the fleet size,
the charging demand of EVs rises, and in the case of EV-to-grid interaction, an increasing
number of EVs trade power with the grid during peak demand, as the CES

t surpasses both
the CIS

t and CGS
t .
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Table 4. Impact of increased fleet size on energy trading.

Fleet Size
Total Amount of Energy Traded (kWh)

M2V V2M M2G G2M G2V V2G

30 EVs 119 62 1208 1126 64 33
40 EVs 173 122 1156 1066 100 37
50 EVs 252 122 1076 1066 145 72

Figure 14 shows the effect on costs associated with an increase in the EV fleet size.
It is apparent from the figure that the cost of MG is lowered with an increase in the fleet
size, while the charging cost for EVs increases. The MG cost reduces because, with a
higher number of EVs, more EVs can function as an energy storage system at a lower
cost. Furthermore, it also presents an opportunity for MG to trade energy at a higher price
compared to the grid.

Figure 14. Impact of increase in fleet size.

The increase in EV fleet size has a significant impact on the energy-trading patterns
and the operational cost of MG. It enhances energy exchanges within the MG and EVs while
reducing grid dependency due to favorable internal pricing. Simultaneously, EVs serve
as economical energy storage systems, providing a valuable energy-trading opportunity
for MG. As the fleet size expands, the charging cost for EVs increases, but these vehicles
also play a crucial role in supporting the grid at peak demand periods due to the higher
incentivized selling price. Hence, strategic EV fleet management, coupled with internal
energy trading, can not only optimize the operational cost of MG but also minimize grid
dependency and reduce the peak load.

7. Conclusions

An incentive mechanism is proposed in this study to encourage EV owners to sell
their energy to the grid during high-demand intervals to overcome the equipment over-
loading of distribution systems. Internal trading prices are also considered to maximize the
participation and profitability of MG and EVs. Furthermore, to address the uncertainties in
EV parameters, Monte Carlo simulations are used. The findings reveal that prioritizing
the cost minimization of the MG leads to increased energy exchange between MG and
EV, consequently lowering the operational cost of the MG. Conversely, when the profit of
EV owners is prioritized, energy trading with the grid escalates, particularly during peak
demand periods when the grid offers a higher selling price. Results showed that as the
fleet size increases, the operational cost of MG decreases due to an increase in the energy
transactions between MG and EVs. At the same time, though EVs face higher charging
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costs owing to increased charging demand, they effectively function as economical energy
storage systems, supporting the grid during peak demand periods.

Future studies can be conducted based on this research to explore the impact of
different market policies, pricing mechanisms, and grid infrastructure on these trade-offs.
This could assist the decision making of MG operators, EV owners and policymakers. In
addition, a single MG is considered in this study but the potential for expansion to a multi-
microgrid system exists. Such expansion could lead to the creation of a new kind of energy
market and business model for EVs and MGs. Furthermore, the current model, which
is designed with two objectives and does not consider power flow constraints, could be
further refined. By incorporating multiple objectives and including power flow constraints,
as in studies [55,56], the model could provide a more realistic and comprehensive approach
to energy management.
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Nomenclature
The following abbreviations are used in this manuscript:

Indices
t Index for time interval, from 1 to T
n Index for EV number, from 1 to N
k Index for DG number, from 1 to K
x index for the case number
Variables and Constants
zt Normalized DSO demand at time interval t
αt, βt Weight of grid buy and sell price at time interval t
ta, td Arrival and departure time of EVs
t1, t2 Starting and ending time of high demand interval
σta , σtd Standard deviation of arrival and departure time of EVs
σd Standard deviation of daily driving distances
µta , µtd Mean of arrival and departure time of EVs
µd Mean of daily driving distances
ηB+, ηB− Charging and discharging efficiency of BESS
ηEV+, ηEV− Charging discharging efficiency of EVs
CGB

t , CGS
t Price of buying and selling energy from the grid at t

CES
t Incentivized selling price for EV owners at t

CIB
t , CIS

t Price of buying and selling energy for EV and MG at t
CDG

k,t Cost of generating power from kth DG at t
d Daily driving distance of EVs
D maximum driving range of EVs
SOCstart State of charge of EVs at the start of the trip
SOCini State of charge of EVs upon arrival at the parking lot
SOCEV

n,td
State of charge of nth EV at td

SOCB
t State of charge of BESS at t

SOCEV
n,t State of charge of nth EV at t

EV2G
ref , EV2M

ref
Total amount of energy traded from EVs to the grid and MG for
reference case

EV2G
x , EV2M

x Total amount of energy traded from EVs to the grid and MG for case x
IV2G
x , IV2M

x Reference indices for case x
PB

cap, PEVn
cap Capacity of BESS and nth EV

SOCB
min, SOCB

max Minimum and maximum level of SOC for BESS
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SOCEV
min, SOCEV

max Minimum and maximum level of SOC for EV
PB+

t , PB−
t Amount of power charged and discharged from BESS at t

PG2M
t , PG2V

n,t Amount of power sent from grid to MG and nth EV at t
PM2G

n,t , PM2V
n,t Amount of power sent from MG to the grid and nth EV at t

PV2M
n,t , PV2G

n,t Amount of power sent from nth EV to MG and the grid at t
PRDG

t Amount of power generated by RDG at t
PDG

k,t Amount of power generated by kth DG at t
PLoad

t MG Load at t
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