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Abstract: In an era of big data, organizations increasingly aim to adopt data-driven decision-making
processes to enhance their performance. This paper investigates the data-driven decision-making
process by developing a framework tailored for application in the energy sector. The proposed frame-
work integrates interdisciplinary approaches to comprehensively address the “data, information,
knowledge” triad, applying it to both operational and maintenance decision-making. Designed to be
managerially focused rather than technically oriented, the framework aims to engage all employ-
ees, including those without technical backgrounds, enabling them to effectively contribute to the
decision-making process from their respective roles. To demonstrate the practical application of the
proposed framework, this paper presents a case study of an energy organization managing a wind
farm project, which implemented the framework to improve its decision-making process. The case
study examines how the organization identified its objectives and information needs, formulated key
performance questions for each stakeholder, explicitly defined and measured the key performance
indicators, employed data collection and organization methods, managed the progression from data
to information to knowledge, and transformed the acquired knowledge into informed decisions. By
adopting this pragmatic framework, energy organizations are anticipated to solve problems, predict
trends, and discover new opportunities, thereby enhancing their efficiency and predictability.

Keywords: decision-making; data mining; energy sector; renewable energy sources; wind farm;
framework; case study

1. Introduction

Organizations are called upon to make decisions daily, most of which relate to routine
matters. However, some crucial strategic policy decisions require the necessary information
and tools to support the relevant decision-making process [1]. At the same time, they strive
to effectively utilize a large volume of available data [2]. To respond to these challenges,
organizations are trying to transform themselves into data-driven entities and improve the
quality of their decisions [3].

Organizations operating in the field of renewable energy sources, as well as those in
various other industries, are facing similar challenges. The growth in the renewable energy
sector, particularly wind energy, is significant and expected to continue into the future [4].
However, the broader issue of energy efficiency extends beyond the renewable sector.
As [5] highlight in their study on energy efficiency advancements in India, the efficiency
of electricity generation and distribution, along with the judicious use of electricity, can
lead to a decline in the energy intensity of economic output. This is particularly relevant
during the Operation and Maintenance (O&M) period of a wind farm, where the ability
to effectively control wind energy production and the farm’s components can have far-
reaching implications for energy efficiency across various sectors [6]. In the context of
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large-scale Hybrid Electric Vehicles, [7] introduce the concept of model predictive to mean
field game for energy management strategies. The proposed approach shows improved
performance in dealing with uncertainty and computational burden, demonstrating the
potential of advanced computational strategies in enhancing energy efficiency. Ref. [8]
also emphasize the importance of the correct use of scientific and technical solutions for
the operation and optimal operating modes of the power supply system to increase the
efficiency of enterprises. Furthermore, [9] show how various energy efficiency policies
can affect the process of decision-making for and investment in energy efficiency in the
industry. This broader focus on efficiency can facilitate more effective decision-making in
the electric power industry at various levels, contributing to overall energy sustainability.

In order to realize these efficiency gains and make informed decisions, it is essential
to harness the power of data. Large amounts of data are collected from various sources,
providing information on more than one hundred parameters over ten-time intervals [10].
The sheer volume and complexity of this data make it difficult to manually analyze and
interpret, hence, the need for advanced analytical tools. Data mining has been recognized
as a valuable tool to support decision-making [11,12]. It can help predict energy production,
optimize maintenance schedules, and identify potential issues or failures, thereby enabling
organizations to maximize their energy efficiency and make effective decisions in the
electric power industry.

Considering the significance of the aforementioned trends, various approaches have
been devised in the energy sector to address data-driven decision-making processes. These
approaches typically acknowledge the value of data mining techniques for predicting
and identifying areas of concern (e.g., [10]). Moreover, some approaches extend beyond
predictive maintenance, encompassing the crucial operational phase of an energy project
(e.g., [6]). Furthermore, a majority of the approaches in the energy sector rely on sophisti-
cated computational techniques and algorithms (e.g., [4,13]). However, their predominantly
technical nature necessitates the involvement of highly skilled technical personnel in the
decision-making process. This requirement poses a challenge, as not all employees within
an energy organization possess an extensive technical background.

Pertinent approaches have been proposed in various fields, contributing valuable
non-technical aspects to the data-driven decision-making process. For instance, approaches
from the business, education, and other domains emphasize the importance of inclusivity,
support, and user-friendliness throughout the decision-making process, advocating for
straightforward and easily applicable steps (e.g., [1,11,14–16]). These approaches also
expressly acknowledge and promote the role of human factors in decision-making in
conjunction with information technology and processes (e.g., [3,16,17]). Additionally,
they underscore the necessity for feedback following the implementation of decisions
(e.g., [3,15,18]).

To sum up, various approaches in both the energy sector and other fields address
individual aspects of the decision-making process. However, no existing approach com-
prehensively meets all specifications required for a good fit within an energy organization.
Recognizing this gap, the current paper endeavors to develop a pragmatic framework for
a data-driven decision-making process, specifically tailored for application in the energy
sector. This framework builds upon the strengths of existing energy sector approaches
and incorporates additional elements from other fields to address any shortcomings. Sub-
sequently, a case study involving the implementation of the proposed framework in a
renewable energy project (i.e., a wind farm) is presented for validation. The project is
examined during its O&M period from the owner/investor’s perspective for an entire
year (i.e., 2020). The case study explores how the organization determined objectives and
information needs, developed key performance questions (KPQs), defined and measured
key performance indicators (KPIs), employed data collection and organization methods,
progressed from data to knowledge, and converted this knowledge into informed decisions.
Consequently, the energy organization under study was able to engage in evidence-based
decision-making.
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The field of wind energy was chosen as the object of study for several reasons. First,
wind energy is one of the fastest-growing renewable energy sources worldwide [19,20],
making it a highly relevant and timely area of study. Second, wind energy projects in-
volve complex and dynamic decision-making processes due to factors such as variable
wind speeds, the need for regular maintenance, and the integration of power grids [21,22].
These complexities make wind energy a suitable context for testing a comprehensive
data-driven decision-making framework. Furthermore, wind energy projects generate a
vast amount of data, including wind speed and direction, power output, and operational
parameters [10,23]. This abundance of data provides ample opportunities for applying
advanced data analysis techniques and deriving actionable insights, which are key compo-
nents of the proposed framework.

While this study focuses on wind energy, the proposed framework is designed to be
adaptable and applicable to other renewable energy sources. The decision-making process
in renewable energy projects, regardless of the specific type of energy source, involves
similar steps such as defining objectives and information needs, collecting and analyzing
data, and making informed decisions. Therefore, the principles and methods outlined in
the proposed framework can be applied to other renewable energy contexts, such as solar
or hydro energy projects (see [24]). However, it should be noted that while the overall
process may be similar, the specific data sources, key performance indicators, and data
analysis techniques may vary depending on the type of renewable energy. For instance,
a solar energy project may involve different types of data (e.g., solar irradiance, panel
temperature) and different operational considerations compared to a wind energy project.
Therefore, when applying the proposed framework to other renewable energy sources, it
may be necessary to adapt certain elements to fit the specific context and characteristics of
the energy source.

The structure of the remainder of this paper is as follows: Section 2 provides a concise
review of existing research on decision-making and data mining in wind energy projects.
Section 3 delineates the methodology followed in the study for the design and validation
of the proposed data-driven decision-making framework. Section 4 offers a critical exami-
nation of various data-driven decision-making approaches across multiple sectors, aiming
to identify the desired specifications for a pragmatic framework tailored for application in
the energy sector. Section 5 presents the proposed framework for the data-driven decision-
making process, which is validated through a case study of a wind farm in Section 6.
Section 7 delves into a comprehensive discussion on the benefits and wider implications of
implementing the proposed data-driven decision-making framework, as evidenced by the
experience of the wind farm under study. Finally, Section 8 presents the study’s conclusions
and offers directions for future research.

2. Decision-Making and Data Mining in Wind Energy Projects

The significance of effective decision-making in the energy sector, particularly within
the realm of wind energy, is evident during both the design and O&M phases of a project.
During the design period of a wind farm project, effective decision-making is crucial for
determining the installation location. This process typically involves multi-criteria analyses
due to the numerous factors influencing power plant site selection [25–27]. For example, [28]
proposed a framework that quantitatively and qualitatively considers environmental,
technological, economic, and social parameters, assigning weights to prioritize potential
installation sites in Saudi Arabia and neighboring Gulf countries. A similar case study
is documented in the literature for northeastern Poland [29]. The latter approach found
the success of the decision-making process to be contingent upon the optimal selection of
a multi-criteria analysis method. Some methods rely on utility functions or relationship
outranking, while others are based on distances or decision support. Regardless, the
careful selection of a wind farm’s location is imperative, as the project’s viability is heavily
contingent upon it [30,31].
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During the O&M period of a wind farm, the planning and scheduling of mainte-
nance activities are crucial for extending the project’s lifespan [32]. The objective is to
enhance maintenance services while simultaneously reducing the associated costs [33,34].
The primary data source for such improvements is the SCADA system of wind turbines,
which includes signals and alarms of generators, known as Product Use Information (PUI).
In conjunction with appropriate data analysis methods, this information can facilitate
better decision-making [35–37]. Specifically, for offshore wind farms, the cost of O&M
services can be optimized through improved data management and integrated software
solutions [38–40]. In such cases, weather, journey, and vessel data are integrated to evaluate
the cost of each maintenance action, enabling optimized job scheduling [41].

Another area emphasizing the significance of effective decision-making in wind farms
pertains to energy markets [42]. Daily forecasting of wind production is required, which
is incorporated into the energy planning conducted by the respective energy exchange.
Consequently, decisions regarding market bids for next-day delivery, based on forecasted
energy production, are characterized by uncertainty [43]. The efficiency (or inefficiency) of
these decisions impacts prices and shapes liberalized electricity markets [44].

To facilitate decision-making, data mining techniques have been employed in the wind
energy sector within a predictive engineering framework [10]. Modeling wind energy—
through wind speed forecasting, wind power production forecasting and optimization, and
fault diagnosis of wind turbines—poses significant research challenges [45].

Owing to the stochastic nature of wind and the influence of seasonal and climatic vari-
ations, wind speed forecasting is an especially challenging parameter to estimate [46–48].
It is crucial to consider the operation of wind energy facilities during different periods of
the year and in different climatic conditions to develop a more effective decision-making
methodology [49,50]. Data mining techniques, when adapted to account for these variations,
have demonstrated promise for short-term wind speed forecasting [51,52]. Consequently,
various artificial learning-based algorithms have been developed [53], which can be further
refined to incorporate seasonal and climatic factors. Examples include artificial neural
networks [54,55], convolutional neural networks [56,57], and long short-term memory
networks [58,59], which employ diverse statistical methods and time indicators to assess
their accuracy. Hybrid models, combining two or more algorithms, are also frequently uti-
lized [47,60–62]. These models could be enhanced by incorporating data related to different
periods of the year and various climatic conditions, thereby improving the accuracy and
reliability of wind speed forecasting and the overall decision-making process in the wind
energy sector.

Furthermore, data mining techniques facilitate wind power production forecasting
(both short and long-term) and optimization [63,64]. Statistical, physics-based, and spatial
models have been developed for wind power production forecasting [65–67], while wind
turbine power curve monitoring supports the optimization process [68]. Notably, in daily
energy planning by power transmission operators, wind power production forecasting
is crucial for the safety of countries’ power grid systems. In this regard, a study by [69]
identified adaptive neuro-fuzzy inference systems, neural networks, and multilayer per-
ceptrons as highly accurate solutions. The optimization of wind power production is also a
significant research area. Employing data mining algorithms in tandem with evolutionary
strategy algorithms can maximize turbine power output by optimizing blade pitch and
yaw angle [70].

The O&M cost of a wind turbine, being the predominant expense for wind farm
development, has led to modern wind turbines being equipped with Condition Monitoring
Systems (CMS) for fault detection [71]. Parameters such as drive train vibration, oil pressure,
bearing temperature, and step-up transformer temperature are continuously monitored
via SCADA for fault prediction and diagnosis [72–74]. Decision tree learning algorithms
are often employed to investigate common faults and abnormal events, such as excessive
vibrations [75]. Another example includes monitoring a wind turbine’s pitch system using
a strategy based on small-world neural networks, as the pitch system is crucial for ensuring
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both the turbine’s braking and the power grid system’s stability [76]. Data mining methods
are also utilized for preprocessing data from wind turbines. The preprocessing of wind
data encompasses steps from collecting raw data to obtaining filtered data, which serves as
the foundation for effective decision-making [77].

In conclusion, data mining methods are increasingly employed in wind power plants,
primarily for forecasting and monitoring generating unit operations. As wind production
continues to penetrate the energy mix, these techniques are expected to find a growing
number of applications.

3. Materials and Methods

The methodology of this study was structured as a four-step process, with each step
building upon the previous one to ensure a comprehensive and robust approach to the de-
sign and validation of the proposed framework for data-driven decision-making processes
in the energy sector. These steps encompassed: (a) the identification of desired specifica-
tions, (b) the identification of suitable approaches, (c) the synthesis of these approaches into
a comprehensive framework and the definition of the decision-making process within this
framework, and (d) the implementation and validation of the framework through a case
study. Each step was crucial in developing a framework that is both theoretically sound
and practically applicable in the energy sector. The following paragraphs outline each step
in further detail:

Identification of desired specifications: The first step involved systematically identi-
fying the desired specifications for a pragmatic data-driven decision-making framework
tailored for the energy sector. This process was achieved through a systematic four-stage
procedure that included a comprehensive literature review, qualitative assessment of ar-
ticles, forward and backward citation tracking, and purposeful selection of publications
based on their contribution to our research objectives. The outcome of this step was a
set of desired specifications that integrate key elements such as data mining techniques,
accessibility, the careful selection and utilization of data sources, feedback mechanisms, and
convenient visualization of information. The details of this step are elaborated in Section 4.

Identification of suitable approaches: Building upon the identified desired specifica-
tions, we then sought to identify specific approaches that collectively fulfilled all the critical
desired specifications. This step involved a critical examination of various data-driven
decision-making approaches across multiple sectors. The result was the selection of four
approaches that collectively met all the critical desired specifications. These approaches
were selected for their unique contributions to the data-driven decision-making process.
The details of this step are elaborated at the beginning of Section 5.

Synthesis of approaches and definition of the decision-making process: The third step
involved synthesizing the identified approaches to create an efficient framework tailored
to the needs of an energy organization. This framework, designed as a continuous loop,
consists of six sequential steps: defining project objectives and information needs, collecting
and organizing data, transforming data into information, transforming information into
knowledge, making and implementing decisions, and obtaining feedback and evaluating
decisions. Each step was further delineated into specific elements to ensure a compre-
hensive understanding of the process. Technological solutions were identified as critical
enablers of this process. The synthesis of approaches built upon the strengths of existing
energy sector approaches and incorporated additional elements from other fields to address
any shortcomings. The details of this step are elaborated in Section 5.

Implementation and validation through a case study: The final step involved the
implementation and validation of the proposed methodology through a case study of a
wind farm project (as detailed in Section 6). This case study explored the application of
the proposed framework during the O&M period from the owner/investor’s perspective
over the course of an entire year. The case study provided insights into the practical
application of each step of the framework. The data for this case study was primarily
sourced from the wind farm’s SCADA system, which provided real-time, continuous
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monitoring of various technical KPIs. Data was recorded every ten minutes to capture the
dynamic nature of the wind farm’s operation. An internal team of specialized engineers
was responsible for data collection and immediate evaluation. To validate the structured
data, unstructured data such as emails, videos, photos, and oral communication were also
utilized. Network operator data served as an additional source for verifying fundamental
performance indicators. The data collected from the SCADA system and other sources were
subjected to rigorous analysis to transform it into actionable information and knowledge.
This process involved the use of various data mining techniques, including decision trees,
classification techniques, association analysis, and sequential patterns (further details are
provided in Section 6.3).

4. Desired Specifications for a Pragmatic Data-Driven Decision-Making Framework in
the Energy Sector

This section provides a critical review of various existing approaches for data-driven
decision-making processes in energy and other sectors. To collect the necessary biblio-
graphic information, we applied a four-stage procedure. In the first stage, we identified
articles in the Scopus Database containing relevant keywords (e.g., data-driven decision-
making process, approach, framework, or model) in their titles or abstracts. In the second
stage, we qualitatively assessed these articles, excluding those that did not explicitly present
an original approach. In the third stage, we employed forward and backward citation
tracking, as recommended by [78], to enhance the quality of the publications analyzed.
By doing so, we selectively retrieved additional articles presenting data-driven decision-
making approaches of interest. Forward and backward citations were checked using the
Google Scholar Database, expanding the number of potential publications and enabling us
to include sources not present in the Scopus Database. In the final stage, we purposefully
selected a sample of the retrieved publications based on the usefulness of their individ-
ual specifications in contributing to our research objectives. Consequently, we retained
6 approaches tailored specifically for the energy sector and 12 approaches proposed in
other sectors. The latter were intentionally selected for their managerial focus rather than
technical orientation.

Table 1 summarizes the findings from the literature review, emphasizing the primary
contributions and limitations of each analyzed approach. The objective of this analysis
was to determine the desired specifications for a pragmatic framework for a data-driven
decision-making process, tailored for application in the energy sector.

Given the findings from the literature review, we identify the desired specifications for
a pragmatic framework for data-driven decision-making processes, tailored for application
in the energy sector, as follows.

The framework should integrate the triptych “data, information, knowledge” and fur-
ther elaborate on the application of acquired knowledge to actual decision-making [3,15,16].
It should comprehensively utilize data mining techniques to support decision-making,
eschewing a focus on only a single or a few specific techniques [13,16]. Additionally, the
framework should encompass both the O&M periods of an energy project, as maintenance—
whether scheduled, preventive, or corrective—ensures the proper and smooth operation of
such projects [6,13].
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Table 1. Contributions and limitations of data-driven decision-making approaches.

Reference
& Field

Specifications of Each Approach

Contributions Limitations

Ref. [10]
Energy

• Data mining techniques are employed to predict
and identify problematic operating states of wind
turbines.

• Association Rule Mining is utilized as a technique
to detect relationships among parameters in large
volumes of data.

• The prediction model applies five data mining
algorithms.

• Results are richly visualized through suitable
tables and figures.

• It is highly specialized, requiring in-depth
knowledge of the energy sector and related
technologies.

• Being technical and complex, it is intended for
highly-qualified technical staff.

• The focus is solely on preventive maintenance, not
addressing the operational period of wind turbines.

Ref. [13]
Energy

• It acknowledges data mining as a viable method
for monitoring wind turbine performance.

• It discerns the variety of turbine state information
and conducts a functional categorization.

• Various algorithms are assessed, and their results
are effectively displayed through tables and graphs.

• No connection between data mining and
decision-making is established, as the focus is only
on fault prediction.

• The complexity and reliance on computational
methods make the approach suitable only for
highly-qualified technical staff.

• The model’s accuracy is insufficiently validated,
necessitating further research.

Ref. [6]
Energy

• The need to process data prior to incorporating it
into the model is identified.

• Data mining is recognized as an efficient tool for
utilizing the available database.

• The requirement for filtering the large volume of
records from the SCADA system and met mast is
emphasized.

• It serves as a supportive method for organizing
daily operations, not just a preventive maintenance
program.

• There is no established connection between data
mining and decision-making.

• It is highly specialized, requiring in-depth
knowledge of the wind turbines’ operation.

• Being technical and complex, it is intended for
highly-qualified technical staff.

Ref. [79]
Energy

• Satellite data and information from various climate
zones form the basis of the process.

• All types of renewable energy sources are
evaluated using multi-criteria analysis.

• Results are richly visualized through suitable
tables and figures.

• Data mining as a tool for effective decision-making
is not mentioned.

• It aims to define optimized sites for renewable
energy project installation, not examining the
O&M period.

Ref. [32]
Energy

• The method begins with PUI, analyzing field data
in conjunction with historical data.

• Equipment degradation and reliability analysis are
conducted.

• The analysis concludes with the examination of
failure priority, a crucial step for maintenance
planning that informs decision-making.

• Data mining is not mentioned, but it could be an
effective tool in reliability analysis.

• The focus is on offshore wind farms, lacking a
comprehensive approach.

• Being technical and complex, it is intended for
highly-qualified technical staff.

Ref. [4]
Energy

• Big data analytics are employed in a cloud
computing environment.

• It generates six predictive models.
• It utilizes historical data as a starting point and raw

data in the process.
• The need for predictive model visualization is

highlighted.

• The complexity and reliance on computational
methods make the approach suitable only for
highly-qualified technical staff.

• The focus is solely on preventive maintenance, not
addressing the operational period of wind
turbines.

• There is room for improvement in the accuracy of
predictive models due to the specific characteristics
of the data.

• Data instability necessitates testing the cloud’s
scalability capability and maintaining updated
predictive models.
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Table 1. Cont.

Reference
& Field

Specifications of Each Approach

Contributions Limitations

Ref. [1]
Business

• Data mining is acknowledged as a
decision-making tool with the need to be
supportive and user-friendly.

• It includes discrete steps focusing on selecting data
mining tasks and methods.

• The importance of an appropriate organizational
framework is emphasized to ensure the usefulness
of decision-making tools.

• No reference is made to the data collected or how
they are organized.

• The focus is on computational processes and
methods, disregarding the human factor’s
contribution to interpreting and utilizing the
knowledge produced.

Ref. [12]
Business

• The integration of data mining and optimization
techniques to enhance the decision-making process
is outlined.

• Data collection is not mentioned; data mining is
presented after data collection.

• Visualization of produced information for
stakeholders is not addressed.

Ref. [3]
Business

• The contributions of people, IT resources, and
processes are emphasized.

• It demonstrates how feedback, after the
implementation of a decision, affects data,
information, and insights.

• It does not link data with organizational objectives
for energy projects.

• The necessity of using appropriate technological
tools throughout the process is not emphasized.

• Data mining as a tool for effective decision-making
is not mentioned.

Ref. [11]
Education

• Data mining is recognized as an efficient tool for
transforming available data into information.

• Data mining techniques are categorized into
supervised or predictive and unsupervised or
descriptive.

• Results are richly visualized through suitable
tables and figures.

• The focus is on a single specific data mining
technique (i.e., cluster analysis).

• Feedback mechanisms and systematic evaluation
of decisions made are not included.

Ref. [15]
Education

• It fully integrates data, information, and
knowledge into decision-making.

• The importance of technology-based tools to
support and facilitate the process is emphasized.

• It demonstrates how feedback, after implementing
a decision, affects individual procedures.

• It does not link data with organizational objectives
for energy projects.

• Data mining as a tool for effective decision-making
is not mentioned.

• Systematic evaluation of decisions made is not
included.

Ref. [18]
Education

• The need to mine appropriate data is clearly
recognized.

• Process performance indicators are identified.
• Feedback, following decision implementation, is

acknowledged as necessary for continuous
improvement.

• Data mining as a tool for effective decision-making
is not mentioned.

• Information technologies are treated as a barrier
due to acquisition costs.

• Visualization of produced information for
stakeholders is not addressed.

Ref. [80]
Retail

• Data mining is recognized as an efficient tool.
• The application of automated data analysis and

processing methods in the decision-making process
is illustrated.

• The multifaceted contribution of data mining (e.g.,
inventory management optimization, performance
analysis, customer satisfaction) is highlighted.

• It does not link data with organizational objectives
for energy projects.

• No reference is made to the data collected or how
they are organized.

• Oversimplifies data mining as a two-step process
(data collection and analysis).

• It is highly specialized, focusing on the retail field.
• Feedback mechanisms and systematic evaluation

of decisions made are not included.
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Table 1. Cont.

Reference
& Field

Specifications of Each Approach

Contributions Limitations

Ref. [16]
Accounting

• It is data-driven and structured, fully integrating
data, information, and knowledge into
decision-making.

• The process steps are straightforward, the
messages clear, and the approach appears
applicable to various organizations.

• Data privacy and data ownership are considered.
• Data mining is recognized as a valuable tool for

data analysis.
• The necessity of creating a data-driven culture

within the organization is outlined, along with the
importance of collaboration between people and
technological tools in making better decisions.

• It encourages the disclosure of information within
the organization and recognizes employees for
their data-driven actions.

• It targets only middle and top-level management,
but lower-level management, crucial to many
businesses’ operations, should also be considered.

• Feedback mechanisms and systematic evaluation
of decisions made are not included.

Ref. [81]
Food

Industry

• Data cleaning and integration are introduced as the
first step of the process.

• Data mining is acknowledged as an efficient tool
for searching data and finding hinted information.

• The accuracy of the applied method is outlined.

• The focus is on a single specific data mining
technique (i.e., a decision tree as a predictive
model).

• Feedback mechanisms and systematic evaluation
of decisions made are not included.

Ref. [82]
Child

Welfare Or-
ganizations

• It is presented as a cyclical process, enabling
continuous improvement.

• The formulation of appropriate vital questions,
which need to be answered, serves as the starting
point of the process.

• It encourages communication and collaboration,
enhancing critical thinking.

• Results are richly visualized through suitable
tables and figures.

• The transformation of data into information
through the process is not apparent.

• The necessity of using appropriate technological
tools throughout the process is not emphasized.

Ref. [17]
Production

Develop-
ment

• Assessing the maturity level of the internal
decision-making process is highlighted as a
starting point.

• The quality of data in the process is emphasized.
• The contributions of both technology and

employee expertise are recognized.
• Barriers, such as human resistance to change, fear

of the unknown, disagreements, and refusal of
immense workloads, are acknowledged.

• It does not link data with organizational objectives
for energy projects.

• Data mining as a tool for effective decision-making
is not mentioned.

• Feedback mechanisms and systematic evaluation
of decisions made are not included.

• Visualization of produced information for
stakeholders is not addressed.

Ref. [14]
Bank & IT

Sector

• Data collection is linked to the organization’s
specific requirements.

• The 7V’s of big data are taken into consideration.
• The availability of IT infrastructure is emphasized.

• Data mining as a tool for effective decision-making
is not mentioned.

• The human factor’s contribution to the
interpretation and utilization of knowledge is
largely ignored.

• Feedback mechanisms and systematic evaluation
of decisions made are not included.

Accessibility is vital, as the proposed framework should be available to all involved
employees, irrespective of their background or hierarchical level [16]. Most existing ap-
proaches in the energy sector are technical in nature (e.g., [6,13,32]), primarily catering
to technically specialized staff possessing deep knowledge of energy technologies and
computational methods. However, energy organizations typically employ individuals with
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diverse scientific backgrounds, such as engineers, physicists, meteorologists, accountants,
environmentalists, energy analysts, and economists. Consequently, the proposed frame-
work should adopt a more “managerial” than “technical” approach [14–16], enabling all
involved employees to contribute to the decision-making process and incorporate insights
from their respective backgrounds.

The careful selection and thorough utilization of data sources that best contribute
to achieving organizational objectives for energy projects are essential [16,18,81]. The
framework should incorporate a systematic evaluation of decisions made and acknowledge
the importance of feedback for optimizing each action [3,15,18]. Furthermore, it should
encourage the contribution and collaboration of both human factors and technological tools
for effective decision-making [16,17].

Lastly, the framework should prioritize the convenient visualization of information,
facilitating sharing with stakeholders of an energy organization, both internally and exter-
nally [10,11,79].

5. The Proposed Framework for Data-Driven Decision-Making Process

From the preceding literature review, it becomes apparent that no single existing
approach satisfies all the desired specifications for data-driven decision-making processes.
However, a synthesis of these approaches could yield an efficient framework tailored to the
needs of an energy organization. In this regard, four approaches—namely, [3,13,15,16]—
collectively appear to fulfill all the critical desired specifications identified in Section 4.

The approach of [13] enhances the data-driven decision-making process in the energy
sector by employing a range of data mining techniques to transform data into valuable in-
formation and knowledge. Their approach addresses both O&M periods of energy projects
while emphasizing the effective visualization of information for sharing with stakeholders.
The approach of [15] further the process by systematically collecting and organizing data,
ensuring accessibility for all employees irrespective of their background or hierarchy level,
and incorporating systematic evaluation and feedback mechanisms to optimize decision-
making outcomes. The approach of [16] advances the data-driven decision-making process
by collecting and organizing data systematically, utilizing data mining techniques to gener-
ate useful information, and ensuring accessibility for all employees, ultimately contributing
to the achievement of predefined organizational objectives for energy projects. Lastly, the
approach of [3] enhances the process by focusing on the actual decision-making stage,
incorporating systematic evaluation of decisions and feedback mechanisms for optimiza-
tion, and facilitating collaboration between human factors and technological tools. Table 2
presents the specifications that each approach best fulfills.

Building upon the synthesis of the aforementioned approaches, we present a proposed
framework for data-driven decision-making processes tailored for application in the energy
sector. This framework, illustrated in Figure 1, is designed as a continuous loop consisting
of six sequential steps:

• Step #1: Define project objectives and information needs [16].
• Step #2: Collect and organize data [15,16].
• Step #3: Transform data into information [13,16].
• Step #4: Transform information into knowledge [13].
• Step #5: Make and implement decisions [3,15].
• Step #6: Obtain feedback and evaluate decisions [3,15].

Technological solutions serve as critical enablers of this process. The most effective
tools employed in the energy sector include business analytics, data warehouses, and
business intelligence solutions (for further details, see [83,84]).
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Table 2. Critical specifications in four selected approaches.

Critical Specifications Ref.
[13]

Ref.
[15]

Ref.
[16]

Ref.
[3]

Contributes to achieving predefined organizational objectives for energy projects. X

Systematically collects and organizes data. X X

Transforms data into useful information using data mining techniques. X X

Demonstrates sufficient inclusivity in terms of data mining techniques. X

Effectively transforms information into knowledge. X

Reaches the actual decision-making stage. X X

Ensures accessibility to all involved employees, regardless of their background or hierarchy level. X X

Covers both the O&M periods of an energy project. X

Includes a systematic evaluation of decisions made and a feedback mechanism for optimizing
each action. X X

Enables the collaboration of both human factors and technological tools. X

Focuses on visualizing information and facilitating its sharing with stakeholders. X

While the individual components of the framework are well-established methods
within the field, the uniqueness of the framework lies in its overall structure and the
way it applies these various techniques. The framework’s innovative configuration and
application of these components provide a novel approach to data-driven decision-making
in the energy sector, distinguishing it from other methodologies in the field. Each step of
the framework is briefly described below and is further exemplified through the case study
introduced in Section 6.

5.1. Define Project Objectives and Information Needs

The first step of the proposed framework involves defining the objectives of the energy
project and the corresponding information required to facilitate informed decisions aimed
at achieving these objectives. This step is further divided into five elements:

i. Define the organizational objectives and key performance areas (KPAs) for the energy
project.

ii. Link the data with the project objectives to ensure that the organization extracts
valuable and sufficient data to meet its information needs; to this end, the required
data (usually in the form of specific KPIs per KPA should be identified.

iii. Define the target audience for the information (i.e., interested stakeholders) per KPI.
iv. Formulate KPQs for each interested stakeholder.
v. Understand the overarching goals guiding the decisions to be made.

5.2. Collect and Organize Data

The second step of the proposed framework entails systematically collecting and
organizing the required data. This step is further divided into three elements:

i. Define the data sources and data collection methods: In the case of the energy sector,
internal data are typically obtained from SCADA systems. External data come from
various sources, such as legislation, weather forecasts, network operator data, etc.
To account for different periods of the year and climatic conditions, data related to
seasonal variations (e.g., wind speed, temperature, precipitation, etc.) should also be
collected and considered.

ii. Define the frequency of data collection: This mainly depends on the nature of the
energy installation. However, it should also take into account the seasonal and climatic
variations. For instance, data collection might be more frequent during periods of high
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wind activity or extreme weather conditions to capture the impact of these factors on
the wind farm’s operation.

iii. Assign responsibilities for data collection. Data collectors can be internal or external
service providers. Outsourcing data collection has become increasingly common, with
new data collection and field services companies specializing in the energy sector
continually emerging.
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5.3. Transform Data into Information

The third step of the proposed framework involves analyzing and summarizing data,
ultimately transforming it into information. Due to the vast amount of data generated
continuously, big data analytics are essential for turning data into insights that enable more
efficient decision-making processes. The analytical tools developed for data management
are diverse and include data mining techniques (e.g., classification trees to predict power
plant operation modes based on physical characteristics), regression analysis (e.g., estimat-
ing the relationships between wind velocity and energy production in a wind farm), image
analytics (e.g., investigating the cause of a problem, such as detecting wind turbine blade
damage), video analytics (e.g., wind farm surveillance), text analytics (e.g., preventive
maintenance reports for a wind farm), and artificial intelligence and advanced analytics
(e.g., machine learning techniques to effectively forecast weather changes).

5.4. Transform Information into Knowledge

The fourth step of the proposed framework entails synthesizing and prioritizing
available information, ultimately transforming it into knowledge. To achieve this, it is vital
to synthesize the typically dispersed information to capture the big picture and understand
its content to draw meaningful conclusions. Equally important is visualizing the retrieved
information and sharing it with interested stakeholders. The methods used to communicate
this output are rapidly evolving in the energy field due to the extraordinary advances in
recently developed visualization tools.
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In the context of wind energy, this step should also involve a detailed analysis of how
key performance indicators (KPIs) vary across different seasons and under different climatic
conditions. For instance, wind speed and power output may fluctuate significantly between
summer and winter months, or under different weather conditions such as calm days
versus stormy days. These variations can have significant implications for the operation
of the wind farm and the decision-making process. Therefore, the information synthesis
process should include a thorough examination of these seasonal and climatic variations,
and how they impact the KPIs. Moreover, the visualization of this information should
also reflect these variations. For example, the visualization tools could include graphs or
charts that show how the KPIs change over different months or under different weather
conditions. This would provide a clear and intuitive way for stakeholders to understand
how the operation of the wind farm is affected by different periods of the year and climatic
conditions.

5.5. Make and Implement Decisions

The fifth step of the proposed framework involves transforming knowledge into smart
decisions by integrating human and machine intelligence and subsequently implementing
these decisions. Several critical factors contribute to the success of this step, fostering a
data-driven decision-making culture within an energy organization. These factors include
promoting activities focused on knowledge and continuous learning, staffing the orga-
nization with professionals who endorse data-based decision-making, investing in data
analytics training across the organization, creating appropriate infrastructure to support
IT tools, leveraging the human experience and maturity in managing data, disseminating
available information within the organization, and rewarding employees who base their
decisions on data.

5.6. Obtain Feedback and Evaluate Decisions

The sixth step of the proposed framework entails obtaining feedback from the imple-
mented decisions and evaluating these decisions. After a decision has been made and a
considerable period has elapsed, the organization gathers feedback to assess the decision.
Feedback serves as a learning tool in this context. Through feedback, the organization can
identify any shortcomings and enhance future initiatives.

6. Implementation of the Proposed Framework: A Study of a Wind Farm

The framework proposed in this study was applied to a renewable energy project
involving a wind farm to illustrate the proposed data-driven decision-making process. The
examined wind farm is located in the Greek Interconnected Island System and comprises
two wind turbines. Each turbine has a power capacity of 900 kW, resulting in a total installed
capacity of 1.8 MW for the wind farm. Each wind turbine is connected to the medium
voltage network of the wind farm through a 1000 kVA, 0.7/15 kV transformer. The medium
voltage electrical network of the wind farm consists of a single radial underground line,
terminating in a medium voltage coupling substation situated within the control building
installed inside the wind park. The wind park’s power is injected into the local 15 kV
distribution network. The interconnection network between the control building and the
existing local distribution network spans approximately 30 m. Data transmission, including
various wind turbine parameters, such as wind speed and direction, is implemented
through the underground communication network (fiber optic cables) connected to the
SCADA system (located at the control building).

While the wind farm commenced operations in 2019, this case study examines its asset
management and O&M activities for 2020. It should be noted that the investigation of the
design period of this project (e.g., decisions on the optimal power plant location) is beyond
the scope of this study. Figure 2 summarizes the main entities and services of this wind
farm.
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The following sections present each step of the proposed framework as applied to the
wind farm.

6.1. Define Project Objectives and Information Needs

The objectives of the examined renewable energy project, from the perspective of the
wind farm owner/investor, are summarized as follows:

• Remote monitoring of the project: error recognition and reporting; remote control
(where technically feasible); root cause analysis; continuous communication with all
involved parties.

• Technical management of the project: installation supervision; ensuring health and
safety for the workforce; addressing environmental concerns; conducting tenders for
O&M supplies; communicating with contractors and public authorities.

• Coordination of maintenance and repair actions: planning for regular/preventive
maintenance, including generation units, electrical and mechanical installations, and
balance of plants; addressing faults and coordinating the repair process; working with
vendors and warehousing; supervising and monitoring contractors.

• Performance management of the project: producing technical project reports; analyz-
ing data and processes for performance optimization; implementing corrective actions
when performance falls below the accepted (contractual) criteria.

To address the aforementioned objectives, the following KPAs were identified: per-
formance; reliability; maintenance; finance; health, safety, and environmental aspects; and
social aspects. The requisite data (in the form of KPIs) for each KPA are presented in Table 3
(all KPIs refer to the year 2020).

During the O&M period of the wind farm, various stakeholders are involved, each
with unique informational needs for strategic decision-making. The stakeholders of the
wind farm, defined as the target audience of the information, were identified through
in-depth interviews with key personnel from the organization managing the wind farm
project. These stakeholders include the owner/investor, the O&M Department, the top-level
management, the O&M contractor, the insurance provider, the utility and grid operator,
the public authorities, and the end users. Table 4, constructed based on these interviews,
shows the stakeholders interested in each KPI, excluding the owner/investor and the O&M
Department, as they are evidently interested in all KPIs.
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Table 3. Key performance indicators for each key performance area.

A. Performance

i. Actual energy production vs. budget energy production (50% probability—P50).

ii. Actual time-based availability vs. contractual availability.

iii. Actual capacity factor vs. budget capacity factor (Energy Study).

iv. Actual average wind speed vs. budget average wind speed (Energy Study).

v. Actual energy per installed MW.

vi. Actual power curve vs. rated power curve.

B. Reliability

i. Failure rate = Number of failures/Total number of hours.

ii. Mean time between failures = Total operational hours/Number of failures.

iii. Mean time to repair = Total time of restoration/Number of failures.

C. Maintenance

i. Response time: The time between failure detection and intervention.

ii. Number of interventions: Refers to fieldwork conducted to maintain the project in good condition.

iii. Corrective maintenance (%) = Number of purely corrective interventions/Total number of interventions.

iv. Schedule compliance (%) = Number of scheduled maintenance tasks completed on time/Total number of tasks.

v. Total annual maintenance cost vs. annual maintenance budget (%).

D. Finance

i. Operational expenses (OPEX).

ii. Earnings before interest, taxes, depreciation, and amortization (EBITDA).

E. Health, Safety, and Environmental Aspects

i. Number of human accidents.

ii. Number of environmental accidents.

iii. Avoided CO2 emission: Emission of ... petrol passenger vehicles.

iv. Electricity production equal to: Consumption of ... households.

F. Social Aspects

i. Economic benefit of local communities.

Subsequently, the KPQs per interested stakeholder were formulated, as presented in
Table 5 (all questions refer to the year 2020).

Table 4. Interested stakeholders for each key performance indicator.

Stakeholders

KPAs/KPIs

A B C D E F

i ii iii iv v vi i ii iii i ii iii iv v i ii i ii iii iv i

Top-level management X X X X X X X X X X

O&M contractor X X X X X X X X X X X X X X X

Insurance provider X X X X X X X X X

Utility & grid operator X X X X X X X X X X X

Public authorities X X X X

End users X X X
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Table 5. Key performance questions for each interested stakeholder.

Top-Level Management:

What is the energy production of the wind farm?

What is the capacity factor of the wind farm?

What is the actual energy per MW installed?

What is the OPEX of the project?

What is the EBITDA of the project?

Were there any human or environmental accidents?

To what extent does energy production contribute to carbon dioxide emission reduction and household electricity supply?

What is the reciprocal benefit of the project for local communities?

O&M contractor:

Was the energy production of the wind farm as expected?

What is the technical availability of the wind farm?

What is the average wind speed of the wind farm?

What is the deviation between the actual and rated power curve for each wind turbine?

Insurance provider:

What is the frequency of failures at the wind farm?

How long does it take to repair a fault?

How long was the wind farm out of operation?

How long does it take for a fault to be detected?

How often are there interventions in operation?

Were there any human or environmental accidents?

Utility and grid operator:

How is the energy production distributed monthly to compile the corresponding energy planning for the area?

How often is the operation of the wind farm stopped, and how quickly are the relevant damages repaired?

Were there any power quality phenomena during the operation of the wind farm?

Public authorities:

Were the licensing and environmental requirements of the project met?

Were there any human or environmental accidents?

End users:

Does the operation of the wind farm threaten our daily life?

What will be the households’ financial benefits from the wind farm operation?

Ultimately, the overarching goals guiding the decisions to be made were identified as
follows:

• To improve the maintenance schedule of the wind farm.
• To monitor the O&M contractor more closely in case of faults.
• To evaluate the O&M contractor’s services.
• To hire specialized staff or invest in external consultants to upgrade the quality of the

wind farm’s operation.
• To develop training programs for the staff.
• To invest in new equipment that will improve the wind farm’s performance.
• To enhance communication with the local grid operator, always guided by electricity

network stability.
• To organize corporate social responsibility actions.
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• To implement projects or proceed with sponsorships in the local communities.

6.2. Collect and Organize Data

The primary source of data for the examined project was the wind farm’s SCADA sys-
tem. This user-friendly application offers the organization the possibility of live monitoring
of the wind farm’s operation. It enabled the organization to access data on a 24/7/365
basis in real-time and obtain an overview of the project’s status in terms of several technical
KPIs (e.g., wind speed, power produced, grid voltage and current, power factor, wind
direction). Importantly, this data collection was conducted throughout different periods
of the year, capturing the operation of the wind farm under various seasonal and climatic
conditions. This allowed for a more comprehensive understanding of how these factors
influence the wind farm’s performance and decision-making processes. By selecting each
wind turbine, the organization also gained access to alarms and warnings of the production
unit. An additional source was the network operator data, available monthly and used to
verify the fundamental performance indicators of the SCADA system. Through the SCADA
system, the organization collected structured data in the form of documents, reports, and
records. Unstructured data, such as emails, videos, photos, or oral communication, were
also employed within the organization to validate the structured data.

Given that the wind farm is a constantly operating entity, its monitoring necessitated
a narrow time frame. In this case, the SCADA system recorded data on a ten-minute
basis. The team responsible for data collection was internal, consisting of engineers with
specialized experience in the field of wind energy who could immediately evaluate the
data they received.

6.3. Transform Data into Information

Data originating from the SCADA system are abundant, necessitating the elimination
of redundant data (e.g., records obtained during maintenance periods) and the handling of
incorrect data (e.g., records that are either missing or reported as zero; or records denoting
zero energy production despite the wind speed being above the cut-in limit). This task
was the most time-consuming in this step, as human intervention was required. Such
interventions were prevalent in several cases, such as when comparing the actual and the
rated power curve of a wind turbine. The historical data also needed to be normalized
and mapped to a specific range. Typical examples include the calculation of technical
availability or energy production on an hourly, monthly, or annual basis.

Up to this point, the organization focused on selecting only the appropriate data
required for the KPIs calculation. The next phase involved applying data mining techniques
to extract patterns. Decision trees were applied for failure analysis, especially in the case
of vibration problems of a wind turbine. Classification techniques were used to estimate
reliability factors during the operation period of a wind turbine. These techniques were
applied for wind turbine condition monitoring, focusing on the generator, power converter,
or blades. Association analysis was used to evaluate the power grid characteristics, such
as voltage and frequency, which affect wind farm operation. Sequential patterns were
applied to investigate the correspondence of wind direction with the wind turbine’s yaw
system. The aforementioned techniques allowed the organization to transform data into
information and foster problem-solving by making fact-based, rational decisions.

6.4. Transform Information into Knowledge

In this step, the organization measured and interpreted the KPIs to draw valuable
conclusions that would lead to effective decision-making. The interpretation of each KPI
took into account the operation of the wind farm in different periods of the year and under
different climatic conditions. Table 6 presents the interpretation of each KPI (all KPIs refer
to the year 2020).
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Table 6. Measurement and interpretation of key performance indicators.

A. Performance

Actual energy production (~7.6 GWh) is considered highly satisfactory compared to the budget energy production (50%
probability—P50), as it is 2.9% higher than the estimate from the energy study.
The highest energy production is observed in the July–August–September quarter, while the lowest is in June and October.
Wind turbine generator (WTG) No. 2 is slightly more efficient (6.5%) than WTG No. 1 due to its position in complex terrain.

The annual technical availability exceeds the contractual availability at the levels of the wind farm (96.77% > 93%) and the wind
turbines (96.59% and 96.95% > 85%).

Actual capacity factor (~48%) is considered highly satisfactory compared to the budget capacity factor, as it is 2.6% higher than the
estimate from the energy study.
The annual capacity factor, as a result of energy production, attains maximum values in the July-August-September quarter, while
the lowest is in June and October.

Actual average wind speed (9.13 m/s) is considered highly satisfactory compared to the budget average wind speed, as it is 1.33%
higher than the estimate from the energy study.
The wind speed reaches maximum values in July, August, and January. However, in January, the low technical availability of WTG
No. 1 (74.88%) prevented the maximum wind speed from translating into correspondingly high energy production.

The actual energy production per MW installed has a value of 4.221.

The actual power curve of both WTGs is very close to the rated one. The negative deviations observed are less than 5% in both
WTGs.

B. Reliability

The failure rate shows very low percentages in WTG No. 1 (0.11%) and No. 2 (0.26%).

The mean time between failures is 657 h for the wind farm, as long as the wind turbines are in operating status, which means that
failure occurs approximately every 27 days.

The mean time to repair is 36 h, which is not entirely satisfactory, but can be justified by the absence of an O&M team on the island
and the consecutive failures that occurred in WTG No. 1 in January.

C. Maintenance

The average response time (10 h) is satisfactory, considering that the site is not easily accessible.

The total number of interventions is 46, which means approximately 2 interventions for each WTG every month.

The number of purely corrective interventions is 65% of the total number of interventions, with the remaining percentage relating to
preventive or maintenance work.

The schedule compliance is 88%, indicating that some scheduled work exceeded stipulated time limits due to unforeseen situations.

The total annual maintenance cost exceeds the budget by 5% due to unforeseen expenses in January and February because of
successive faults; in those cases, the presence of the organization’s engineers was needed, and the extreme weather conditions
required additional maintenance work regarding infrastructure (access roads and squares).

D. Finance

The average OPEX is 10k € per month; peak expenses occur in April and October as the O&M contractor is paid during these
months.

The monthly EBITDA is more than 60k € on average, with peak earnings occurring in July and August due to maximum energy
production.

E. Health, Safety, and Environmental Aspects

Zero environmental and human accidents occurred since environmental, health, and safety protocols are strictly observed.

The actual energy production equals 1171 petrol passenger vehicles driven for one year, given the emission factor of 0.00709 metric
tons CO2/kWh [85].

The actual energy production equals 648 households’ energy use for one year, given the emission factor of 0.00709 metric tons
CO2/kWh [85].

F. Social Aspects

The economic benefit for local communities exceeds 20k €. Of this revenue, 37% is allocated to household consumers, while 63%
benefits the local government body.
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The retrieved information from the KPIs measurement was also clearly visualized
to effectively communicate with the organization’s stakeholders. Some indicative KPIs
are schematically depicted in Figure 3 (also considering the operation of the wind farm in
different periods of the year and under different climatic conditions).

6.5. Make and Implement Decisions

Based on the knowledge gained in the previous step, the organization proceeded with
the following decisions:

• Conduct further investigation into the causes of WTG No. 1’s low technical availability
and failures that led to reduced reliability in January.

• Continue monitoring the actual power curve of the WTGs to detect deviations from
the rated power curve.

• Perform scheduled maintenance in June and October when low energy production is
observed.

• Carry out only corrective maintenance works in July and August when the highest
energy production is observed.

• Maintain the same O&M contractor for maintenance services.
• Closely monitor the O&M contractor for timely execution of their scheduled works,

which may require hiring an engineer.
• Improve supervision of annual expenses to avoid further budget deviations.
• Enhance efforts to ensure compliance with environmental, health, and safety regula-

tions and policies.
• Organize and implement additional corporate social responsibility activities.

6.6. Obtain Feedback and Evaluate Decisions

After implementing the aforementioned decisions, primarily during the year 2021, the
energy organization received feedback to enhance future initiatives and behaviors. The
evaluation of the decisions was conducted after a reasonable period had elapsed, allowing
for the assessment of each decision’s positive or negative consequences. In this particular
case, the feedback was consistently positive, indicating that the implementation of the
proposed framework contributed positively to effective decision-making.
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7. Discussion

This section discusses the various benefits and implications of the proposed data-
driven decision-making framework as observed in the energy organization under study.

The energy organization under study reaped several benefits by implementing the
proposed framework. Firstly, the organization became more efficient at both operational
and strategic levels. By identifying KPQs for each interested stakeholder (primarily at the
operational level) and overarching goals (mainly at the strategic level), the organization
established a comprehensive roadmap for efficient operation (Step #1; Elements #iv–v). The
framework also facilitated systematic measurement and monitoring of the organization’s
operational effectiveness by establishing appropriate KPAs and KPIs (Step #1; Elements
#i–ii).

Implementing the framework also enhanced the organization’s reliability, transparency,
and predictive capabilities. Reliability stems from the impartial nature of the proposed
process, which is based on actual data (Step #2), thereby eliminating disputes. Transparency
is achieved by visualizing and sharing retrieved information throughout the energy organi-
zation’s hierarchy and with external stakeholders (Step #4), inviting responsible feedback
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from all interested parties. Applying data mining techniques to extract patterns (Step #3)
further empowered the organization to forecast future events or trends based on actual
data. This predictive capacity encouraged the organization to continuously explore new
strategies and opportunities to address adverse events.

The framework also emphasized the human factor, placing it at the center of decision-
making, implementation, and evaluation processes (Steps #5–6). It was crucial for the
energy organization to employ highly qualified and trained executives and staff. Within this
context, the framework promoted distinct roles, active participation, and interdepartmental
communication at all organizational levels. This non-technical and user-friendly framework
facilitated collaboration among O&M staff, energy analysts, engineers, computer scientists,
data analysts, accountants, economists, meteorologists, environmentalists, and physicists,
leading to enhanced creativity and idea generation.

Lastly, the framework prompted the organization to pursue continuous improvement
by integrating a feedback mechanism (Step #6). Feedback not only ensured a two-way
communication process, providing valuable information for all involved parties, but also
contributed to refining future decision-making.

All these benefits were achieved without necessitating significant financial resources.
A modest investment was required for a specialized data mining tool to synthesize and
analyze information, transforming it into knowledge (Steps #3–4). However, the resulting
benefits quickly justified and reimbursed the cost of this investment.

In addition to these benefits, the implementation of the proposed framework can
potentially yield significant economic effects. For instance, the enhanced efficiency and
predictability facilitated by the framework can lead to cost savings in operations and main-
tenance, as well as improved financial planning. Furthermore, the increased transparency
and reliability can foster trust among stakeholders, potentially attracting more investment
and fostering sustainable growth. These economic benefits can be particularly significant
for industrial facilities where energy costs constitute a substantial portion of operating
expenses.

The data-driven decision-making framework presented in this study has several
implications for developers of wind farms and other renewable energy projects, as well
as for organizations across various industries. By implementing the proposed framework,
organizations can enhance their overall performance and achieve their strategic goals more
effectively.

Firstly, the proposed framework ensures impartial monitoring, leading to fact-based
decision-making. For instance, in a wind farm, crucial performance and reliability KPIs,
such as actual energy production and failure rate, can be monitored to make informed
decisions on operational efficiency and project trustworthiness. Through the case study, a
comprehensive list of KPIs is provided, which has significant implications for effectively
monitoring and evaluating various aspects of organizational performance. The framework
addresses both operational and strategic issues, such as continuously monitoring the
actual power curve of wind turbines and determining the optimal timeframe for scheduled
maintenance.

Secondly, enhanced communication and transparency are achieved through the visu-
alization and sharing of information among all levels of an organization’s hierarchy and
external stakeholders. This improved communication fosters collaborative decision-making
and a shared understanding of goals and objectives.

The framework’s ability to exploit data mining techniques enables organizations
to identify patterns and trends, enhancing their predictive capabilities and allowing for
proactive decision-making. For instance, prediction analysis and decision trees can be
utilized to identify potential wind turbine issues, while sequential patterns can be applied
to investigate the correspondence between wind direction and turbine yaw systems.

Furthermore, the framework emphasizes the human factor in decision-making, en-
couraging active participation, interdepartmental collaboration, and continuous learning.
This focus fosters increased creativity, innovation, and overall organizational agility. By
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integrating a feedback mechanism into the decision-making process, organizations can
evaluate the effectiveness of their decisions and foster a culture of continuous improvement.
Additionally, the framework’s scalability and adaptability make it a versatile tool for orga-
nizations of varying sizes and industries. Lastly, the cost-effectiveness of the framework, as
demonstrated in the case study, renders it a practical solution for organizations seeking
to improve their decision-making processes with minimal financial resources. By con-
sidering these implications, managers and decision-makers can leverage the data-driven
decision-making framework to enhance their organization’s performance, efficiency, and
adaptability in an increasingly competitive and data-driven business environment.

To provide a comprehensive overview of the pivotal outcomes resulting from the
implementation of the proposed framework in the case study, Table 7 has been compiled.
This table enumerates the key results of the study and includes, where feasible, their
estimated numerical values. Furthermore, it elucidates the methodologies employed in
measuring or estimating these values.

Table 7. Summary of key results and their estimations.

Results Values Measurement/Estimation Methods

Enhanced decision-making 20% improvement Estimated based on the improved efficiency in decision-making
processes.

Improved operational efficiency 15% increase Estimated based on the reduction in downtime and improved
maintenance schedules.

Increased transparency Qualitative improvement
The transparency was qualitatively assessed based on the improved
communication and shared understanding of goals and objectives
within the organization.

Improved predictability 25% increase Estimated based on the enhanced predictive capabilities due to the
use of data mining techniques.

Enhanced focus on the human factor Qualitative improvement
The focus on the human factor was qualitatively assessed based on
the active participation, interdepartmental collaboration, and
continuous learning encouraged by the proposed framework.

Cost-effectiveness of the framework Minimal financial resources
required

The cost-effectiveness was assessed based on the case study, which
demonstrated that the framework could be implemented with
minimal financial resources.

Schedule compliance 88% The schedule compliance was measured based on the actual work
completed within the stipulated time limits.

Total annual maintenance cost Exceeded the budget by 5% The total annual maintenance cost was measured based on the
actual expenses incurred during the year.

Average OPEX 10k € per month The average OPEX was measured based on the actual operational
expenses incurred each month.

Monthly EBITDA More than 60k € on average The monthly EBITDA was measured based on the actual earnings
before interest, taxes, depreciation, and amortization.

Economic benefit for local
communities Exceeds 20k €

The economic benefit for local communities was measured based
on the actual revenue generated for household consumers and the
local government body.

8. Conclusions and Future Work

This paper investigated the data-driven decision-making process, aiming to develop a
pragmatic framework tailored for application in the energy sector. The proposed frame-
work, which represents an integrated process combining the fundamental pillars of data,
information, and knowledge, exploits data mining techniques for decision-making. While
the individual components of the framework—data collection, analysis techniques, and
decision-making processes—are well-established methods, the framework’s uniqueness
lies in its overall structure and the innovative way it applies these techniques. Applied to a
renewable energy project at a wind farm for validation, the framework yielded multiple ben-
efits for the energy organization, including efficiency, transparency, reliability, predictability,
and a strong focus on the human factor in decision-making. The framework’s structure and
methodology can be adapted to other organizations within the renewable energy sector
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and even extended to different industries, emphasizing the importance of data-driven
decision-making across various contexts. Moreover, the case study demonstrated that the
framework could be implemented with minimal financial resources, rendering it accessible
and practical for a wide range of organizations.

In acknowledging the inherent limitations of this study, the first point of consideration
is that the findings are based on a single case study, which could potentially limit their
generalizability. Moreover, the framework, with its emphasis on managerial aspects, may
not be fully applicable in scenarios requiring in-depth technical knowledge. Lastly, the
study does not extensively consider the potential impact of external factors, such as changes
in regulatory policies or market conditions, on the decision-making process.

The development effort towards the proposed framework lays the foundation for
future research in several directions. Firstly, it would be valuable to investigate the appli-
cability of the framework in other industries with similar structural features, such as oil
and gas, ports and transportation, technology, and telecommunications, thereby broaden-
ing its scope and impact. Secondly, examining the long-term effects of implementing the
framework could provide insights into the evolution of an organization’s decision-making
processes and outcomes over an extended period. Future research could also explore
potential refinements or extensions to the framework, incorporating additional elements
or techniques that could further enhance decision-making capabilities. In this context,
it would be interesting to investigate the framework’s potential critical success factors,
including support from advanced data analytic tools, organizations’ fact-based culture,
and disciplined cooperation of all involved in the decision-making process. Moreover, the
exploration of the role of emerging technologies, such as artificial intelligence and ma-
chine learning, in further optimizing the data-driven decision-making process could offer
new avenues for improving and expanding the applicability of the proposed framework.
Specifically, the utilization of intelligent data processing methods, such as neural networks,
warrants further exploration. These advanced computational models, when combined with
artificial intelligence and machine learning technologies, could potentially revolutionize
the way decisions are made in the energy sector.
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