
Citation: Kim, J.-T.; Kim, Y.-S.

Electrostatic Field for Positive

Lightning Impulse Breakdown

Voltage in Sphere-to-Plane Air Gaps

Using Machine Learning. Energies

2023, 16, 6221. https://doi.org/

10.3390/en16176221

Academic Editor: Andrea Mariscotti

Received: 1 August 2023

Revised: 17 August 2023

Accepted: 25 August 2023

Published: 27 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Electrostatic Field for Positive Lightning Impulse Breakdown
Voltage in Sphere-to-Plane Air Gaps Using Machine Learning
Jin-Tae Kim 1 and Yun-Su Kim 2,*

1 Korea Electric Power Research Institute, Daejeon 34056, Republic of Korea; outofkim@kepco.co.kr
2 Graduate School of Energy Convergence, Gwangju Institute of Science Technology,

Gwangju 61005, Republic of Korea
* Correspondence: yunsukim@gist.ac.kr

Abstract: Breakdown (BD) voltage is significant in high-voltage power electric machines. Currently,
BD voltages are mainly predicted by the semi-empirical formula in strongly inhomogeneous electric
fields. However, the equation could not be applied for electrodes with weakly inhomogeneous
electric fields. In this paper, positive lightning impulse BD voltages are predicted in various sphere-
to-plane air gaps using forms of machine learning such as support vector regression (SVR), Bayesian
regression (BR) and multilayer perceptron (MLP). Unlike previous studies, a method is also proposed
by introducing streamer propagation characteristics as new features and by removing electric field
gradients as unnecessary features to find out how to reduce the feature dimension. The streamer
propagation characteristics are suggested to reflect the possibility of a discharge process between
electrodes. Predicted voltages from machine learning algorithms are compared with the experimental
results and calculated voltages from the semi-empirical formula. Firstly, the predictions from each
model agreed well with the datasets. New features were observed to be applied for machine
learning algorithms and to be as important as known electrostatic features before discharge. Secondly,
predicted BD voltages were more accurate than calculated voltages from the semi-empirical equation
in strongly inhomogeneous electric fields. Predictions from each model also agreed well with the
experimental results in weakly inhomogeneous electric fields. The prediction accuracy of SVR was
better than those of BR and MLP. Machine learning algorithms were also shown to be applied for
electrodes with a wide range of inhomogeneities, unlike a semi-empirical method. We expect that
the suggested features and machine learning algorithms can be used for accurately calculating
BD voltages.

Keywords: lightning impulse breakdown voltage; nonuniformity; sphere-to-plane gap; streamer
discharge characteristics; support vector regression (SVR); Bayesian regression (BR); multilayer
perceptron (MLP)

1. Introduction

Dielectric design of electric equipment is to predict the breakdown voltage. Electric
field distribution of an air gap has an influence on its dielectric strength [1]. In strongly
inhomogeneous field distributions (radius� gap distance) such as needle-to-plane, air
dielectric insulation strength is mainly dependent on either the maximum electric field or
streamer propagation characteristics. However, electrical breakdown becomes complex in
weakly inhomogeneous field distribution (radius ≤ gap distance).

Many studies have sought to predict the electrical breakdown by using q particle-in-
cell method, a fluid model, an air discharge mechanism and machine learning. The particle-
in-cell method is applied to gaps less than tens of um at pd lower than Paschen’s minimum
to predict minimum ignition voltages in the circuit breaker. The fluid model also shows
that it is possible to model electrical breakdown of air at pd values higher than Paschen’s
minimum [2,3]. Various methods are suggested to predict the breakdown voltage of air
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gaps with a typical electrode [4–9]. However, more research is required to solve several
concerns [10]. Recently, streamer process during discharge has been studied to calculate
the breakdown voltage. It involves the inception and propagation, which are determined
by the ratio between positive electrode shape and gap distance in inhomogeneous electric
fields [11]. This method is still not perfect and can mainly be used to calculate BD voltages
in strongly inhomogeneous electric fields.

A neural network is applied to predict electrical breakdown voltages of transformer
oil or to evaluate partial discharge in transformer oil [12–14]. Neural network is mainly
used to precisely analyze the performance of the complex system, which involves various
materials, such as pure oils, water contents, impurities and solid insulators. A support
vector machine (SVM) is utilized to predict BD voltages of the air in various electrodes,
such as rod-to-plane and sphere-to-sphere [15–17]. Generic algorithm (GA) and least
square algorithm are applied for the feature selection [18,19]. Previous studies consider
electrostatic field features which characterize electrode shapes before discharge. However,
it is impossible for such inputs to represent the discharge process after ignition. Some
of these features may also not be useful. Thus, in this paper, a method is suggested by
introducing streamer propagation characteristics as new features and by removing electric
field gradients as unnecessary features. Unlike former studies, electrostatic field features
are calculated based on the electric field that exceeds 90% of the maximum electric field.
Machine learning algorithms are also investigated to apply for inhomogeneous electric
fields with various nonuniformities.

Electric fields change during the discharge. The complete breakdown takes place
when the electric fields stay sufficiently large during the discharge. Thus, streamer propaga-
tion characteristics are considered to represent the possibility of the sustainable discharge
process between electrodes. If we involve electrostatic fields before discharge and streamer
propagation characteristics at the same time, it may be possible to predict the BD voltage
more accurately. For this, various electrostatic fields before discharge are calculated to
characterize the capacitive energy and inhomogeneity of each gap structure. Streamer
propagation characteristics are also expressed as the ratio of electric fields over the critical
electric field for streamer propagation. These features are utilized as inputs of machine
learning to calculate the electrical BD voltage. Machine learning is necessary for automat-
ing the entire electrical breakdown analysis processes based on automatic electric field
calculations. In particular, SVR and Bayesian regression can train models even with a small
amount of data. Computational efficiency of two algorithms is high, so that these algo-
rithms draw results within a short time, as shown in self-driving applications [20]. SVR and
Bayesian regression are also compared with a multilayer perceptron (MLP) neural network.

In this paper, positive lightning impulse BD voltage is predicted by SVR and Bayesian
regression and MLP in a sphere-to-plane electrode with air gaps of <200 mm. Predicted
BD voltages from machine learning are compared with both experimental results and
calculated voltages in the strongly inhomogeneous electric fields. Moreover, prediction
accuracy of BD voltages is analyzed in weakly inhomogeneous electric fields. Section 2
presents the limits of the semi-empirical method and the need for machine learning. In
Section 3, suggested parameters are defined as new features, and electrostatic features
are expressed. Section 4 explains machine learning algorithms and parameter tunning.
Section 5 provides experimental BD results to make datasets for machine learning. In
Section 6, simulation results are discussed. Section 7 gives the conclusion of this paper.

2. Semi-Empirical Methods for BD Voltage and Necessity of Machine Learning

Air insulation design criteria are mainly based on semi-empirical methods related to
streamer inception and propagation. Firstly, the streamer breakdown criterion is known
for calculating inception voltages or breakdown voltages in inhomogeneous electric fields
under various gases [21]. The criterion is expressed by Equation (1); xc is either identical
with the gap distance or a critical avalanche length; K is the number of critical electrons,
which is required for electrical breakdown; α is the ionization coefficient. K and α are
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influenced by various factors, such as humidity, air density, gas mixture ratio and electrode
shape [22,23]. ∫ xc

0
αdx = K (1)

Secondly, a streamer propagates between electrodes in case the applied voltage is large
enough to sustain the propagation process [24]. Semi-empirical Equation (2) for the BD
voltage is expressed by the voltage drop of streamer head and propagation length; in (2), d
is the distance between electrodes in mm, Est is the internal field strength along the positive
ion channels behind the head and U0 is the equivalent potential required for ionization; it is
approximately 20–45 kV [25,26]. (Calculated voltages from (2) are compared with predicted
voltages from machine learning in strongly inhomogeneous fields).

Ub = Est·d + U0 (2)

These equations are only used in case either gap distances or electrode shapes satisfy
certain conditions; (1) can be applied to weakly inhomogeneous electric fields’ needle-
plane or sphere-plane; (2) can be used in strongly inhomogeneous electric fields. Incorrect
ionization coefficients (α) and improper K value cause the error in calculated BD voltages
from (1). Breakdown in ambient air is also influenced by metallic particles and protrusion,
which cause the distortion of the electric field [27,28]. However, these are not involved in
semi-equations. Thus, machine learning is necessary for finding non-linear relationships
between multiple variables and BD voltages through the kernel function of SVR or hidden
layer of MLP. Moreover, machine learning quantifies the effect of each variable over BD
voltages in detail, and it is possible to categorize variables affecting BD voltages in each
sphere-to-plane air gap. Thus, machine learning predicts BD voltages with only accurate
variables related to electrode shapes, except for inaccurate data. This makes machine
learning apply to various electrode shapes.

3. Electrostatic Fields as Input Parameters for Machine Learning
3.1. Electric Fields Properties of Sphere-to-Plane Electrodes

As shown in Figure 1, the electric field between electrodes is calculated along the
shortest path with MAXWELL software (ANSYS MAXWELL 19 version). A voltage of 1 kV
is applied to each sphere, and the ground potential is applied to the plane electrode.
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Figure 1. Electric field in sphere-to-plane air gaps for a sphere of radius 10 mm and a gap distance of
100 mm. (a) Schematic electrode; (b) electric field. (A voltage of 1 kV is applied to a sphere).

Electric field distribution and the nonuniformity coefficient (NUC) are shown in
Figure 2. Maximum electric field is inversely proportional to the radius. Electric fields are
exponentially varying with respect to gap distances. As radius decreases, the electric field
gradient increases around sphere electrodes. Nonuniformity coefficients range from 4.7 to
73 in all the test electrodes. In the case of a radius of 3 mm, the slope of NUC is much larger
than that of other sphere electrodes. As radius increases from 3 to 10 mm, the slope rapidly
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decreases. Strongly inhomogeneous electric fields are shown in sphere-to-plane air gaps of
3 mm radius. Inhomogeneity is not large for spheres of radius 10 and 25 mm.
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Figure 2. Electric field distributions of a function of the air gap and the radius of sphere. (a) Electric
field; (b) nonuniform coefficient (NUC). (NUC = maximum electric field/average electric field).

3.2. Suggested Input Features: Streamer Propagation Characteristics

A positive streamer triggers an electrical BD in a nonuniform field with a positive
polarity if the air gap is <200 mm [29]. The critical electric field for steamer penetration
in the gap is 0.4–0.5 kV/mm, with a standard deviation of approximately 3% under
standard atmospheric conditions [30,31]. The probability of electrical BD increases as
either the average electric field between electrodes or the electric field of the plane electrode
approaches the critical electric field. Thus, the ratios of either the average electric field over
the critical electric field or electric field of the plane electrode over the critical electric field
are used as input parameters to represent streamer propagation characteristics.

3.3. Electrostatic Fields as Input Parameters

Electrostatic fields for machine learning are listed in Table 1. Eleven physical quantities
are calculated and then classified into four groups. The maximum electric field (Emax)
and the electric field deviation (Estd) are fundamental features in electrode systems. The
capacitive characteristics involve the stored energy (Es) and the stored average energy
in the air gap (Es ave). Streamer propagation characteristics are considered to represent
the probability that a streamer penetrates between the sphere and the plane electrode.
Inhomogeneity is a measure of nonuniformity imparted by variations in either the radius
of the sphere or the gap distance.

Table 1. Electrostatic fields.

Parameter Notation

Field distribution Emax, Estd
Capacitive characteristics Es, Es ave
Streamer propagation characteristics Eave

Ec0
, Eg

Ec0

Inhomogeneity V_E90, L_E90, Es_E90, Vr_E90, Lr_E90

Eleven input parameters are defined at the point of the maximum electric field or along
the path with an electric field that exceeds 90% of the maximum field. These parameters
are expressed as follows:

1. Maximum electric field: Emax

Emax= max Ei (i = 1, 2, 3, . . . , n), (3)
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where Ei is the electric field of the i-th element and n is the sum of elements in the short-
est path;

2. Electric field standard deviation: Estd

Estd=

√
1
n∑n

i=1(Ei − Eave)
2, (4)

Eave= ∑n
i=1

Ei
n

, (5)

where Estd is calculated along the shortest path and Eave is the average electric field;

3. Energy stored along the shortest path in the air gap: Es

Es= ∑n
i=1 E2

i di, (6)

where di is the fine distance of the i-th element and Es is the energy stored along the shortest
path. Es is dependent on the electrode shape; stored energy tends to become concentrated
around the sphere owing to the nonuniformity;

4. Average energy stored along the shortest path in the air gap: Es ave

Es ave=
Es

n
, (7)

where Ei is the electric field of the i-th element and n is the sum of elements in the short-
est path;

5. Ratio of the average electric field to the critical electric field: C1

C1=
Eave

Ec0
, (8)

where Ec0 is 0.5 kV/mm (the critical electric field for streamer propagation);

6. Ratio of the plane electrode electric field to the critical electric field: C2

C2 =
Eg

Ec0
, (9)

where Ec0 is 0.5 kV/mm (the critical electric field for streamer propagation). Eg is the
electric field of the plane electrode;

7. Voltage drop: V_E90

V_E90= ∑ Ei di, where Ei ≥ Emax × 0.9, (10)

where V_E90 is the voltage drop in the region with an electric field strength that exceeds
90% of the strength present with the maximum electric field;

8. Path length: L_E90

L_E90= ∑ di, where Ei ≥ Emax × 0.9, (11)

where L_E90 considers the ionization and avalanche formation that precedes streamer
inception and is the sum of the fine distances;

9. Energy stored in the region where the field exceeds 90% of the maximum field: Es_E90

Es_E90= ∑ E2
i di, where Ei ≥ Emax × 0.9; (12)

10. Path length that stores 90% of the total energy stored along the shortest path: L_Es90
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L_Es90= ∑ di, where ∑ E2
i di ≥ Es × 0.9; (13)

11. Relative ratio of the voltage to the length: Vr_E90, Lr_E90

Vr_E90=
V_E90

V
. (14)

Lr_E90=
L_E90

d
. (15)

4. Machine Learning Algorithms and Parameter Tunning
4.1. Support Vector Regression

An SVM is a machine-learning algorithm. An SVR is an SVM that solves regression
problems. An ε-SVR identifies the hyperplane on which the loss range (ε) is acceptable;
the soft margin is indicated by a slack variable (ξ). The primary optimization problem
addressed by an ε-SVR is the problem represented in (16). C and ε serve as hyperparameters
that enhance the accuracies of the predicted values [16,17]:

min
1
2
‖ ω ‖2 + C ∑m

i=1(ξi − ξ∗i ). (16)

s. t. f (xi)− yi ≤ ε + ξi. (17)

yi − f (xi) ≤ ε + ξ∗i . (18)

ξi, ξ∗i ≥ 0 (i = 0, 1, 2, 3 . . . n). (19)

ε-SVR is a convex quadratic problem, but it can be converted to a dual problem. The
decision function of the ε-SVR is defined in (20). The radial basis function serves as the
kernel that maps values from the original space to higher dimensions, and thus arranges the
data in a linear manner. γ is a parameter of the kernel function, comprising the Euclidean
distance between two points:

f (x) = ∑m
i=1 (α

∗
i − αi)K(x, xi) + b. (20)

K(x, xi) = exp
(
−γ‖ xi − xj ‖2

)
. (21)

4.2. Bayesian Regression

Bayesian models are utilized in various fields, such as artificial intelligence and ma-
chine learning. Bayes’ Theorem connects the prior probability and the posterior probability.
Its Equation (22) is as follows [32]:

p(θ|E) = p(E|θ)p(θ)
p(E)

, (22)

where θ is a parameter to be estimated, p(θ) is the prior probability of θ, E is data and p(E)
is a constant value. p(E|θ) is the likelihood. Bayesian inference uses prior probability and
likelihood to estimate the posterior probability, which is Equation (23) [28,29]:

(x|E) =
∫ x

0
p(x|θ)p(θ|E)dθ. (23)
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This equation shows that the posterior probability keeps changing with new data.
Since posterior probabilities can be used as new prior probabilities, data inference automa-
tion is possible.

The Bayesian regression uses Bayesian inference (conditional probability) for regres-
sion analysis between target (Y) and independent variables (X). The formula of Bayesian
regression is (24) [33]; X consists of n attributes such as x1, x2, . . . and xn; each attribute is
assumed to be independent; Y, X and ε are random variables; ε is a singular value. The
hyperparameters are found by GridSearch.

Y = a + bX[n] + ε[n]. (24)

4.3. Multilayer Perceptron Neural Networks

Multilayer perceptron (MLP) neural network is a supervised learning algorithm in
breakdown analysis [34]. Given a set of input parameters (X = X1, X2, . . ., X3) and a target
(Y), it can learn a model for regression. Figure 3 shows the conceptual multilayer perceptron
for predicting BD voltages. MLP is a two layers model, which consists of an input layer,
one hidden layer and an output layer.
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Figure 3. Conceptual multilayer perceptron neural network. (Bias: b1, b2).

The input layer consists of a set of neurons representing input parameters. Each
neuron in the hidden layer transforms the values from the previous layer with a weighted
linear summation (W1X1 + W2X2 + ... + WmXm), followed by the activation function. The
output layer receives values from the hidden layer and transforms them into the output
values. In a neuron of one hidden layer, MLP learns Equation (25). W1 andW2 are the
weights of the input layer and hidden layer. b1 andb2 are the bias added to the hidden layer
and the output layer. g is the activation function and the identity function is used. The
solver uses ‘lbfgs’. The number of neurons in one hidden layer is found by GridSearch.

f (x) = W2g
(

WT
1 x + b1

)
+ b2. (25)

4.4. Feature Normalization and Parameter Tunning

The input parameters are normalized to eliminate the value deviation and unit effects;
this normalization improves machine learning performance. The input parameters are
normalized using (26):

Xi =
xi − xmin

xmax − xmin
, (26)

where Xi is the normalized value of the input parameter (x); xmin and xmax are the minimum
and maximum values, respectively.

K-fold cross-validation is used, considering the limited amount of data. K is 3. A test
dataset involves nine samples, which are randomly divided into three sub-datasets; two
of these sub-datasets are used to train each SVR, the Bayesian regression model and MLP,
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whereas the remaining sub-datasets are used to validate models. GridSearch was used to
select the hyperparameters and tune the model.

5. Breakdown Experimental Results for Dataset Design

The experimental setup to predict lightning impulse BD voltages was shown in Figure 4.
This setup involved an impulse generator, electrodes and measurement systems. The
generator delivered 1.2/50-µs standard impulses. Measurement systems stored voltage
waveforms in an oscilloscope and a personal computer; measured voltages were derived
from the voltage divider. BD experiments were conducted in an up-and-down method. BD
voltages were measured 15 times under each condition. Calculated BD voltages were mean
values, except for maximum and minimum voltages.
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Nonuniformity coefficients (NUC) were evaluated to indicate nonuniform degrees of
sphere-to-plane air gaps. Mean BD voltages and calculated NUC were shown in Table 2.
NUC ranged from 7.134 to 55.647. Three samples in each electrode were uniformly and
randomly extracted by considering NUC. Each dataset consisted of 9 samples.

Nonuniform coefficients (NUC) =
Emax

U/d
. (27)

Table 2. Mean BD voltages and nonuniformity coefficients for datasets.

Gap
[mm]

Radius 3 mm Radius 10 mm Radius 25 mm

Number NUC VBD Number NUC VBD Number NUC VBD

70 1 20.044 70.71 13 11.032 82.67 25 7.134 104.21
80 2 33.126 79.57 14 13.886 95.10 26 7.375 110.00
90 3 34.118 84.10 15 14.479 99.24 27 7.535 115.65

100 4 36.833 90.59 16 16.091 104.52 28 7.828 122.50
110 5 39.268 96.93 17 18.009 113.49 29 8.077 127.74
120 6 42.177 103.14 18 18.858 119.84 30 8.172 131.78

130 7 44.185 109.20 19 19.933 125.42 31 8.530 140.47
140 8 46.522 115.13 20 19.963 128.00 32 8.570 148.17
150 9 48.685 120.91 21 20.976 135.03 33 8.645 153.84

160 10 49.861 126.56 22 20.833 137.29 34 8.686 162.14
170 11 51.936 132.07 23 22.587 142.32 35 9.209 167.85
180 12 55.647 138.37 24 23.172 145.67 36 9.365 174.50

6. Model Learning and Simulation Results
6.1. Model Learning and Testing

Good datasets were important for the enhancement of machine learning accuracy.
Four groups of datasets were randomly made by NUC, as shown in Table 3. The samples
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in all the datasets were unique. Datasets were randomly selected to learn SVR, Bayesian
regression and MLP models; one of four datasets was utilized to learn models; other
datasets were applied to analyze the prediction accuracy.

Table 3. Datasets and sizes.

Dataset Size Sample Number

1

9

1, 5, 9, 13, 17, 21, 25, 29, 33
2 2, 6, 10, 14, 18, 22, 26, 30, 34
3 3, 7, 11, 15, 19, 23, 27, 31, 35
4 4, 8, 12, 16, 20, 24, 28, 32, 36

6.2. Comparision among Predicted Voltages, Experimental Results and Calculated Voltages

Three error indices are applied to evaluate predicted voltages: root mean square error
(RMSE), mean absolute percentage error (MAPE) and relative error (RE). RMSE is expressed
by (28). MAPE is given by (29). Relative Error (RE) is the individual difference.

RMSE =

√
1
n∑n

i=1

(
Ubi −Upi

)2. (28)

MAPE =
1
n∑n

i=1

∣∣∣∣Ubi −Upi

Ubi

∣∣∣∣. (29)

RE =

∣∣∣∣Ubi −Upi

Ubi

∣∣∣∣, (30)

where Ubi is the BD voltage and Upi is the value predicted by SVR, Bayesian regression and
MLP. n is the number of samples.

The error indices of four predictions were shown in Table 4. Predictions from each
model showed good agreement with the experimental results. In the case of SVR, the
maximum and minimum RMSE between predictions and a corresponding dataset were
about 3.79 and 2.2 kV, and MAPEs were all <2.28%. The maximum and minimum RMSE
between predictions from Bayesian regression and a dataset were about 4.95 and 1.71 kV.
MAPEs were all <2.89%. The maximum RMSE of MLP was higher than that of SVR, while it
was lower than that of Bayesian regression. The prediction accuracy of Bayesian regression
was the lowest among three algorithms, based on RMSE and MAPE.

Table 4. Error indices of four predictions and comparison among SVR, BR and MLP.

Dataset
SVR Bayesian Regression MLP

RMSE MAPE RMSE MAPE RMSE MAPE

1 3.798924 0.019375 4.953797 0.028971 4.04539 0.030774
2 3.189483 0.022808 3.756385 0.024334 3.070613 0.020285
3 2.43982 0.016417 4.062541 0.023871 2.251325 0.014967
4 2.204422 0.014137 1.711295 0.008754 1.531138 0.007939

The predicted BD voltages from SVR, Bayesian regression and MLP were compared
with both experimental results and calculated voltages in a strongly inhomogeneous electric
field with spheres of 3 mm radius, as shown in Figure 5. The predictions from three models
exhibited good agreement with the experimental results. In particular, the maximum RE
between the predicted voltages from SVR and experimental results was 4.13%. Maximum
RE between the predicted voltages from Bayesian regression and experimental results was
6.30%. In the case of MLP, maximum RE was 7.75%. However, the maximum RE between
calculated voltages from (2) and experimental voltages was approximately 13%. Predicted
BD voltages were more accurate than calculated voltages from the semi-empirical equation.
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There was also BD voltage difference between SVR and Bayesian regression by 2.17%. SVR
was the most accurate among the three algorithms.
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Figure 5. Comparison between predicted voltages, calculated voltage (E_st) and experimental
results in strongly inhomogeneous electric field (radius = 3 mm, VBD: Breakdown voltage). (a) SVR;
(b) Bayesian regression (BR); (c) MLP.

Predicted BD voltages from three models were compared with experimental results in
a weakly inhomogeneous electric field, as shown in Figure 6. The predictions generally
agreed with experimental results. As shown in Figure 6a, the REs between predicted
voltages from SVR and experimental results were within 4.05%. As there was an 8.51%
error at the particular gap distances, the predicted voltages from SVR were more accurate
than those from Bayesian regression. In a weakly inhomogeneous electric field with a
sphere of radius 25 mm as shown in Figure 6b, REs between predicted voltages from SVR
and experimental results were all <4.15%, except for a gap distance of 70 mm. In the case of
predictions from Bayesian regression, REs were all <4.47%. Moreover, predicted voltages
from SVR were analogous to those from MLP, except for a gap distance of 70 mm in weakly
inhomogeneous electric fields.

6.3. Disucussion

Prediction of the dielectric insulation strength was challenging owing to a complex
relationship between various variables and the breakdown. Nevertheless, predictions from
machine learning algorithms were shown to be similar to the datasets. As new features,
streamer propagation characteristics were as important as known electrostatic features
characterizing electrode shapes before discharge. Electric field gradients were unnecessary
due to the time-varying Poisson’s electric field during the discharge process. Suggested
features were effective for lowering the feature dimension.

Three machine learning algorithms agreed well with the experimental results in all the
test electrodes. In particular, predicted voltages were more precise than calculated results
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in range 80 mm–110 mm. SVR was more precise than MLP, which was easier to analyze
than more complex systems by controlling the number of hidden layers. This showed that
SVR as well as MLP could be sufficiently possible for analyzing breakdown voltages of a
single medium with various factors, such as dust, salt and metallic particles. Prediction
accuracy of Bayesian regression was lower than that of SVR and MLP. This was because
variables affecting BD were dependent to some extent.

As there are no dominant equations for the physical discharge process under various
conditions, more study is needed to confirm whether the suggested method and machine
learning algorithms are applied for compressed single gas systems as well as insulator
creepage structures, which are utilized in high-voltage power apparatuses.
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Figure 6. Comparison between predicted voltages (from SVR, Bayesian regression and MLP) and exper-
imental results in weakly inhomogeneous electric field (VBD: Breakdown voltage). (a,c) radius = 10 mm;
(b,d) radius = 25 mm.

7. Conclusions

In this paper, machine learning algorithms were investigated for predicting positive
lightning impulse BD voltages in sphere-to-plane electrode systems with various nonunifor-
mities. A method was also suggested by introducing streamer propagation characteristics
as new features and by removing electrostatic field gradients as unnecessary features, to
reduce feature dimensions for three algorithms, which were SVR, Bayesian regression and
MLP neural network. These algorithms were trained based on new features during the
discharge process and known electrostatic features characterizing electrode shapes before
discharge. The predicted voltages from each model were compared with experimental
results and calculated voltages from the semi-empirical equation:

(1) The maximum RMSE between predictions from SVR and datasets was 3.79 kV, while
maximum RMSEs between predictions from other models (Bayesian regression, MLP)
and datasets were 4.95 kV and 4.04 kV, respectively. The predictions agreed well with
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the datasets. The suggested method was observed to be effective for learning models.
These results also showed that streamer propagation characteristics during discharge
were as important as known electrostatic features before discharge;

(2) Predicted BD voltages from each model were more accurate than calculated voltages
from the semi-empirical equation in strongly inhomogeneous electric fields with
radius of 3 mm. Predictions from each model also showed agreements with experi-
mental results in weakly inhomogeneous electric fields with spheres of 10 and 25 mm
radius. Machine learning algorithms were shown to be useful for evaluating BD
voltages in sphere-to-plane electrodes with a wide range of nonuniformities, unlike
the semi-empirical method;

(3) SVR was more precise than Bayesian regression and MLP under an ambient air,
regardless of the nonuniformity of electrodes.

The suggested method and machine learning algorithms are expected to be applied
for insulation design of air insulated switchgears (AIS) or cubic gas insulated switchgears
filled with dry air or SF6. As part of the insulation design process, predicted voltages in
each electrode structure are compared with the test voltage provided by the international
electronical committee (IEC) to verify the withstand performance of high-voltage power
electric apparatuses. (Test voltages are dependent on operating voltages).

High-voltage power electric apparatuses have various electrode shapes, such as bare
conductor electrodes, structures with the solid insulator and insulator creepage structures.
Further study will be conducted for evaluating BD voltages of creepage structures under
various conditions as well as dry air systems with impurities. The suggested method and
machine learning algorithms will be verified for different physical situations.
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