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Abstract: The maintenance of electrical grids is crucial for improving their reliability, performance,
and cost-effectiveness. It involves employing various strategies to ensure smooth operation and
address potential issues. With the advancement of digital technologies, utilizing time-series pre-
diction has emerged as a valuable approach to enhance maintenance practices in electrical systems.
The utilization of various recorded data from electrical grid components plays a crucial role in digi-
tally enabled maintenance. However, the comprehensive exploration of time-series data prediction
for maintenance is still lacking. This review paper extensively explores different time series that can
be utilized to support maintenance efforts in electrical grids with regard to different maintenance
strategies and grid components. The digitization of the electrical grids has enabled the collection of
diverse time-series data from various network components. In this context, the paper provides an
overview of how these time-series and historical-fault data can be utilized for maintenance purposes
in electrical grids. Various maintenance levels and time series used for maintenance purposes in
different components of the electrical grid are presented.

Keywords: time-series forecasting; digitally enabled maintenance; electrical grid; artificial intelligence

1. Introduction

The maintenance of electrical grids holds significant importance as it directly influ-
ences the reliability, performance, and cost-effectiveness of the grid [1]. This maintenance
process can be categorized into five levels: reactive, planned, proactive, predictive, and
prescriptive [2–5]. Among these levels, reactive maintenance stands out as one of the
costliest approaches in dealing with electrical systems. In reactive maintenance, when
a failure or fault occurs within the system, corrective actions are taken to identify the
failure and restore the electricity supply. The main objective is to ensure that the network
can continuously deliver electricity. Despite its necessity in urgent situations, reactive
maintenance can incur high expenses due to its let us fail and react nature [6–9]. It is crucial
to implement a comprehensive maintenance strategy that encompasses planned, proactive,
and predictive approaches to minimize costs, enhance reliability, and optimize grid perfor-
mance. Planned maintenance refers to a structured maintenance program that provides the
operations and maintenance team with a designated time frame to carry out maintenance
activities on the system. Its primary objective is to reduce failures within the network. In
this approach, maintenance actions are scheduled based on predetermined intervals or
specific criteria [10–14]. Proactive maintenance, on the other hand, belongs to a higher cate-
gory of maintenance strategies. It relies on specific conditions within the system to trigger
maintenance actions. It can be performed by employing specific devices on the equipment
for condition monitoring of the different parts of the system and take action in case of any
deviation from predefined thresholds [15–18]. Predictive maintenance, on the other hand,
tries to predict failure in the system before it happens. By utilizing the recorded historical
data and expert knowledge, a sophisticated platform can be developed to predict potential
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failures in the system. This predictive approach enables the early detection of anomalies
and enables prompt intervention to prevent or mitigate potential issues [19,20]. At the
most advanced level, there is prescriptive maintenance. This approach not only predicts
failures within the network but also provides suggested corrective solutions. By combining
real-time monitoring, predictive analytics, and expert recommendations, prescriptive main-
tenance equips the operations and maintenance team with actionable insights to respond
to failures quickly and accurately. This level of maintenance helps streamline the decision-
making process and enables more efficient and effective maintenance actions [21–23].
To enable predictive and prescriptive maintenance, the utilization of digital tools is es-
sential. The cornerstone of these maintenance approaches lies in the ability to accurately
predict and prescribe actions based on data analysis. Due to technological advancements
and the widespread implementation of smart metering in various network areas, the feasi-
bility of predictive and prescriptive maintenance has increased. This, in turn, facilitates the
transition to sustainable energy. The research indicates that Europe will need investments
of between 375 to 425 billion euros to support the transition to sustainable energy [24–26].
Smart meters play a crucial role in recording various quantities within the network. These
can include measurements such as current, voltage, active and reactive power, tempera-
ture, and more. The data collected from these meters typically consist of sequential time
series, providing valuable insights into the performance and behavior of the network [27].
The accuracy and correctness of predicting these time-series data have a direct impact
on the effectiveness of the maintenance methods. A reliable prediction method and ap-
proach are crucial, especially when dealing with diverse types of data in the system [28].
By selecting the most appropriate prediction techniques and leveraging advanced algo-
rithms, maintenance teams can gain valuable foresight into potential issues, enabling
proactive intervention. Various time-series prediction algorithms exist, including autore-
gressive integrated moving average (ARIMA) [29], seasonal ARIMA [30], exponential
smoothing [31], prophet [32], long short-term memory (LSTM) [33], and support vector
machine (SVM) [34].

The objective of this review paper is to examine various methods, algorithms, and
data utilized in maintenance practices related to the electrical grid, considering both
maintenance levels and grid components. While certain algorithms are directly applicable
to the maintenance tasks, others primarily serve the purpose of predicting the relevant
quantities for maintenance purposes. The paper encompasses research studies on the
maintenance of various components within the electrical grid, including transmission lines,
distribution grids, low voltage lines, overhead lines, underground cables, insulators, and
more. The installed measurements enable the prediction and subsequent implementation
of maintenance measures. This paper delves into a comprehensive analysis of the different
time-series prediction methods for maintenance purposes in the electrical grid domain.
Moreover, the paper sheds light on the significance of utilizing the available data sources for
maintenance purposes. This may include historical maintenance records, sensor data from
network components, and other relevant data sets. Figure 1 illustrates the distribution of the
research studies on maintenance across different components of the grid and the severity
of grid situations, presented as numbers out of 100 references. The figure highlights a clear
emphasis on grid components in studies, rather than addressing severe situations within
the grid. This highlights the significance of collecting data from different components in
order to establish an intelligent maintenance system, emphasizing the importance of grid
digitization. In order to facilitate comparison, Table 1 provides a comprehensive overview
of the current review paper alongside other notable state-of-the-art papers in the field. The
table highlights key similarities and differences, allowing for a clear understanding of the
unique contributions and approaches of each publication. Figure 2 shows the taxonomy of
the review paper. This classification simplifies the paper and gives an overall view to the
readers for understanding the paper.
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Figure 1. Different studies with regard to grid components and grid severe situations.

Table 1. Comparison of this study with other state-of-the-art review papers.

References [35] [36] [37] [38] [39] [40] [41] This Paper

ReM X × × X × × X X
PlM × × × × × × X X

ProM × × × × × × X X
PredM × X X × X X X X
PresM × × X × × × × X
UCFP × × × X × × × X

IFP X × × × X × × X
OLFP X × × X × X × X
TFP X X × × × X X X

ReM: reactive maintenance, PlM: planned maintenance, ProM: proactive maintenance, PredM: predictive mainte-
nance, PresM: prescriptive maintenance, UCFP: underground cable fault prediction, IFP: insulator fault prediction,
OLFP: overhead line fault prediction, TFP: transformers fault prediction.

The rest of the paper is organized as follows. In Section 2, the different types of
maintenance are described. Section 3 presents time-series applications for the maintenance
of different grid components, followed by Section 4, which presents the challenges, ad-
vantages, and limitations of maintenance in the electrical grid. Finally, the conclusion is
presented in Section 5.
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Figure 2. Taxonomy of the surveyed research works.

2. Electrical Grid Maintenance

In electrical grids, there exist five distinct types of maintenance. Figure 3 illustrates
each type of maintenance along with its unique characteristics. As can be seen from
Figure 3, the reliability of the electrical grid improves progressively as maintenance shifts
from reactive to prescriptive levels. To implement prescriptive maintenance in the electrical
grid, it is vital to install sensors across various sections of the grid. These sensors enable
accurate measurements and facilitate the prediction process [42]. Furthermore, when
prescribing corrective actions, considering non-wires alternatives (NWAs) [43], which
utilize the existing network infrastructure, can be a favorable choice.

Reactive

R
el

ia
bi

lit
y

Level 1

Restoring functionality
after faults occur

Planned

Level 2

Scheduled maintenance
activities

Proactive

Level 3

Prevents failure by
monitoring conditions

Predictive
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It uses historical data
and models to predict
failures and intervene

Prescriptive

Level 5

It combines data-driven
insights, advanced

analytics, and expert
knowledge to guide

maintenance teams in
making informed

decisions.

Figure 3. Five levels of maintenance in electrical grids.

2.1. Reactive Maintenance

An electrical grid can experience various types of failures, including line failure [44],
insulator failure [45], transformer failure [46], and underground cable failure [47]. In
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a recent study by [48], a novel methodology is introduced for fault location detection
in smart distribution networks. This method utilizes the recorded voltage and current
measurements at the beginning of the feeder, along with the load values of consumers.
Notably, this approach relies on limited measurement information, making it suitable for
real-world network applications. To overcome the potential variation of line parameters
caused by aging and weather conditions, [49] propose a new mixed gradient descent
particle swarm optimization (PSO) algorithm to estimate line parameters for fault location
purposes. However, it is important to note that deploying this algorithm requires additional
measuring devices, leading to increased deployment costs. In [50], a novel matching index
is introduced to address the challenges posed by varying fault locations in impedance-
based algorithms. These algorithms often lead to increased downtime and confusion within
the maintenance group. The proposed matching index utilizes the recorded active power
at the beginning of the feeder to accurately differentiate the actual faulty point from other
potential candidates. Machine learning algorithms have gained significant popularity
for fault identification in distribution grids [51,52]. In [53], a deep learning algorithm is
employed specifically for fault determination in the distribution network. This algorithm
solely relies on the recorded post-fault voltage at the beginning of the feeder. One notable
advantage of this approach is the exclusion of the fault current, which can compromise
fault location accuracy due to cumulative error and CT saturation. Fault area detection,
fault type diagnosis, and location in the transmission line are addressed in [54], where a
long-short term memory (LSTM) model is utilized for these tasks. The application of a
Bayesian network, optimized by PSO, for fault diagnosis is investigated in [55].

2.2. Planned Maintenance

Planned maintenance, which is a step above reactive maintenance, involves proactive
measures taken for the electrical network components. Distribution system operators
(DSOs) conduct regular inspections of these components to determine if any repairs or
replacements are needed before they fail and cause power outages in the network. Planned
maintenance often involves establishing a routine maintenance schedule, as these com-
ponents cannot be checked externally. For example, when maintaining electric motors,
inspections such as temperature monitoring, vibration analysis, and electrical checks may
not be sufficient. Proper lubrication and cleaning are sometimes necessary, which can take
more time and require the process or power generation to be stopped [56]. The routine of
maintenance can be determined based on the factors such as vulnerability, risk, cost, and
inspection. The diagram of planned maintenance is depicted in Figure 4. Vulnerability and
risk are associated with cost, and inspections are important in maintenance planning.

Incepection

Check maintenance
vulnerability and risk

Calculate the cost

Final maintenance
plan

Schedule necessary inspection
and plan optimal maintenance time

Figure 4. Planned maintenance diagram based on vulnerability and risk assessment.
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2.2.1. Maintenance Routine Determination Based on Vulnerability

It is crucial to determine an optimal routine maintenance interval to minimize unnec-
essary maintenance costs and energy consumption [57,58]. The optimization of routine
maintenance allows the operation and maintenance group to focus on the more susceptible
areas of the system.

In a study focused on the underground electrical system of the New York City net-
work [59], statistical models known as reactive point processes (RPPs) are utilized to predict
discrete events over time. RPPs demonstrate various crucial characteristics of power failures
in the grid. The vulnerability to future serious events instantaneously increases following
past serious events, and then gradually returns to a baseline level, indicating self-exciting
properties. Conversely, vulnerability can decrease instantaneously due to inspections, re-
pairs, or corrective actions, and this effect diminishes over time, illustrating self-regulating
properties. The cumulative impact of events or inspections can reach a saturation point,
preventing vulnerability levels from deviating too far from the baseline level and exhibiting
diminishing returns. The baseline vulnerability can be altered if there was at least one
previous event. Entities with similar characteristics exhibit similar vulnerability patterns.
Ultimately, a decision-making algorithm is developed to propose routine inspections for
optimal planned maintenance. This work provides a solution that introduces intelligent
inspections for entities within the underground electrical systems.

2.2.2. Maintenance Routine Determination Based on Risk

Maintenance planning for a large, widespread, and aging power infrastructure poses
a significant challenge. The authors of [60] introduce a new approach for assessing the
risk associated with power line infrastructure. The method incorporates inspection data,
reliability models for component aging, and maintenance costs to provide a comprehensive
risk assessment and associated expected costs, depending on the chosen maintenance
strategy. By overlaying the visual representation of risk on map data, decision-makers
can grasp the risk profile and make informed investment decisions accordingly. The
developed model helps DSOs to make optimal and cost-effective decisions for grid planned
maintenance based on the risk assessment.

In [14], static security risk assessment during planned maintenance in the electrical
grid is the main concern. During planned maintenance, there is a high probability of
power flow violations, which can potentially lead to disruptions or failures in the system.
The proposed method aims to address the challenges associated with risk assessment during
planned maintenance. It recognizes that the existing risk assessment indicators used in this
context are often single and subjective, limiting their effectiveness. Therefore, the paper
introduces a new approach that incorporates multi-source heterogeneous information to
assess the static security risk. By analyzing factors such as equipment failure rate, electrical
characteristics, and grid topology, the method takes into account various aspects of the
power system’s condition. The selected indicators are then preprocessed to enhance their
relevance and accuracy. The deep belief neural network (DBNN) is utilized to evaluate
the risk by considering the relationships and patterns among the multiple indicators.
The goal is to provide a comprehensive risk assessment during planned maintenance.
By enabling risk self-assessment, it allows dispatchers to have a better understanding of
the potential risks associated with their maintenance decisions. This assists dispatchers
in making informed choices when adjusting equipment to avoid power flow violations or
other limitations during maintenance operations.

The paper [61] introduces a novel maintenance schedule for power plants and wind
farms. The primary objective is to identify the generators that should be temporarily shut
down for maintenance, with the aim of minimizing downtime and reducing the risk of
generator failure, which can lead to significant costs. In a broader context, the goal is to
maximize the system’s reliability. The research paper presents the optimal routine for the
maintenance of generators in power plants and wind farms as its key outcome.



Energies 2023, 16, 6332 7 of 29

2.3. Proactive Maintenance

Proactive maintenance refers to a type of maintenance strategy that involves monitor-
ing specific conditions within a system and taking preventive actions based on predeter-
mined thresholds [62]. Condition monitoring and severity assessment are two essential
factors for efficient proactive maintenance. The proactive maintenance triangle diagram
is shown in Figure 5. As can be seen, condition monitoring of the electrical grid, which
needs specific devices, is involved with the severity assessment block to determine effective
thresholds for maintenance actions.

Condition
Monitoring

Severity
Assessment

Proactive
Maintenance

Figure 5. The triangle diagram of proactive maintenance.

2.3.1. Condition Monitoring

Proactive maintenance utilizes sensors or measurements placed strategically through-
out the system to monitor its health and performance. When certain conditions exceed
the predefined thresholds, maintenance actions are triggered to prevent system failures
and minimize downtime [63]. It is necessary to have coordinated measuring devices that
have the same timetags, which facilitate the maintenance objective. The authors of [64]
introduce a novel measuring device that incorporates real-time communication capabilities.
This device is specifically designed for the condition monitoring of wind turbines, with the
goal of enabling proactive maintenance. In [65], the authors propose a new scheme for the
condition monitoring of underground cables, made possible by the development of partial
discharge measuring devices. This scheme enables the maintenance group to continuously
monitor the condition of the cables, facilitating the creation of an optimized maintenance
routine. Specifically, the paper focuses on assessing the severity of insulator damage in
underground cables, as insulator health is crucial for the reliable operation of the entire
cable system. Regular data recording plays a crucial role in ensuring effective condition
monitoring and proactive maintenance practices. The authors of [66] introduce a new and
innovative data processing mechanism designed specifically for the condition monitoring
of railway switches. This mechanism incorporates various types of data, including control
data, physical data, systematic drifts, and deviations from expected behavior. By analyzing
and processing these data sets, the mechanism enables the implementation of proactive
maintenance strategies.

2.3.2. Severity Assessment

Determining the appropriate conditions to monitor and setting the thresholds can
be challenging, especially considering the unique maintenance requirements of each com-
ponent in the electrical grid. By conducting a severity assessment, the operation and
maintenance group can gain insights into the health status of the cables. This information
empowers them to make informed decisions regarding maintenance priorities and budget
allocations. For instance, if the severity assessment indicates a higher risk of failure in
certain cables or insulators, the maintenance group can prioritize their inspection and
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replacement, thereby reducing the chances of costly failures and improving overall system
reliability [67]. Moreover, the severity assessment enables the operation and maintenance
group to optimize their resource allocation. By identifying cables or insulators with higher
severity levels, they can allocate resources such as manpower, equipment, and materials
more effectively. This approach minimizes unnecessary maintenance activities on com-
ponents with lower severity levels, thereby optimizing the utilization of maintenance
resources and reducing operational costs [68].

In [69], a novel intelligent and proactive maintenance system is introduced with
the aim of effectively identifying critical faults in wind turbines. Additionally, a predic-
tion analysis tool is developed to forecast the generation status of small wind turbines.
This innovative approach utilizes a sensor-based IoT system to monitor crucial parameters
that directly impact the operational condition of the wind turbines. These parameters
encompass wind speed, vibration, temperature, and output power. Through the continu-
ous monitoring of these parameters, the intelligent maintenance system can successfully
detect significant faults in the turbines and facilitate prompt repairs or corrective mea-
sures. Moreover, the prediction analysis tool harnesses the collected data to predict the
generation status of small wind turbines. This valuable insight enables the optimization of
their performance and maintenance scheduling. By leveraging the forecasted generation
status, the maintenance group can allocate resources more efficiently, ensuring optimal
resource utilization. This proactive maintenance approach not only enhances the overall
performance of the wind turbines but also aids in streamlining maintenance operations for
improved efficiency.

2.4. Predictive Maintenance

Predictive maintenance approaches are commonly employed to predict potential fu-
ture failures in a system by utilizing collected time-series data in conjunction with historical
fault statistics [70]. These techniques provide a valuable tool set for the maintenance group,
enabling them to proactively respond to potential issues. Two of the main applications of
predictive maintenance on the electrical grid are fault prediction and reliability assessment.

2.4.1. Fault Prediction

A fault prediction tool set can aid the O&M group to react before the fault happens,
which results in improving reliability. One area particularly susceptible to faults is the
cable sheath in overhead lines, especially during adverse weather conditions. In the re-
search paper [71], a novel prediction method based on artificial neural networks (ANN) is
presented to forecast the maximum induced voltage in the cable sheath. To generate the
necessary data for training the ANN, various scenarios are simulated, allowing for accurate
predictions. It is worth noting that the prediction accuracy relies not only on the voltage
time series but also on other parameters, such as tower footing resistance, sheath ground
resistance, and the severity of weather conditions. These factors collectively contribute to
achieving high prediction accuracy and ensuring effective maintenance planning. When
a fault occurs in an electrical grid, it is important to determine whether it will result in
system stability or instability [72]. This knowledge empowers the maintenance group to
prioritize different parts of the network based on their significance and potential impact
on grid stability, enabling the efficient allocation of resources for renewal or budget plan-
ning. In [73], a novel approach is implemented to assess network stability during fault
occurrences. The data collected from phasor measurement units across the network are
leveraged to train a stacked sparse autoencoder. This trained model is then applied in real
transient situations to determine potential instability. The probability of divergence from a
stable baseline is calculated using Kullback–Leibler divergence [74], which is incorporated
into the loss function.



Energies 2023, 16, 6332 9 of 29

2.4.2. Reliability Assessment

Determining customer reliability can provide great information for optimizing invest-
ment in order to maximize overall grid reliability. The authors in [75] introduced a novel
approach aimed at determining customer reliability within the distribution system. The
method incorporates various factors, including component failure frequency, downtime,
and weather conditions. By examining the relationship between equipment failures and
weather conditions, an index is developed to assess the reliability of each customer con-
nected to the distribution grid. The analysis takes into consideration different types of
failures, such as transformers, overhead lines, and underground lines, with their respective
failure frequencies serving as parameters for the prediction model. The primary objective
of determining customer reliability is to identify areas within the network that are more
susceptible to failures compared to others. By estimating the probability of failure for
individual customers, maintenance teams can prioritize their attention to the most vul-
nerable parts of the network. This approach helps in optimizing maintenance efforts and
reducing downtime. To achieve this, fault tree analysis is employed as a methodology in
this study, enabling a systematic evaluation of the potential failure scenarios. The proposed
method integrates the comprehensive analysis of component failure frequency, downtime,
and weather conditions to provide a great understanding of customer reliability within
the distribution system. By considering the interactions between these factors, the model
can generate valuable insights into the network’s vulnerability and guide maintenance
strategies effectively.

2.5. Prescriptive Maintenance

Prescriptive maintenance, driven by predictive analysis, plays a crucial role in forecast-
ing potential failures within the electrical grid [76]. Prescriptive maintenance is one level
higher than predictive maintenance in terms of equipment condition and reliability for the
electrical grid, as can be seen in Figure 6. It can be seen that prescriptive maintenance is
faster than other maintenance strategies and more cost-effective. However, planned main-
tenance can be faster than prescriptive maintenance or slower than proactive maintenance,
which is completely related to the maintenance routine.
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Figure 6. Different types of maintenance with regard to equipment condition and repair cost
over time.



Energies 2023, 16, 6332 10 of 29

2.5.1. Non-Wires Alternatives

Utilizing advanced techniques and algorithms, it enables proactive decision-making
and the implementation of smart NWAs [77]. These NWAs apply digital applications and
innovative solutions to address grid vulnerabilities without resorting to extensive infrastruc-
ture investments. By leveraging the existing grid infrastructure, prescriptive maintenance
offers several distinct advantages, including cost-effectiveness, efficient decision-making,
and a proactive approach to identifying and resolving potential failures before they oc-
cur [78]. This proactive manner helps to ensure uninterrupted power supply, minimize
downtime, and enhance the overall reliability of the grid. Similar to predictive maintenance,
prescriptive maintenance relies on the analysis of recorded time-series data. By analyzing
historical patterns, trends, and fault statistics, predictive models can accurately forecast
potential failures within the electrical grid [79].

To prevent predicted faults in the electrical grid, two primary strategies emerge.
The conventional approach involves investing in hardware upgrades and expanding the
grid’s capacity by adding more infrastructure [80]. While this method can be effective, it
often incurs substantial costs and may not be the most efficient or sustainable solution in
the long term in terms of optimal budgeting. On the other hand, NWAs provide a more
forward-thinking and innovative alternative [81]. By embracing advanced technologies,
demand-side management techniques [82], distributed energy resources (DERs) [83], en-
ergy storage systems (ESSs) [84], and other creative solutions, NWAs present a paradigm
shift in grid management. Rather than solely relying on traditional methods to increase grid
capacity, NWAs prioritize the optimization of existing assets and the integration of localized
energy resources. This approach aims to enhance the reliability, stability, and efficiency of
the grid by leveraging advanced tools such as real-time monitoring, intelligent load balanc-
ing, and demand response programs. By actively managing grid operations and integrating
renewable energy sources, NWAs offer a sustainable and resilient grid infrastructure.
They enable the grid to adapt to changing energy demands, incorporate distributed genera-
tion, and develop a more dynamic and responsive energy ecosystem. By adopting NWAs
and embracing prescriptive maintenance, the electrical grid can achieve significant benefits.
It can improve its performance, reduce costs associated with infrastructure expansion,
enhance grid resilience, and contribute to a more sustainable energy future. The integration
of NWAs into grid management strategies empowers operators and maintenance teams to
make informed decisions, prioritize system upgrades, and ensure the reliable delivery of
electricity to end consumers [85].

2.5.2. Distributed Energy Resources

DERs have emerged as viable NWAs for managing peak load and potentially delaying
or avoiding the need for conventional grid expansion projects [86]. However, the inherent
value derived from utilizing DERs as NWAs is often not explicitly considered in the plan-
ning process for DER deployment. Ref. [87] addresses this gap by investigating a planning
problem that simultaneously optimizes the investment and operation of DERs alongside
the timing of the capacity expansion. By introducing the timing of capacity expansion
as a decision variable, this approach naturally incorporates the value stream associated
with DERs as NWAs in the planning problem. Despite the resulting optimization problem
being non-convex and potentially involving millions of variables, it is demonstrated that an
optimal solution can be obtained by iteratively solving a series of smaller linear problems.
To illustrate the practical application of the approach, a case study involving NWAs plan-
ning is proposed that uses real data collected from the Seattle Campus of the University
of Washington. By leveraging this dataset, the potential benefits of integrating DERs as
NWAs are analyzed within the campus grid, considering factors such as demand profiles,
renewable energy generation potential, and operational constraints. The planning of DERs
can be effectively carried out by employing the distribution locational marginal prices
(DLMP) strategy. In [88], a novel methodology is introduced to address the challenge of
overloading in electrical grids in the absence of DERs. The research proposes a solution that
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involves the integration of DERs into the grid to proactively prevent overload situations
while simultaneously optimizing the associated costs. To establish a prescriptive platform
for DER planning, it becomes imperative to accurately predict the potential overload condi-
tions. By incorporating the concept of DLMP, the optimal locations for deploying DERs
within the grid are determined. This approach enables the mitigation of marginal loading
conditions without the need for extensive infrastructure expansion, thereby offering a
cost-effective and efficient solution.

Although DERs offer the potential to lower operational expenses and postpone system
upgrades, determining the appropriate economic incentive to encourage DER investors to
install a capacity that benefits both themselves and the system operator is challenging. In
an effort to address this, ref. [89] propose a bilevel optimization framework that aims to
identify the least costly solution for alleviating overloads in distribution systems. By incor-
porating the framework’s co-optimal price signal, system operators can incentivize DER
investors to deploy a capacity that not only benefits their own interests but also contributes
to cost savings and grid reliability. This research highlights the importance of accurately
valuing DERs and provides a comprehensive framework to determine the optimal eco-
nomic signal. By considering both the needs of DER investors and the system operator,
the proposed approach aligns incentives, reduces capital and operational expenses, and
maximizes the benefits of DER integration. The core element in implementing a prescrip-
tive solution within an electrical grid lies in accurate prediction. The ability to forecast
loading conditions, voltage fluctuations, and other maintenance-related parameters plays a
crucial role in prescribing effective corrective measures to mitigate future grid challenges.
By precisely anticipating these factors, it becomes feasible to proactively address potential
grid constraints and develop appropriate solutions.

3. Time-Series Forecasting Application for Maintenance

The primary focus of digitally enabled maintenance in electrical grids centers around
the concept of forecasting, which is possible when there is a measuring device to record the
data for each component. The components in electrical grids are susceptible to different
types of severe situations such as potential faults, overload, overvoltage, undervoltage,
frequency fluctuations, and more, which can potentially lead to power outages, resulting in
customer dissatisfaction and financial losses [90]. In the subsequent sections, the various
research studies focusing on data collection and maintenance-related time-series prediction
in different components of the electrical grid with respect to prediction methods are briefly
reviewed. These studies aim to enhance the understanding of effective maintenance
practices and enable proactive decision-making based on predictive insights.

3.1. Data Collection

It is evident that each component necessitates specific measuring devices tailored
to the maintenance level for data collection that results in detecting or predicting faults.
Smart metering for prescriptive maintenance in grid components is connected to the type of
maintenance, considering the parameters that influence the health index of the components.
To facilitate predictive and prescriptive maintenance, specialized measurements need to
be installed on different pieces of equipment within the grid. These measurements enable
the implementation of smart planning systems, planned maintenance approaches, and
proactive maintenance strategies [91]. It is crucial to recognize that different components in
the network exhibit distinct types of time-series data, necessitating the careful selection of
appropriate prediction methods for accurate forecasting [92]. Time series in different grid
components can help the maintenance process. Table 2 presents different time series that
can be collected from underground cables, insulators, overhead lines, and transformers.
Various components and parts of the network yield diverse datasets that can be utilized for
predictive and prescriptive maintenance purposes. For example, insulators can provide
measurements of leakage current, flashover incidents, and contamination levels. These data
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points can be collected over time to generate a sequential time-series dataset, facilitating
intelligent maintenance strategies.

Table 2. Different times series from grid components that can help the maintenance process [93–99].

Underground Cable Insulator Overhead Line Transformer

• Temperature variations
along the cable’s length
over time.

• Electrical load fluctua-
tions and power con-
sumption patterns.

• Voltage and current mea-
surements at different
points along the cable.

• Partial discharge (PD) ac-
tivity indicating insula-
tion degradation.

• Cable fault records,
such as fault occurrence
timestamps and fault
location data.

• Leakage current mea-
surements indicating
the electrical integrity of
the insulator.

• Flashover events and
associated timestamps
for evaluating insulator
performance.

• Pollution severity data to
assess the level of con-
tamination on the insula-
tor surface.

• Environmental conditions,
including temperature
and humidity, affecting
insulator behavior.

• Visual inspection records
noting the condition of
insulators and any ob-
served defects.

• Line current measure-
ments to assess load pro-
files and detect abnormal
current patterns.

• Line temperature data
for monitoring conduc-
tor heating and identify-
ing hotspots.

• Line sag measurements to
monitor changes in the
line’s mechanical properties.

• Weather data (e.g., tem-
perature, humidity, wind
speed) to assess environ-
mental conditions.

• Lightning strike records
for evaluating the line’s
exposure to lightning-
induced surges.

• Dissolved gas analysis
(DGA) results indicat-
ing the concentration of
gases in transformer oil,
which can indicate poten-
tial faults.

• Temperature measure-
ments at various points
within the transformer,
including winding and
oil temperatures.

• Load profiles to evalu-
ate transformer utiliza-
tion and assess stress on
the transformer.

• Oil quality parameters,
such as moisture content,
acidity, and breakdown
voltage.

• Vibration data to moni-
tor mechanical integrity
and detect abnormal vi-
bration patterns.

3.2. Underground Cables

Predicting faults in underground cables plays a critical role in the maintenance and
operation of electrical systems. This section includes the benefits and drawbacks of utilizing
underground cables, special measuring devices, and environmental condition, along with
an exploration of the various forecasting methodologies applied to the maintenance of
underground cables.

3.2.1. Advantages and Limitations of Underground Cables

One of the main challenges associated with these cables is their inaccessibility for reg-
ular inspections [100]. However, despite this limitation, underground cables offer several
advantages that make them a preferred choice in certain contexts, particularly in urban areas.
One significant advantage is their environmental friendliness. Underground cables elimi-
nate the need for unsightly overhead lines, minimizing visual impact and preserving the
aesthetics of the surrounding environment. This is especially important in densely populated
areas where preserving the visual appeal of the landscape is crucial. Another key benefit
of underground cables is their enhanced resilience to severe weather conditions. By being
installed below the surface, these cables are less vulnerable to damage caused by high winds,
ice storms, and falling trees. Consequently, they experience fewer outages compared to over-
head lines, ensuring a more reliable power supply to consumers. Furthermore, underground
cables contribute to improving safety. With no exposed wires, the risk of accidental contact or
interference from external factors is significantly reduced. This makes them a safer option,
especially in areas with high foot traffic or where aesthetic considerations necessitate the
removal of overhead lines [101–103].

There are some disadvantages associated with underground cables. One major draw-
back is the high installation cost. The extensive excavation and specialized equipment
required for installation significantly increase the upfront expenses compared to overhead
lines. Additionally, the complex nature of underground cable systems can pose challenges
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during maintenance and repairs. Locating and diagnosing faults underground often re-
quire sophisticated equipment and expertise, leading to increased maintenance complexity
and potentially longer restoration times. Another limitation is the reduced flexibility and
expanding capability of underground cables compared to overhead lines. Underground
systems are less adaptable to changes in demand or network expansion, as adding or modi-
fying cables underground is a more complex and costly process. This can pose challenges
in terms of scalability and accommodating future growth [104,105].

3.2.2. Partial Discharge Measuring Device

The nature of underground installations necessitates the development of specialized
measuring devices capable of detecting partial discharge and collecting sequential time-
series data. In recent studies such as [106,107], novel mechanisms and topologies for
measuring partial discharge in low voltage underground cables were proposed. These
devices utilize clamps that can be conveniently installed at the cable’s entry point without
the need for excavation or cable damage. By capturing partial discharge, which manifests
as small defects in cable insulation without immediate fault occurrence but with potential
failure risks, these devices generate time-series data that can be leveraged for prediction
and maintenance purposes. The acquisition and analysis of such time-series data facilitate
efficient maintenance strategies for underground cables. The overall schematic of measur-
ing partial discharge in underground cable can be seen in Figure 7. The figure illustrates
a device that applies a high voltage between the cable insulator and the core wire, while
a measuring device is employed to monitor partial discharge. This process generates a
time-series dataset of leakage current. Such data can be utilized in predictive tool sets to
facilitate predictive maintenance.

Coupling
Capacitor

Measuring
Sensor

High Voltage
Powe Supply

Underground Cable

Measurement

Times Series
Recording

Figure 7. Schematic of partial discharge measuring in underground cables.

3.2.3. Environmental Condition

The underground cables’ insulators are susceptible to various environmental factors
that can have adverse effects. In [94], the impact of loading burden on the cables, soil
temperature and moisture, as well as heat waves, particularly during the summer season,
are investigated. The goal is to establish a relationship between these environmental
factors and cable faults. Statistical models are developed to correlate the occurrence of
failures with the specific features representing the effects of each factor. This analysis
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provides valuable insights for the maintenance team, enabling them to assess the health
index of different network parts and prioritize their examination and maintenance efforts
accordingly. Utilizing machine learning techniques for predictive maintenance entails
addressing the complexities that arise when dealing with diverse time-series data, each
with its own unique resolution. The research paper [108] focuses on the prediction of fault
vulnerability in distribution grids equipped with underground cables. Various parameters
such as soil type, road proximity, land-use, and depth to anaerobic soil conditions are used
as features for the fault vulnerability prediction. These features, along with fault statistics,
are combined to predict the vulnerability of the functioning cables. The paper introduces a
virtual sample generation method to enhance the prediction accuracy. This method involves
randomly altering the features associated with each cable, resulting in a new dataset.
The new dataset is then fed into the model to determine the ranking of fault vulnerability
for the underground cables across the studied electrical grid. This ranking provides
valuable insights for the management group in terms of optimizing their budget for cable
renewal in the distribution grid.

3.2.4. Approaches for Fault Prediction in Underground Cables

Artificial Neural Network:
An artificial neural network (ANN) is a computational model inspired by the brain’s

neural structure. It comprises interconnected nodes that process information using weighted
connections and activation functions. ANNs are utilized for tasks such as pattern recogni-
tion and data analysis. However, the effective training of complex networks demands a
substantial amount of data and resources, necessitating precautions to prevent overfitting.
In [109], the measuring partial discharge of the underground cable is used to predict the
dielectric parameters of an aged medium voltage cable. Three machine learning algorithms
of curve fitting, ANN, and decision tree are applied and compared with each other. The
data are created in a high power laboratory. One of the most important parts is how to
use the time-series data that can have the most effect on the maintenance. The way of
formulation can make the use of the data able to highly impact the maintenance efficiency.
This paper uses the equivalent circuit parameters as given in the following equations:

tan δ = DF =
IR
IC

=
U
R

U.ω.C
(1)

Pk = ω.C.U2. tan δ (2)

where R, C, U, IR, IC, I, and δ are the resistance representing Pk, capacitance of insulation,
applied voltage, current causing Pk, current flowing through the capacitance of the cable,
total current flow, and phase angle between IC and I. By following the trend of Pk, it is
feasible to establish a health index that can assess the condition of underground cable
insulators. The data collected from measurements play a crucial role in determining the
aging characteristics of cables. By analyzing these data, it becomes possible to establish a
model that can predict the future trends of the insulator’s health index, enabling predictive
maintenance strategies. The findings of this study demonstrate the superior performance of
ANN compared to other techniques such as decision trees and curve fitting in this context.

Long Short Term Memory:
LSTM is designed to manage sequences and time-dependent data. It is particularly

skilled at retaining long-term dependencies in data, making it useful for tasks such as
time-series prediction. The quantities such as voltage, current, and power combined with
fault statistics can give information about possible faults in the grid. In [110], an advanced
fault prediction algorithm utilizing LSTM models is employed specifically for underground
cables in distribution networks. The algorithm categorizes cable conditions into three main
states: normal, early warning, and critical situations. Recorded measurements of voltage,
current, and active power are utilized to formulate the prediction problem. By defining
three goal states based on this formulation, the algorithm aims to accurately identify and
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anticipate potential faults in the underground cables, enabling proactive maintenance
actions to mitigate potential failures. This approach enhances the reliability and longevity
of underground cable networks in distribution systems. The three goal states are defined
based on the following formulation:

Vg =

{
1− |V−V̄|

Vmax−Vmin
, if Vmax 6= Vmin

0, if 1− |V−V̄|
Vmax−Vmin

< 0
(3)

Ig =

{
1− |I− Ī|

Imax−Imin
, if Imax 6= Imin

0, if 1− |I− Ī|
Imax−Imin

< 0
(4)

Pg =

{
1− |P−P̄|

Pmax−Pmin
, if Pmax 6= Pmin

0, if 1− |P−P̄|
Pmax−Pmin

< 0
(5)

where Vg, Ig, and Pg are the goal states of voltage, current, and active power, respectively.
V̄, Ī, and P̄ stand for the mean values. This is a creative way to convert the input raw
data to a more meaningful pattern that is easier for machine learning models to learn.
It shows that if the recorded quantities can be converted to another form, it can be helpful
for predictive analysis. In order to address the issue of limited training samples, a sam-
ple generator technique is employed. The generated dataset is then utilized to train an
LSTM model.

Kalman Filter:
The Kalman filter is a math tool for predicting future values in a sequence. It uses

both predictions and real-time data to adjust its estimates, giving accurate and updated
predictions for how a system will behave. Detecting incipient faults in underground cables
is crucial for maintenance purposes. Conventional protection relays are unable to detect
these minor faults, which can negatively impact cable insulation and eventually lead to
permanent faults. Therefore, it is essential for maintenance teams to proactively detect
these faults to prevent failures. In [111], a novel method based on the Kalman filter is
presented to estimate the voltage waveform and compare it with the measured waveform.
If the divergence exceeds a predefined threshold, it indicates the presence of an incipient
fault in the cable. This method utilizes the voltage at the sending end of the cable during
the fault. Modeling the arc in the cable is necessary for voltage waveform generation.
The Mayr and modified Mayr arc models are as follows:

1
g

dg
dt

=
1
τ
(

u2

U2
c
− 1) (6)

1
g

dg
dt

=
1
τ
(

ui
P0 + Ci|i|

) (7)

where g, τ, Uc, Ci, and P0 are electrical conductance of the arc, time constant of the
model, a constant specifying voltage level, current constant, and a constant that is equal
to 1, respectively. Equations (6) and (7) stands for Mayr and modified Mayr arc models.
The state space representation of the dynamic model for the fundamental component of
voltage signal estimation with the aid of a Kalman filter is as follows:

Xn+1 = MXn + bψn
yn = hTXn + vn

(8)

where

Xn =
[
Sn Sn−1

]−1, M =

[
2 cos(ω0) −1

1 0

]
,

b =
[
1 0

]T , h =
[
1 0

]T
(9)
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By creating an iterative formulation, the estimation of the voltage can be derived by these
equations. Finally, the standard deviation can be calculated by the following formulation:

STD =

√√√√ 1
N − 1

N

∑
n=1

(VSRn − ˆVSR) (10)

where VSRn and ˆVSR are the voltage signal residual at sample n and the measured voltage
signal residual. By employing this method and following the trend of standard deviation,
it is possible to detect the defected underground cables before creating a permanent failure.

3.3. Insulators

The condition of insulators is directly linked to the overall safety and reliability of the
grid. When insulators are clean and in good health, they effectively isolate the conductive
components, minimizing the risk of electrical accidents, short circuits, and other electrical
mishaps [112–114]. Therefore, maintaining healthy and well-maintained insulators is of
paramount importance. In the subsequent section, the phenomenon of flashover, which
frequently occurs in insulators, and the application of the leakage current in flashover
prediction are examined. This is followed by an exploration of the various deep learning
techniques applied to predict flashovers.

3.3.1. Flashover

In outdoor environments, insulators are particularly susceptible to a phenomenon
known as flashover. Flashover occurs when a disruptive discharge or electrical breakdown
happens across the surface of the insulator, typically due to factors such as pollution, humid-
ity, or adverse weather conditions. Flashovers can lead to insulator failures, compromising
the integrity of the grid and potentially causing power interruptions. To address these
challenges and enhance network reliability, predictive measures can be employed [115–117].
By utilizing the recorded maintenance data and historical information, it becomes possible
to analyze patterns and identify potential flashover incidents in insulators. By predicting
when flashovers are likely to occur, the appropriate maintenance and preventive measures
can be taken proactively. This proactive approach allows for timely intervention, such as
cleaning or replacing insulators before failures happen, reducing the likelihood of faults
caused by insulator failure and improving the overall reliability of the network.

In [118], the prediction of insulator flashover voltage is performed using electric field
measurements. This research focuses on both clean and polluted insulators.
The relationship between the measurement data and the flashover voltage is established
using logarithmic regression. Although this study utilizes a specific device, its findings can
be applied to the maintenance of insulators. It can be employed in periodic inspections
to measure the values and predict the flashover voltage. If the predicted voltage deviates
from the standard, proactive actions can be taken to prevent catastrophic situations caused
by insulator faults, which can result in power outages.

3.3.2. Leakage Current

Leakage current can create localized heating, which can contribute to the breakdown
of insulation and increase the risk of flashover, where a sudden electrical discharge occurs
through the insulator, potentially leading to equipment damage or failures. It is shown
in Figure 8 where a sensor can be installed to measure leakage current value over time
and send the values to the control center after processing through the communication link.
The study conducted in [119] focuses on predicting the flashover occurrence of outdoor
polluted insulators by analyzing the harmonic components of the leakage current. The
researchers measured the leakage current in various scenarios, encompassing different
pollution levels, weather conditions, and water conductivity. By assessing the different
levels of harmonics present in the leakage current, the study aimed to evaluate and predict
the flashover phenomenon in the insulators. Ref. [120] focuses on predicting faults in
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insulators by analyzing the leakage current, which occurs due to contamination. The study
records the leakage current data for various levels of contamination and utilizes these
recorded time series for machine learning-based prediction. Ensemble learning methods
are employed to tackle the prediction task, enabling the combination of multiple models
for improved accuracy and robustness.

Sensor

Hot 
Line

Tower Crossarm

Processing

Communication

Figure 8. A sensor measures the leakage current and sends it to the control center through the
communication link.

3.3.3. Approaches for Fault Prediction in Insulators

Least Squares Support Vector Machine:
The least squares support vector machine (LSSVM) is a machine learning technique

that seeks to find an optimal linear or nonlinear function to approximate data points while
minimizing prediction errors. It is particularly effective for tasks such as regression and
classification. In [121], a new method is introduced for estimating the flashover voltage of
insulators. This method incorporates various factors such as diameter, height, creepage
distance, form factor, and equivalent salt deposit density. The estimation is performed
using a combination of LSSVM and PSO. The prediction task involves three main steps.
First, the training samples are normalized. Second, the model hyperparameters are op-
timized using PSO and the training samples. Finally, the optimized model and the vali-
dation data are utilized for the prediction task. The authors of [122] proposed a novel ap-
proach utilizing LSSVM for predicting the flashover voltage of transmission line insulators.
Unlike the research conducted by [121], this paper focused on determining the parame-
ters of a dynamic model specifically designed for insulator flashover voltage prediction.
The key parameters of LSSVM were tuned using grid search methodology. It should be
noted that this study used data from contaminated insulators, as contamination, especially
in polluted areas, can lead to the creation of leakage current. Monitoring this situation can
greatly assist maintenance teams in devising intelligent repair plans.

Convolutional Neural Network:
A convolutional neural network (CNN) is a type of deep learning model designed for

tasks involving images and visual data. It employs specialized layers that automatically
learn and identify features from the input data, enabling it to recognize patterns, objects,
and structures within images. In [123], CNN is employed for the classification of insulators
based on the analysis of time series-records of the leakage current. Their research was
conducted in the mountainous region of Taiwan, providing valuable insights to mainte-
nance teams regarding the extent of contamination affecting insulators in that specific area.
This classification approach enables the grouping of insulators based on different levels of
contamination. Such categorization proves useful in identifying potential faults in insula-
tors. The classes can be divided into various levels, ranging from low and safe levels to



Energies 2023, 16, 6332 18 of 29

high and severe levels, indicating the likelihood of failure. The authors of [124] introduced
a novel algorithm based on one-dimensional CNN for predicting the leakage current of
insulators using environmental data. The authors conducted an analysis using historical
data and demonstrated that a set of 21 weather condition samples served as an adequate
number of features for the regression task, resulting in accurate predictions.

Group Method of Data Handling:
The group method of data handling (GMDH) is a machine learning technique that

creates and optimizes a network of mathematical models to predict or analyze complex
patterns in data. It employs a self-organizing approach to iteratively build and refine these
models, enhancing their accuracy and capturing intricate relationships within the dataset.
The authors of [96] employed the wavelet group method to predict faults in electrical power
insulators. Ultrasound inspection was utilized to assess the power insulators, which gener-
ated time-series data associated with audible noise. The researchers employed the GMDH
to forecast the time series derived from ultrasound measurements. This approach holds
promise for maintenance purposes, as it enables inspections to generate data that can be
compared with the existing data. By leveraging prediction techniques, maintenance actions
can be performed based on the forecasted outcomes, aiding in the proactive management
of insulator faults.

3.4. Transformer

Transformers play a crucial role in electrical grids, enabling voltage conversion for the
efficient distribution and transmission of electrical energy. They are vital for transferring
power from the generation sources to consumers. The subsequent content discusses various
faults that can occur in transformers, along with the utilization of dissolved gas analysis
data for predicting these faults.

3.4.1. Faults in Transformers

Transformers are susceptible to various types of faults such as overheating, insula-
tion breakdown, winding short circuit, core faults, oil leakage, tap changer malfunctions,
cooling system failures, voltage regulation issues, and mechanical failures. By monitoring
different parameters of transformers and analyzing the recorded data, it is feasible to proac-
tively predict potential faults. This proactive approach to maintenance allows for timely
actions to be taken on transformers, ensuring their optimal functioning and preventing
potential issues. In the research conducted in [125], the transient overvoltage occurring
in transformers as a result of power plant switching is calculated using a transient model.
This calculation serves as a valuable tool for predictive maintenance. By predicting the
timing of power plant switching or other events leading to transients, the corresponding
overvoltage values can be determined. This information can then be utilized for short-term
maintenance actions on transformers. Ref. [126] propose a novel control algorithm that
leverages the charging time of electric vehicles (EVs) to mitigate the overload effect on trans-
formers. This algorithm offers a practical solution to alleviate the burden on transformers
caused by the increased load demand from EV charging.

3.4.2. Dissolved Gas Analysis Data

The dissolved gas analysis data provide insights into potential issues or faults within
the transformer, as certain gas types and concentrations can indicate specific problems.
The authors in [127] introduced an algorithm based on regression and classification
techniques using dissolved gas chromatography data to predict faults in transformers.
They employ the Mish-SN temporal convolutional network for the regression task. In [128],
SVM and dissolved gas analysis data are employed to predict faults in transformers. The
study explores the use of SVM in conjunction with dissolved gas analysis for effective fault
prediction. In [129], the focus is on diagnosing faults in transformers using dissolved gas
analysis. The research addresses the challenges associated with the dissolved gas analysis
data, such as imbalance, insufficiency, and overlap, which can affect the diagnostic process.
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To overcome these challenges, various machine learning algorithms, including decision
trees, k-nearest neighbors, SVM, ensemble methods, naive Bayes, and discriminant analysis,
are compared to identify the most effective approach for handling these issues.

3.5. Overhead Line

Overhead lines are a part of the electrical grid. Fault prediction in overhead lines is a
critical aspect of maintaining the reliability and safety of electrical grids. Overhead lines
are vulnerable to various types of faults, including short circuits, insulation breakdowns,
and conductor failures. Predicting these faults in advance allows for proactive mainte-
nance actions, minimizing downtime and ensuring the continuous supply of electricity.
Fault detection, diagnosis, identification, and location are crucial to improve the sensi-
tivity and reliability of system protection. This maintains the power systems continuous
proper operation; however, it is challenging in large-scale multi-machine power systems.
The research paper [130] introduces three deep learning classification and regression mod-
els based on deep recurrent neural networks (DRNN) for fault region identification, fault
type classification, and fault location prediction. The recorded current and voltage by
phasor measurement units at different terminals are used as input features for the models.
This gives the maintenance group a reactive conservation. In [131], the magnetic field from
power overhead lines in transmission and distribution grids is measured. The correlation
between the load consumption and magnetic field is then obtained for the prediction
scenario. This magnetic field can be the reason for the fault in the system. It would be
important to measure its value then. Ref. [132] propose a method to predict the thermal
situation of the overhead power lines. It actually predicts the conductor temperature over
different conductor overload conditions. The Echo State Network is used to adaptively
determine the nonlinearity of the overhead conductor thermal dynamics under different
weather conditions.

4. Challenges, Advantages, and Limitations of Electrical Grid Maintenance

This section examines the advantages and limitations of maintenance in electrical
grids. It is noted that reactive maintenance is the least reliable level, whereas prescrip-
tive maintenance is the most reliable. Table 3 presents the characteristics, requirement,
advantages, and limitations associated with different maintenance levels. Reactive and
planned maintenance typically require fewer measuring devices compared to proactive,
predictive, and prescriptive maintenance. There are some challenges in model selection
for the prediction task, mostly for predictive maintenance, hardware requirements and
ineffective recommendations in prescriptive maintenance, and, most importantly, data
availability, which is the main key of grid maintenance. Figure 2 gives a quick view of
maintenance challenges.

4.1. Model Selection

Machine learning models can be used for the prediction of time-series data. While
predictive and prescriptive maintenance frameworks offer DSOs the chance to proactively
respond to potential failures, the efficacy of these frameworks relies heavily on the strength
of the predictive algorithms employed. In [133], a novel control strategy is introduced to
address overvoltage issues in wind farms caused by reactive power demand. The authors
utilize a CNN model to forecast reactive power values, which are subsequently used
in the control algorithm to proactively respond and ensure a smooth transition, thereby
preventing overvoltage. However, a significant challenge lies in selecting the appropriate
prediction algorithm. In this study, a CNN model is employed for the prediction task,
which may exhibit limitations and prediction errors, thereby potentially impacting the
controller’s performance.

The integration of prediction analytics can offer valuable insights for long-term gener-
ation decision-making processes. In this context, ref. [134] introduces a novel model that
leverages the generation data from the existing PV sites, taking into account topograph-
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ical and meteorological information, to predict the generation potential of new PV sites.
However, this approach poses a complex challenge as it heavily relies on the accuracy
of the model and input data. Furthermore, the utilization of weather data introduces an
additional level of uncertainty compared to other types of data due to its inherently volatile
nature. Short-term time-series predictions play a crucial role in facilitating short-term
decision-making processes. In the publication [135], a novel approach utilizing wavelet
analysis is introduced for wind speed prediction, particularly in the context of wind turbine
power generation. This method holds potential for enabling a predictive system capable of
forecasting power generation in wind power plants. The obtained data can be applied to
address predictive maintenance issues related to power generation, such as overloading.
However, it is important to note that selecting an appropriate model for predicting wind
speed, given its highly fluctuating nature, can pose a significant challenge.

Table 3. Some main advantages and limitations of different maintenance levels [21,136–138].

Maintenance
Level Reactive Planned Proactive Predictive Prescriptive

Characteristics Fixing after failure Scheduled based
on time or usage

Conduct with early
sign of equipment

deterioration

Conduct before
equipment failure

based on the
prediction analysis

Predict the failure
and recommend

solution

Requirements

Quick response
team and

emergency
equipment

Maintenance
schedule and

regular inspection

measuring device
installment,

communication
link, and trend

tracking

Real-time data
collection,

predictive tools,
and machine

learning

Advanced analytic
and integration

with operational
system

Advantages Minimal planning
Unplanned
downtime
reduction

Equipment lifetime
enhancement and

major failure
risk reduction

Cost-effective and
optimized

maintenance
schedule

Increased uptime
and optimized

resource allocation

Limitations

Increased overall
maintenance cost,
safety risks, and
high downtime

Missed or
unnecessary

maintenance due
to scheduling

constraints

Initial investments
and false alarms

Need accurate
data, specialized

expertise, and
investment on

predictive
technology

Complex data
analysis and
incorrect or
ineffective

recommendations

4.2. Grid Expansion Requirement

Prescriptive maintenance has the capability to predict the failures within the electrical
grids and recommend solutions using existing infrastructures. Nonetheless, its effectiveness
could be compromised by the necessity for expanding the grid. The research paper [139]
introduces a prescriptive maintenance framework aimed at predicting transmission line
overload and proposing generation rescheduling as a corrective measure. While this
approach can effectively predict overload situations and provide recommendations for
mitigating them through N-1 contingency generation plans, it may not be applicable in
cases of severe overload. One significant limitation of prescriptive maintenance is its
restricted ability to address extensive grid expansion requirements. In [140], a novel
approach is introduced to address overvoltage issues in low voltage feeders caused by
high solar generation and low consumption. This prescriptive maintenance procedure
incorporates the main controller of the inverter and employs an active power curtailment
strategy. This method offers the advantage of mitigating the negative impact of excessive
generation by implementing a NWAs solution, simply by adjusting the behavior of the
inverter controller in specific scenarios. However, it should be noted that in cases of highly
unbalanced generation and demand, the controller may struggle to deliver power to the
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grid accurately, potentially resulting in power outages or damage to components. In this
case, grid expansion is inevitable.

4.3. Ineffective Solutions

The solutions provided by a prescriptive maintenance system could be ineffective.
The publication [141] introduces a novel management strategy for EV charging to address
the issue of undervoltage caused by the large-scale fast charging of EVs. This method can
be categorized as a prescriptive maintenance strategy. By formulating an optimization
problem, various charging scenarios are considered to determine the optimal charging
strategy that prevents the grid from experiencing undervoltage conditions. However, a
significant challenge lies in the practical implementation of the proposed charging scenarios.
In real-world scenarios, there is no guarantee that consumers will adhere to the optimized
plans, even with the incentive of electricity pricing.

4.4. Data Availability

The availability of data is essential for enabling predictive capabilities. The methodol-
ogy, data type, advantages, limitations, and maintenance type of different research papers
in the field of electrical grid maintenance are presented in Table 4 to give a quick picture of
the most recent studies in the field to readers. The table reveals that many of the limitations
stem from issues regarding the availability and reliability of data. The primary factor for
effective maintenance is the digitization of the grid, which can be both challenging and
expensive. Understanding the extent of grid digitization is crucial as it plays a significant
role in maintenance activities. Determining the level of digitization is crucial as it helps
find a middle ground between grid expansion and the integration of predictive analytics
into grid maintenance, thereby reducing costs. While grid expansion is necessary in certain
instances, relying solely on prescriptive solutions may not address all potential issues in
the grid [22,142,143]. Various forms of time-series data are employed to facilitate the pre-
dictive and prescriptive maintenance of grid components. As evidenced by the references
in Table 4, historical load data, wind speed, and solar generation measurements serve
as primary time series for digitally enabled maintenance in the electrical grid. However,
challenges related to the data availability within electrical grids are outlined as follows.

Table 4. Advantages and limitations of different research papers.

Reference Method Data Maintenance
Level Advantages Limitations

[144] Probabilistic Current Prescriptive

Predicting EVs impact on
residential load, Considering
Different types of DGs and
seasonal effects, providing
re-schedule charging plan

No solution for high DG pene-
tration, large-scale EV charging,
and smart EV charging

[145]
Electrical
and Electro-
acoustic

Leakage Current Proactive
Using acoustic sensors, en-
abling wide range of fre-
quency, cost-effective

No predictive procedure, not
available for HV cables, not
detecting PD level

[146] Probabilistic Failure rate,
Age, Length Predictive

Prediction of underground
cable failures, five models for
failure estimation, piecewise
constant model

Limited availability of age data,
practical implementation, and
long-term prediction

[147] ANN Solar radiance,
Temperature Predictive

predicting anomalies and
faults in PV systems, power
prediction

Not robust against different
conditions and need available
data and real-time monitoring
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Table 4. Cont.

Reference Method Data Maintenance
Level Advantages Limitations

[148] FFT Vibration,
Temperature Proactive

IoT system, predicting ab-
normal conditions, using
FFT algorithm

Need communication link, vul-
nerable to cyber attacks, needs
additional technical resources
for IoT system

[149] Optimization Power Prescriptive

No need for infrastructure
expansion, provide solution
to minimized aggregate load,
prevent overload

Accurate load prediction is
needed, trade-off between
charging efficiency and charg-
ing speed is not investigated

4.4.1. Measuring Device Installation

Measurement installation could be challenging in order to collect data from different
components of the grid. For instance, in order to perform predictive analysis, it is essential
to install measuring devices on insulators to capture time-series data. Contamination levels
in insulators pose a significant concern as they can lead to failures. However, installing
sensors in all insulators for predictive maintenance purposes would be a daunting task.
Nevertheless, there are alternative approaches to address this challenge. Studies can be
conducted in different environments to analyze the contamination patterns of insulators
over time, considering various environmental conditions. This approach allows for a better
understanding of the contamination levels and facilitates predictive maintenance strategies
specific to each environment. In [150], a novel approach is introduced for load forecasting
that can support predictive maintenance. This method aids in the decision-making process;
however, it necessitates access to recorded historical data, which may require a substantial
initial investment for the installation of measuring devices. As the network expands,
it becomes imperative to invest in the installation of measuring devices to establish an
effective predictive maintenance system.

4.4.2. Grid Scalability

The primary challenge lies in the scalability of the grid concerning digitization. In-
troducing predictive maintenance throughout the extensive and intricate electrical grid
presents difficulties in consistently gathering data, creating tailored models for various
equipment, handling substantial data volumes, and coordinating multiple stakeholders.
This requires robust infrastructure, advanced data management systems, and efficient
communication protocols to handle the growing data demands effectively [151,152].

4.4.3. Cost and Return

It is crucial to consider the costs and return on investment associated with the main-
tenance development in the electrical grid. While implementing maintenance solutions
incurs initial expenses for infrastructure and technology deployment, it offers long-term
cost savings by reducing downtime, optimizing resource allocation, minimizing emergency
repairs, and enhancing reliability, ultimately yielding a positive return on investment [153].

4.4.4. Cyber Attacks

Another challenge encountered in the implementation of predictive maintenance is
the establishment of reliable and secure communication links. Creating a communication
infrastructure that is resistant to cyber attacks is crucial to transmit the recorded data to the
monitoring center for further analysis [154,155].

4.4.5. General Data Protection Regulation

Compliance with the general data protection regulation (GDPR) is essential when
utilizing personal data for predictive maintenance in the electrical grid. Several key consid-
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erations, including data protection, lawful basis, purpose limitation, data minimization,
data security, data subject rights, data transfer, privacy impact assessment, and accountabil-
ity and documentation, must be taken into account. DSO companies seeking to enhance
grid maintenance levels must comprehend and adhere to the GDPR requirements to ensure
the lawful and responsible processing of personal data. Seeking guidance from legal pro-
fessionals or data protection authorities can provide further assistance in fulfilling specific
compliance obligations [156,157].

5. Conclusions

This review paper has provided a comprehensive analysis of the application of time-
series prediction methods for maintenance in electrical grids. The integration of digital
technologies and the availability of diverse time-series data have opened up new possi-
bilities for enhancing maintenance practices in electrical systems. Through an exploration
of statistical models, machine learning algorithms, and artificial intelligence approaches,
this paper has demonstrated the potential of these techniques in supporting maintenance
efforts. The reviewed literature has highlighted the significance of time-series data and
historical-fault data for maintenance purposes. These datasets offer valuable insights into
the condition of electrical grid components and enable proactive maintenance actions to en-
sure reliability, performance, and cost-effectiveness. Furthermore, the study has shed light
on the diverse range of time-series algorithms used in different components of the electrical
grid, including underground cables, overhead lines, transformers, and insulators. The
findings emphasize the importance of digitization in collecting, analyzing, and leveraging
time-series data for maintenance decision-making. By applying advanced data analytics
and predictive modeling, utilities can enhance their maintenance strategies, reduce down-
time, and optimize resource allocation. It is worth noting that while significant progress has
been made in the field of time-series prediction for maintenance in electrical grids, there
are still challenges to overcome. These include data quality issues, algorithm selection,
model interpretability, and scalability. The future research should focus on addressing
these challenges to further improve the effectiveness of time-series prediction methods in
supporting maintenance practices.
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