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Abstract: With the increase in population and the progress of industrialization, the rational use of
energy in heating systems has become a research topic for many scholars. The accurate prediction
of heat load in heating systems provides us with a scientific solution. Due to the complexity and
difficulty of heat load forecasting in heating systems, this paper proposes a short-term heat load
forecasting method based on a Bayesian algorithm-optimized long- and short-term memory network
(BO-LSTM). The moving average data smoothing method is used to eliminate noise from the data.
Pearson’s correlation analysis is used to determine the inputs to the model. Finally, the outdoor
temperature and heat load of the previous period are selected as inputs to the model. The root mean
square error (RMSE) is used as the main evaluation index, and the mean absolute error (MAE), mean
bias error (MBE), and coefficient of determination (R2) are used as auxiliary evaluation indexes. It was
found that the RMSE of the asynchronous length model decreased, proving the general practicability
of the method. In conclusion, the proposed prediction method is simple and universal.

Keywords: Bayesian optimization; load forecasting; recurrent neural network; time series

1. Introduction

Centralized heating is a widely used system that transfers heat to the user side and
uses it directly [1]. The heat sources of centralized heating include combined heat and
power plants, various heat pumps, solar energy, boiler heating [2], etc. In the face of the
increasingly severe greenhouse effect, the rational use of centralized heat supply heat
energy is getting more and more attention. Since centralized heat supply is a complex
system with lagging and coupling, how to scientifically implement heat supply on demand
has become an urgent problem to be solved [3]. In recent years, heat load forecasting has
given us access to science and technology [4]. According to the length of the forecast period,
heat load forecasting can be divided into long-term heat load forecasting, medium-term
heat load forecasting, short-term heat load forecasting, and extreme short-term heat load
forecasting [5]. The corresponding periods are more than one year, several weeks to one
year, one day to one week, and less than one day. Long-term and medium-term load
forecasts can be used to estimate trends in load changes when we need long-term solutions
for the system in the design phase [6]. Short-term and very short-term heat load forecasting
can be used to control and schedule the exact load demand [7].

Heat load forecasting is the prediction of future heat load levels in a building or area
under specific meteorological conditions [8]. Such predictions can help architects, designers,
and energy managers to better plan buildings and infrastructure [9]. This approach can
improve energy efficiency and reduce energy costs. Currently, numerical models and
machine learning algorithms are commonly used for heat load forecasts [10]. The following
are some typical techniques for heat load forecasting.
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1.  Empirical equation-based method

This method uses empirical formulas to determine the heat load of a system or a
region. These calculations are based on historical data and the characteristics of certain
buildings or places. However, this method is not very accurate [11].

2. Method based on physical models

This uses the physical characteristics of the building or area, meteorological data, and
energy transfer theory to build a mathematical model to predict the heat load. This method
has high accuracy, but it needs to input a large amount of data, and the calculation is
complicated.

3. Machine learning-based method

This approach uses the machine learning algorithm to predict thermal loads, and it
requires training models based on historical and meteorological data. Machine learning
algorithms include linear regression [12], support vector machine [13], clustering algo-
rithm [14], etc. The advantage of this method is the high accuracy, but it requires a large
amount of data.

The various methods mentioned above provide scientific guidance for heat load
prediction [15]. Among them, machine learning methods are more popular in heat load
forecasting due to their high accuracy and flexibility [16]. Currently, machine learning
has been applied to data mining, computer vision, natural language processing, and other
fields [17]. The main use in the field of load forecasting is the regression prediction of
data [18]. From the perspective of prediction methods, backpropagation (BP), artificial
neural networks (ANNSs), recurrent neural networks (RNNs), and other methods are more
widely used [19]. Xie et al. [20] improved the traditional ground source heat pump by
introducing a hybrid hourly prediction model integrating multiple overlapping extended
LSTMs and back propagation neural networks (BPNNs). Bergsteinsson et al. [21] proposed
a framework that combines temporal hierarchy with adaptive estimation to improve the
accuracy of heat load forecasting by optimally combining the prediction results of multiple
aggregation layers through an adjustment process. Liu et al. [22] proposed applying
LSTM to heat load forecasting of cogeneration units. Kim et al. [23] used an optimal
nonlinear autoregressive exogenous neural network (NARX) model to improve the load
forecasting accuracy. In general, machine learning has been widely applied in the field of
load forecasting.

From the perspective of model input, external factors such as outdoor temperature [24],
outdoor wind speed [25], and light intensity are usually considered. Among them, the
outdoor temperature has a greater influence on the heat load [26]. In some studies, some
internal factors are also considered, such as the supply temperature [27], the return water
temperature [28], and the supply flow rate of the heating system. Sometimes, the effect
of previous heat loads on the system is also considered [29]. At the same time, incidental
factors can also affect the heat load, such as the behavior of indoor personnel [30], the num-
ber of indoor personnel, etc. Some researchers distinguish special days when predicting
thermal loads, and this approach effectively avoids the influence of the peculiarities of
certain days on the overall system data [31]. Extreme short-term heat load prediction incor-
porating external factors is widely used to ensure the efficient use of building energy [32].
Usually, historical hourly or three-hourly data are used as model inputs to predict 24-h
or 48-h heat load data to guide the adjustment of actual heating [33]. The main challenge
in heat load forecasting is the translation of historical data into a predictive model and
the accuracy of the predictive model. To address this problem, Huang et al. [34] used a
convolutional neural network to extract the feature vectors of environmental factors, and
then the K-means clustering algorithm was used to establish the feature clustering model
of various energy loads, which in turn led to the load prediction results of multi-energy
systems. Gu et al. [35] used outdoor temperatures and historical heat loaders as influenc-
ing factors. In conclusion, due to the characteristics of heating systems such as lag and
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complexity, researchers often take many internal and external factors into account when
making predictions.

LSTM is widely used in the field of process control. An LSTM-ANN agent model was
created and applied to predict woodchip degradation, cellulose depolymerization, Kappa
number, and cellulose aggregation [36]. In this paper, we used MATLAB 2020b to run the
program for our experiments and analyze the effects of prediction methods and model
inputs on experimental results. Finally, LSTM is used as the main prediction method, and
the hyperparameters of LSTM are optimized using the Bayesian algorithm to improve the
prediction accuracy.

The article structure of this paper is as follows. Section 2 describes the source and
composition of the data and smoothes its outliers. The data are analyzed using the Pearson
correlation analysis method. Section 3 describes the forecasting methods used. The Bayesian
algorithm and the optimization process are presented. In Section 4, the prediction results
are analyzed, and the error evaluation metrics are used to demonstrate the strengths and
weaknesses of the prediction results. Section 5 presents the conclusions of this paper and
briefly analyzes the issues that need to be addressed in the future.

2. Data Set
2.1. Data Sources and Composition

The data for this experiment are obtained from the real-time operational data of a heat
exchange station in Changchun City. These data include 1182 sets of hourly data from
12 November to 31 December 2021. In addition, we also collected information on some
variables that we could not control, such as outdoor temperature, wind speed, and solar
radiation. The variation of heat load over time is shown in Figure 1.
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Figure 1. Heat load variation over time.

2.2. Abnormal Data Handling

The experimental data are derived from actual operational data. Outliers may be gen-
erated during data collection due to sensor failures, manual input errors, or unusual events.
In some modeling scenarios, ignoring these outliers can lead to erroneous conclusions, so it
is necessary to identify these outliers and deal with them during data exploration.

Outlier detection usually includes the box plot method, 3¢ principle, and simple
statistical analysis. In this paper, the 3¢ principle is utilized as an outlier detection method.
The 3¢ principle is based on equal precision repeated measures of normal distribution,
which makes it challenging to match the noise or disturbance of unique data with normal
distribution. The normal distribution is also known as a Gaussian distribution with a
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high middle, low sides, and symmetry. The probability density function of the normal
distribution is f(x), which is given by the following equation:

flx) = —o—e™ 2 M

The normal distribution meets the following function formula. Among them, o
represents the standard deviation and y represents the mean. The calculation formula is:

1 n
o= nili;(xi—ff k)
1 n
V:;;xi 3)

The average value p and standard deviation ¢ have been calculated in the above
formula. When the 3¢ criterion is used, the values are almost perfectly distributed in the
range (i — 30, i + 30), with only 0.3 percent of the data falling outside this range, which
can be regarded as anomalous and rejected according to the principle of small probability.

There are different processing methods for the filtered outlier: delete, treat as missing
values, correct the average value, and cap method. The average value correction approach
is primarily utilized in this work to handle an anomaly. The processed data are shown in

Figure 2.
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Figure 2. Treatment results of the outlier of heat load data.

2.3. Data Smoothing

The experimental data are derived from real engineering projects, and encountering a
significant amount of noise in the initial data is inevitable. In such cases, data smoothing
methods are necessary to eliminate the noise. Various methods are available for data
smoothing, including moving averages [37], exponential averages [38], and Savitzky-Golay
filtering [39]. For this experiment, we are utilizing the moving average method to eliminate
noise. To obtain the filtering results for the current time, each data point is replaced with
the average of more than b consecutive data points from the previous period, including its
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data. This is a relatively straightforward method commonly employed in daily life. The
calculation process can be executed as follows:

1b71
Yn = EZ%H' 4)
i=0

The equation y, represents the unprocessed data, and b is the size of the sliding
window. After comparison, b was selected as 3 for this experiment.

2.4. Relevance Analysis

A heating system is a complex system influenced by many factors. The main compo-
nent affecting an overall heating system is outdoor meteorological factors, of which the
outdoor temperature is the most important factor affecting the heat load. The heat load of a
heating system is occasionally affected by internal operating parameters, such as supply
pressure and return water temperature. In this experiment, several contributing factors are
investigated using Pearson’s correlation coefficient analysis. The association between two
variables, x (independent variable) and y (dependent variable), is measured by Pearson’s
correlation coefficient. The following equation was used to calculate:

cov(x,y)  E[(x—%)(y —¥)] (5)

%0y 0x0y

Pxy =

Among them, ¥ is the average value of the independent variable x, ¥ is the average
value of the dependent variable y, oy is the standard deviation of the independent variable
x, and oy is the standard deviation of the dependent variable y. As can be seen from
the above equation, the Pearson correlation coefficient is defined as the quotient of the
covariance and standard deviation between the variables. The definition py y in the above
equation represents the overall correlation coefficient. After estimating the covariance
and standard deviation of the variables, the Pearson correlation coefficient is obtained.
Represented by 7, as shown in the following equation:

£ (32) (%)

r= (6)

\/ié(xi _x>2\/i i~ 9)?

r can also estimate the mean value of the standard score of (x;, y;) sample points to get

the following expression:
noge = =
p L (xl x) (y’ y) @)
n—1 =\ ox oy

In the above equation, X is the average value of sample x, and ¥ is the average value of
sample y.

After analyzing the correlation between external and internal factors, Table 1 can be
obtained.

From Table 1, it can be seen that there is a significant negative correlation between
outdoor temperature and heat load among the internal factors, while solar radiation, wind
speed, and precipitation have relatively small effects on heat load. Among the internal
factors, the heat load at the previous moment has a greater influence on the heat load,
while the water supply pressure and the return water temperature have a relatively small
influence on the heat load.

i=
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Table 1. Correlation analysis results of various influencing factors.

Classification Factor Correlation Coefficient
outdoor temperature —0.746
v 1£ solar radiation —0.062
xternal factors wind speed —0.101
precipitation 0.34
heat load at the previous 0.883
Internal factors moment
nierha water supply pressure 0.414
return water temperature 0.539

The scatter plots of the heat load at the current moment with the change of outdoor
temperature and the previous moment are shown in Figure 3.
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Figure 3. The plot of heat load variation with influencing factors. (a) Scatter plot of outdoor
temperature and heat load. (b) Scatter plot of current and previous thermal load.

The scatter plot of heat load and outdoor temperature in Figure 3a shows that the heat
load gradually increases as the outdoor temperature decreases. From Figure 3b, it can be
seen that the heat load at the current moment increases with the increase of the heat load at
the previous moment.

3. Forecasting Methodology
3.1. Basic Model

The data are used as time series data and were suitable for using LSTM as a prediction
model. As a variation of recurrent neural network (RNN), LSTM differs from RNN in
each recurrent unit. LSTM refers to three gating structures to control the transmission of
information. These three gates are the input gate i, forgetting gate f;, and output gate
o¢. The input gate is used to regulate how much data have to be saved in the candidate
stage. The forgot gate is used to regulate the degree to which information from the previous
instant’s internal state is forgotten. The output gate regulates the information that is output
from the present internal state to the external state. The following are the equations for
these three gates:

it = o(Wixy + Uihy—q + b;) 8)

fr = U(fot + Ufht_1 + b,’) 9)
0r = 0(Woxt + Uphy_1 + by) (10)
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where Wf, and W, are the weights of the input information x, U;, Uf, and U, are the weights
of h;_1 at the previous time, and b;, b Iz and b, are the biases, and the t stands for time.

Wherein, ¢ is the activation function, and the activation function used in this experi-
ment is Relu, whose formula is as follows:

z z>0

U:f(z):{o 2<0 ()

It can be seen that when z is greater than 0, f(z) is a linear function, but f(z) is a
nonlinear function in the entire definition domain. According to the function derivation
rule, we can know the derivative of Relu as follows:

;)1 z>0
f) —{0 o (12)

It can be seen that the input z is positive, its derivative is 1, and the gradient does
not disappear no matter how it changes. Compared with the sigmoid function and tanh
function, it has a faster descent and better performance.

The established LSTM network structure diagram is presented in Figure 4.

—» Loads

&

|
|

Input layer | Hidden layer Fully connected layer | Output layer
|

Figure 4. LSTM network structure.

3.2. Loss Function

The loss function plays a very important role in the backpropagation of neural net-
works. It is equivalent to the error. The smaller it is, the better the network will be able to
solve the problem. Therefore, it is necessary to choose a suitable loss function for a more
reasonable direction of the network optimization parameters.

There are many loss functions for us to use, including absolute value loss function,
mean square loss function, cross-entropy loss function, etc. The mean square loss function
(MSE) is used in this experiment. The expression of the mean square loss function is as
follows:

3

1
J(yigi) = J(w, b) = 5 )_(vi — ) (13)

1

I
—

where y; represents the true value and §j; represents the predicted value.

3.3. Model Parameters

The relatively important parameters of LSTM in modeling include the number of
neural network layers, the number of neural network nodes per layer, the initial learning
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rate, and the ridge regularization coefficient. The parameters of the experimental model
are shown in Table 2.

Table 2. Parameters of heat load prediction model based on LSTM.

Parameters Value
Input layer 2
Hidden unit 50
Fully connected layer 1
Output layer 1
Initial learning rate 0.01
Learning rate decline factor 0.5
Number of iterations 10,200
Ridge regularization coefficient 0.001

The parameters of LSTM networks of different backgammon lengths are the same.
The difference between them is the batch size, so the calculation time will also change. The
unit of step size is hours (h), and the calculation time is seconds (s). The calculation time of
out-of-sync length is shown in Table 3.

Table 3. The calculation time of out-of-sync length.

Step Size Value
24 204
48 178
72 314
168 255

3.4. Bayesian Optimization

Neural networks contain several hyperparameters, including loss function, regularisa-
tion coefficient, learning rate, and the number of structurally independent neural network
layers and neurons. In traditional LSTM, these parameters are often set empirically, and it
is difficult to find the most suitable parameters for the model through the empirical setting
method. These hyperparameters have a great impact on the running time and prediction
accuracy of the neural network, so they must be optimized. In this study, the initial learning
rate, the number of nodes in the hidden layer, and the ridge regularization coefficient are
chosen as the hyperparameters of the neural network and optimized using the Bayesian
algorithm. Among them, ridge regularization increases the square of the weight paradigm
compared with lasso regularization, which solves the problem that lasso regularization
may make the model sparse. Therefore, the appropriate ridge regularization coefficient can
effectively avoid overfitting.

Bayesian optimization is an optimization algorithm that optimizes a black box function
by building a Gaussian process model. The core idea is to select the parameter values
that are most likely to lead to optimization at each iteration based on the current Gaussian
process model. Therefore, it uses Bayes’ theorem to update the prior probability distribution
of the Gaussian process model and constructs the posterior probability distribution by
random sampling and function evaluation. In this way, Bayesian optimization can select
the next sampling point based on the information provided by the current Gaussian process
model and continuously iterate to optimize the black box function. The process of LSTM
Bayesian optimization is shown in Figure 5 below.

3.5. Bayesian Optimization Parameters

Similar to LSTM, the LSTM model based on Bayesian optimization also includes
certain parameters in the LSTM model. The difference is that Bayesian optimization is
mainly used to optimize the number of hidden layers, the ridge regularization coefficient
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of the LSTM, and the initial learning rate. To satisfy the optimization effect and make the
optimized parameters feasible, it is necessary to set a certain range for the parameters to be
optimized. In this experiment, the parameter ranges set in the four steps of 24 h, 48 h, 72 h,
and 168 h are the same, as shown in Table 4.

Forecasting I D Optimisation |
component nput Data ‘ component |
! |
Data |
Preprocessing |
[
|
|
Test Set Training Set :
' |
LSTM |
|
! |
BO-LSTM |
I |
Forecast |
results |
|
|

Figure 5. Bayesian optimization LSTM flow chart.

Table 4. Parameter range of Bayesian optimization.

Parameter Range

The optimal number of hidden layer nodes [10, 200]
The optimal initial learning rate [1x1073,1x1072]
Optimal ridge regularization coefficient [1x1073,1x1073]

Some of the network parameters of the Bayesian-optimized LSTM are the same as the
network parameters of the LSTM built above. Bayesian optimization also uses a dual-input
single-output network structure with a learning rate decline factor of 0.5. The number of
Bayesian optimization iterations is 40, and the LSTM network has a total of 10,200 iterations.
The difference between the two is in the optimized parameters, the running time, and the
observed functional target values. The results are shown in Tables 5 and 6.

Table 5. Bayesian optimized parameters.

Classification Hidden Unit Initial Learning Rate Time
24 40 0.002017 3911
48 199 0.0033185 4041
72 103 0.0033282 4021
168 94 0.0033598 3872

Table 6. Bayesian optimized parameters.

Classification Ridge Regularization Observed Objective
Coefficient Function Value
24 0.00015493 0.077476
48 0.00010084 0.077208
72 0.00024211 0.077196

168 0.000025777 0.077409
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4. Results of The Experiment
4.1. Forecast Results

The experimental data consist of multiple feature input data, including 1182 groups
in total. A sufficient amount of data will ensure the fitting effect and prediction accuracy.
The prediction accuracy will affect the overall energy management system as well and
guide the rational use of energy. Energy production and distribution will be guided by the
predicted results. In the case of heat supply, prediction results for 24 h or 48 h are usually
considered. In this experiment, not only the above prediction results are considered, but
also the heat loads of 72 h and 168 h are predicted, respectively. The expected results are
shown in Figure 6.
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Figure 6. Heat load forecast results for different step lengths. (a) 24-h forecast results. (b) 48-h forecast
results. (c) 72-h forecast results. (d) 168-h forecast results.

From Figure 6, it can be seen that BO-LSTM has the best forecast results when making
predictions. BO-LSTM can fit better in the peak and trough periods, while support vector
machine (SVM) has the worst performance, followed by LSTM and BP. The different
prediction steps have relatively small effects on the prediction results. When performing
24-h heat load prediction, BO-LSTM predicts less fluctuating data, which are easier to
use for real heating. In reality, forecasting for longer periods may lose its regulatory
significance over time. The longer the forecast, the greater the influence of stochastic factors.
For example, forecasting data for more than a week may not be suitable for adjustment.

4.2. Evaluation Indicators

As a discipline that has been developed for many years, load forecasting accuracy
evaluation metrics also include many methods, such as RMSE, MAE, mean square error
(MSE), MAPE, symmetric mean absolute percentage error (SMAPE), R?, etc. Usually, the
metrics RMSE, MAE, MSE, MAPE, and SNAPE are used to evaluate the difference between
the predicted and actual values. The closer the predicted results are to the actual values,
the smaller the above evaluation indicators are. To observe the degree of fit, R? is used as
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an evaluation indicator with a value between 0 and 1. The closer the value is to 1, the better
it matches the data. As an assessment indicator, R2, MSE, MBE, and RMSE are utilized in
this study. The equations are as follows:

1
RMSE = [~} (9 — i) (14)
i=1
1
MAE = =} |9 — i (15)
i=1
1
MBE = - (i — i) (16)
i=1

N2
R2 =1—= Z?:l(yl‘ _]/z)

—\2
Y (vi — ;)

In the formula, 7; is the predicted value y; is the true value, and ¥, is the average value

of the samples # is the number of samples.
The anticipated outcomes are displayed in Figure 7.
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Figure 7. Error evaluation indicators of different synchronization sizes. (a) RMSE evaluation results,
(b) MAE evaluation results, (c) R? evaluation results, and (d) MBE evaluation results.
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As can be seen from Figure 7, the above evaluation metrics are also different for
different models. Compared with traditional LSTM, BP, and SVM, BO-LSTM shows a
decrease in RMSE at all four step sizes of 24, 48, 72, and 168 h, which indicates a significant
improvement in prediction accuracy. In addition, from Figure 7c, the R? of BO-LSTM is
the highest for all four step lengths, indicating that the model fits best at this time. The
predicted MAE and MBE decrease to different degrees at step sizes of 48, 72, and 168 h,
which indicates that BO-LSTM has some advantages over LSTM.

5. Conclusions

This experiment analyzed various factors related to the heat load of a real object in
long-term operation. Considering the influence of different factors, the factors with high
correlation were selected as the input to the model. In terms of data pre-processing, the 3¢
principle was chosen to process the data to ensure the fit. For the potential problem of data
noise, the moving average method was used to smooth the data and remove the noise to
make the data more reliable and easier to analyze.

For the prediction method, the LSTM optimized by the Bayesian algorithm was
selected. The initial learning rate, ridge regularization coefficient, and the number of
recurrent units in the hidden layer of the LSTM were optimized by using the powerful
optimization ability of the Bayesian algorithm. BP, SVM, and LSTM were selected for
comparison, and RMSE, R2, MAE, and MBE were chosen as evaluation indexes to evaluate
the prediction results of the above methods. It is easy to find that BO-LSTM had the
best fitting effect through the final results. The RMSE decreased most significantly at
the step size of 72 h, with a decrease of 0.15089. In other steps, the RMSE of BO-LSTM
also decreased, and the other two evaluation indexes also decreased. It can be seen that
the Bayesian optimized LSTM as a prediction method has a strong prediction ability and
general applicability. The object of this study is not dynamic, and real-time forecasting
of online dynamics is the problem that we want to solve. In addition to the above issues,
there is also a problem of applying the results of hourly forecasts to actual adjustments. We
believe that a real-time data acquisition and prediction platform can be built to transmit
the acquired data to the prediction software via Object Linking and Embedded for Process
Control (OPC) and then transmit the predicted data to the actuator for control to achieve
the purpose of actual control.
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