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Abstract: Fuel-saving-oriented collaborative driving is a highly promising yet challenging endeavor
that requires satisfying the driver’s operational intentions while surpassing the driver’s fuel-saving
performance. In light of this challenge, the paper introduces an innovative collaborative driving
strategy tailored to the objective of fuel conservation in the context of commercial vehicles. An en-
hancement to this strategy involves the development of a network prediction model for vehicle speed,
leveraging insights from driver style recognition. Employing the predicted speed as a reference, a
model-predictive-control-based optimal controller is designed to track the reference while optimizing
fuel consumption. Furthermore, a straightforward yet effective collaborative rule is proposed to
ensure alignment with the driver’s intention. Subsequently, the proposed control scheme is validated
through simulation and real-world driving data, revealing that the human–machine cooperative
driving controller saves 4% more fuel than human drivers.

Keywords: collaborative driving strategy; commercial vehicles; model predictive control; driving
style recognition; fuel-saving

1. Introduction

Commercial vehicles, while providing great convenience to people’s lives, also con-
sume a significant amount of energy. According to the white paper of the international
council of clean transportation, heavy-duty trucks have a baseline fuel consumption rate of
up to 33.1 L per 100 km [1]. Globally, governments are instituting increasingly stringent
energy-saving and emission-reduction regulations [2,3]. Using energy-saving technologies
to increase the energy utilization efficiency of commercial vehicles is a highly effective
response to these laws and regulations.

From the perspectives of static design, dynamic control, and driver–machine collabora-
tion, energy-saving technologies can be broadly categorized into vehicle and component de-
sign, vehicle control, and driver-centered energy-saving techniques. Low-rolling-resistance
tires [4], lightweight materials [5], and low aerodynamic drag technologies [6] are a few
examples of static design techniques used in vehicle and component design to reduce
energy consumption. In the domain of vehicle control, advanced approaches like engine
direct fuel injection [7], energy management [8,9], and eco-driving techniques [10,11] are
applied to precisely manage dynamic performance, leading to improved fuel efficiency
and reduced emissions. Driver-centered energy-saving techniques include driver prompts,
guidance, and collaborative driving systems [12], emphasizing drivers’ and machines’
collaborative roles in accomplishing energy-efficient driving.

The driving behavior of operators has a substantial impact on the fuel consumption of
vehicles, with differences of up to 40 percent between drivers performing the same driving
task [13,14]. Hence, driver-centered energy-saving techniques have enormous potential.
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Driver prompts and guidance primarily involve visual and voice reminders, such as real-
time fuel consumption displays and voice prompts for appropriate gear shifts [15–17].
Collaborative driving systems comprise coupled shared control (relevant to driver’s haptic
feedback) and uncoupled shared control (driver-input correction or blending) [18,19].
The former provides drivers with appropriate vibrations or force feedback through the
throttle pedal or steering wheel [20,21] to guide them towards correct and rational driving
behaviors. The latter involves blending the driver’s inputs with the machine’s inputs,
overlaying or adjusting the driver’s actions, and achieving a harmonious collaboration
between the human and the machine [22,23].

The essential aspects of human–machine collaborative driving encompass driver oper-
ation recognition, controller design, and their seamless collaboration. The primary goal of
recognizing the driver’s behavior and intentions in human–machine collaborative driving
is to ensure that the machine’s driving behavior corresponds to the driver’s intentions,
thereby nurturing greater trust in the machine [18,24,25]. Machines need to know the
driver’s upcoming desired speed to achieve better human–machine collaborative driving.
However, there exists no prior knowledge about a driver’s upcoming desired speed [26]. To
address this challenge, both model-based and data-based methods are commonly employed
to predict the upcoming desired speed [27]. Utilizing kinematic models, assumptions such
as constant velocity and constant acceleration are applied to forecast upcoming trajectories
in [28]. A deterministic machine learning-based transformer network is combined with
a stochastic Markov-chain Monte Carlo algorithm to predict future velocity profile and
energy consumption in [29]. The controller as a machine in human–machine collaborative
driving is ingeniously designed to outperform the driver, effectively correcting and en-
hancing the driver’s actions to produce more favorable outcomes [30]. To achieve superior
performance, optimization methods are commonly employed in controller design. For in-
stance, Liu et al. [31] used model predictive control (MPC) to design the driver–automation
shared steering system. Additionally, Mosharafian et al. [32] proposed an MPC-based cruise
control system to ensure the safe and efficient platooning of vehicles. The harmonious
fusion of the human driver and machine controller is achieved through the collaborative
mechanism between driver input and controller input. This is accomplished by overlaying
fixed proportion coefficients with proportion coefficients [33,34] and integrating adaptive
proportion coefficients [35,36].

Human–machine collaborative driving is a highly promising yet challenging endeavor
that requires satisfying the driver’s operational intentions while surpassing the driver’s
fuel-saving performance. Addressing this issue, this article introduces an innovative
fuel-saving oriented collaborative driving strategy for commercial vehicles. Learning the
driver’s driving style and predicting the driver’s desired vehicle speed is the first step.
Second, an MPC-based optimal controller is designed by taking vehicle energy efficiency
into account. Then, a simple collaborative rule is proposed to ensure alignment with the
driver’s intention. Finally, the proposed control scheme is validated through simulation
and real-world driving data, revealing that the human–machine collaborative driving
controller saves 3–4% more fuel than human drivers.

The remainder of the paper is organized as follows. Section 2 introduces the compre-
hensive control scheme. Section 3 provides a driving style recognition-based method for
predicting the upcoming desired speed of the driver. Section 4 focuses on the design of
an MPC-based linear fuel-saving controller and introduces a straightforward cooperative
rule to ensure alignment with the driver’s intentions. The evaluation of the proposed
control scheme through simulations is discussed in Section 5. Lastly, Section 6 presents the
conclusions drawn from this study.

2. Fuel-Saving-Oriented Collaborative Driving System

The overall architecture of the proposed fuel-saving-oriented collaborative driving
system is sketched in Figure 1. The system encompasses driver operation recognition,
an MPC-based optimal controller, and human–machine collaboration. Driver operation
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recognition is used to make the collaborative driving system satisfy the driver’s operational
intentions. The MPC-based optimal controller is used for surpassing the driver’s fuel-
saving performance. The block of the human–machine collaboration blends driver input
and controller input to provide a trade-off input. The trade-off lies in ensuring both meeting
the driver’s intentions and achieving good fuel efficiency.

Database 

Proceding VehicleEgo Vehicle

MPC Based 

Optimal

Controler

human-

machine
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Human Driver

Input
Traffic and vehicle

states
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Desired

 Speed
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Velocity Prediction

Cloud

Figure 1. The overall architecture of the proposed fuel-saving-oriented collaborative driving system.

In the driver operation recognition, driver’s driving style is first learned from driving
data stored in the cloud. Then, the driver’s desired speed in the near future is predicted
based on the operations on accelerator pedal and the states of preceding vehicles. Here,
the driver’s upcoming desired speed is taken as the driving intention. Using the driver’s
upcoming desired speed, a multi-objective optimization problem is formulated to track the
desired speed while saving fuel. The solution to the optimization problem is the input from
the machine controller. The controller represents a virtual driver in the future, which has
higher fuel efficiency but deviates from the human driver. The harmonious fusion of the
human driver and the virtual driver is achieved through the human–machine collaboration.
The output of the entire system is determined by the blending of the human’s and machine’s
inputs. Then, this output is executed by the engine management system.

3. Desired Speed Prediction Based on Driving Style

The driver’s upcoming desired speed is inherently linked to their driving style. The
precise classification of drivers’ styles is good for accurately predicting their upcoming
desired speed. Consequently, two essential models, namely the driving style recognition
model and the desired speed prediction model, are introduced to facilitate the subsequent
process of fuel-saving oriented collaborative driving. These models collectively contribute
to the effective implementation of the collaborative driving.

3.1. Driver Style Recognition Model

The vehicle motion and driver’s behaviors can effectively reflect the specific driving
styles. Thus, a set of variables is utilized to capture the differences among various driving
styles in this paper. Many previous studies utilize experimental data, including velocity,
acceleration, jerk (the rate of acceleration/deceleration changes), and the opening of ac-
celeration or braking pedal to recognize driving styles. And the statistic features of these
variables, such as mean value and variance, are often taken into account. Moreover, driving
styles tend to vary under different driving conditions. To robustly recognize driving styles,
some feature vectors covering different driving conditions are considered in this paper,
which are illustrated in Table 1.
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Table 1. Driving style classification features.

Driving Scenario Feature

Low speed

Accelerating
Acceleration

Speed

Maintenance
Speed

Accelerator pedal

Jerk

Medium speed
Accelerating Acceleration

Maintenance Acceleration

High speed

Accelerating
Acceleration

Jerk

Maintenance

Speed

Acceleration

Jerk

Brake pedal

The vehicles selected in this paper are commercial logistics vehicles with a fixed route
between Shanghai and Xuchang, China. The entire journey is 877 km, as shown in Figure 2,
mainly covering highway sections, suburban sections, and some urban road conditions.
In addition, 38 drivers are randomly selected to drive the experiment vehicle on the fixed
route. During the driving process, an on-board telematics box (T-box) is utilized to collect
vehicle data in real-time and then transmit the data to the cloud for storage. Data collected
include vehicle motion states (vehicle speed, acceleration), engine states (engine speed,
engine torque, and fuel consumption), and driver’s operation signals (the opening of the
accelerator and brake pedal), etc. In total, 38 sets of data files are obtained and divided
based on different drivers. In this way, the training data of the driving style classification
model are constructed.

Figure 2. Fixed route between Shanghai and Xuchang.

Based on the obtained training data, a series of data features, including mean and
variance values can be calculated, which only represent a single driver sample. Furthermore,
by merging all driver samples, training data have the following forms:

X = {xi
∣∣xi =

(
mean(zij), variance(zij)

)
; i = 1, 2, . . . , N; j = 1, 2, 3}, (1)

z = (v, a, Jerk, p), (2)
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where v represents velocity, a represents acceleration or deceleration, p represents the
opening of the accelerator or brake pedal, N is the total number of experiment drivers, and
j represents different speed intervals.

Since the style of drivers in the paper is unknown and the driver samples in the dataset
are unlabeled, it is necessary to utilize unsupervised clustering methods to identify the
driving style. Self-organizing map (SOM) network is an effective unsupervised clustering
method, which has been proven to be highly accurate in previous clustering studies.
Therefore, the SOM network is used to cluster driver samples in this paper. Typically,
driver styles can be categorized into three types: conservative, moderate, and aggressive.
Thus, the output of the SOM should be configured with three nodes to accommodate
these distinct driving styles. However, too few output nodes can reduce the activity of the
competition of the SOM. This competitive learning mechanism may reduce the accuracy of
driving style recognition. Therefore, the number of output nodes of the SOM cannot be
set directly to three. On the other hand, K-means is well-suited for clustering scenarios
involving a limited number of categories, such as the case of recognizing driving styles.
K-means functions as a clustering technique relying on Euclidean distance, where the
similarity between an input vector and cluster center is quantified by the distance between
the two vectors. To take advantage of the strengths of K-means and SOM, a driving style
recognition method that combines K-means and SOM is illustrated in Figure 3 to solve the
above issue.

Driving 

scene

Driving 

features

Preliminary 

clustering results

 (16 categories)

Final 

clustering results 

(3 categories)SOM neural

network
K-means 

clustering

Figure 3. The clustering process of SOM and K-means.

In the training period, the first step is to determine the scale of the SOM network. There-
fore, an empirical formula is used to determine the number of nodes in the SOM network,
which can be represented as nsom = 5

√
Nsom, where nsom is the number of nodes and Nsom

is the sample size. Sequentially, the initial value of the weight vector wj, which matches the
nodes of the SOM network and its dimension is the same as the sample xi, is randomly ini-
tialized. Then, all the training set samples are fed into SOM one by one, and the distance be-

tween the input vector and weight vector can be calculated by dj =
√(

xi − wj
)T(xi − wj

)
.

The node with the smallest dj is called as winner node, and its weight vector wj is updated
by wj = wj + η

(
xi − wj

)
, where η is the learning rate. Usually, other weight vectors also

can be updated by wj = wj + ηg
(
xi − wj

)
, where g = e

−(wi−wj)
T
(wi−wj)

2σ2 is called focal func-
tions. Subsequently, the weight vector converges, and the intermediate results zi ∈ Z can
be obtained.

The training process for K-means can be formulated as following. The only hyper-
parameter of K-means is the number of cluster centers. In the context of driving style
recognition, the number of cluster centers is set to three. First, three samples are randomly
selected as clustering centers {a1, a2, a3}. Sequentially, calculate the distances of all interme-
diate results zi ∈ Z to the three cluster centers and divide them to the nearest cluster center.
Subsequently, the new cluster centers can be calculated by using ai =

1
num ∑

zi∈Z
zi, where

num is the sample size of category ai. After reaching the maximum number of iterations,
the final cluster centers of K-means can be determined.

In the context of driving style recognition, SOM is used for coarse clustering to output
intermediate results, and the K-means method further clusters the intermediate results to
obtain the final results of driving style recognition. After the training period, the weight
vector of SOM and the cluster centers of K-means are determined. Then, the trained model
can be used to recognize the driving style of each specific driver. Specifically, when the
input vector xi is fed to SOM, the distance between the input vector and weight vector
can be calculated, and the nearest weight vector is the intermediate result. Moreover, the
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intermediate result is input to a K-means model and the distance between the intermediate
vector and clustering centers is calculated again. Eventually, the nearest cluster center is
the final result of driving style recognition, which is shown in Figure 4.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Number of Drivers

0

1

2

3

D
riv

in
g 

St
yl

e

SOM + Kmeans
GMM

Figure 4. The results of driving style recognition: the numbers 1, 2, and 3 represent conservative,
moderate, and aggressive driving styles, respectively.

Drivers do not have the labels in the real world, thus the recognition results of SOM+K-
means cannot be verified with absolute truth. To relatively verify the recognition results of
SOM+K-means, another recognition algorithm named Gaussian mixture model (GMM)
is employed. The principles underlying these two recognition methods are divergent.
SOM is a competitive learning algorithm where neurons compete to represent different
patterns in the input data, while GMM is a generative model that models the probability
distribution of the data and assigns each data point to one of the Gaussian components. If
a reasonable agreement exists in the recognition results of these two algorithms, it signifies
a consistent identification of the driver’s style. The recognition results of SOM+K-means
and GMM algorithm are given in Figure 4. Among the 33 drivers, 23 drivers are recognized
as having a conservative style by the SOM+K-means model and GMM model, 6 drivers
are recognized as having a moderate style, and only 1 driver is recognized as having an
aggressive style. Moreover, the recognition consistency between the SOM+K-means model
and GMM model reaches 90.9%. It can be summarized that the SOM+K-means model is
accurate enough to recognize the driving styles of different drivers.

3.2. Vehicle Speed Prediction Method

As illustrated in MPC-based fuel-saving control, the upcoming desired speed is used
as the reference speed. A speed prediction model is designed on the basis of the learned
driving style. Due to the influence of the driver’s driving style and surrounding environ-
ment, the vehicle speed has strong randomness and nonlinear properties. Considering that
the inertia of commercial vehicles is higher than that of passenger vehicles, the feature of
vehicle speed distribution is stable in time series. Therefore, the sequential method can
be used to predict the upcoming desired speed. In this paper, a long short-term memory
(LSTM) network is utilized to design the speed prediction model, and its structure is shown
in Figure 5.
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Figure 5. Structure of LSTM network.

LSTM is a supervised learning algorithm; therefore, labeled data need to be included
in the training set. In the scenario of speed prediction, the input data is the historical speed
sequence of a certain period, and the output is the future speed sequence. Due to the
influence of a driver’s personal driving style on the distribution of future speed, the learned
driving style is also used as an input. Moreover, key vehicle states, such as acceleration,
relative speed, and distance, are also considered as input variables. Finally, the training
data have the following form:

X = {xi|xi = ( fin,i(v), s1, gin,i(s2) ); i = 1, 2, · · ·N},
Y = {yi|yi = fout,i(v) ; i = 1, 2, · · ·N}, (3)

where fin(v) represents the input speed series, fout(v) represents the output speed series,
s1 represents the driving style, and s2 represents other key vehicle states.

While the training set (X, Y) is fed to the LSTM, a forgetting gate f (t) is used to forget
the speed information of the previous time. Then, the current speed information xt and
historical speed information ht together as input vectors enter the input gate i(t), which
decides what information will be retained. Finally, the output gate o(t) determines the
value of the speed sequence. The specific expressions for the three gating mechanisms are
formulated as follows:

i(t) = σ(Wiht−1 + Wixt + bi), (4)

o(t) = σ(Woht−1 + Woxt + bo), (5)

f (t) = σ(W f ht−1 + W f xt + b f ), (6)

where Wi, Wo, and W f are the weights in the input gate, output gate, and forgetting gate,
respectively, σ represents the activation function, and bi, bo, and b f represent the bias in the
input gate, output gate, and forgetting gate, respectively.

After the parameters of the LSTM are determined, the process of speed prediction
can be formulated as follows. Firstly, feature data xt, including historical speed series, the
learned driving style, and key vehicle states, are fed to the LSTM. Using the forgetting gate
ft and the input gate it, intermediate variables ct can be obtained. Then, ct is used to output
the future speed series from gate ot. The aforementioned process can be represented as:

c̃t = tanh(Wcht−1 + Wcxt + bc), (7)

ct = ft � ct−1 + it � c̃t, (8)

ht = ot � tanh(ct), (9)

where the activation function tanh(x) = ex−e−x

ex+e−x , xt represents the input vector, ct represents
the state of LSTM cell at time t, ht represents the output of LSTM, and � represents the
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multiplication between each element. In the period of validation, the upcoming desired
speed is predicted by ht.

4. Design of the MPC-Based Optimal Controller

This section aims to design an MPC-based optimal controller to enhance fuel effi-
ciency in human–machine collaborative driving. The subsequent subsections present a
detailed overview of key design steps. Firstly, the construction of the system model for
the commercial vehicle is outlined, as the design of the MPC-based optimal controller
relies on a model-based approach. Next, the formulation of the optimization problem is
discussed, wherein the driver’s intentions are integrated with the fuel-saving objectives to
achieve collaborative driving control. Subsequently, predictive equations are provided, as
MPC, also known as receding horizon control, utilizes predictions of system’s future states.
Finally, the solution is derived to effectively address the optimization problem.

4.1. System Modeling of Commercial Vehicles

The vehicle under discussion is a heavy-duty commercial vehicle. When the vehicle is
driving on the road, the longitudinal motion model can be described as follows:

ṡ = v

v̇ = a,
(10)

where s is the driving distance of the vehicle, v is the vehicle speed, and a is the vehicle
acceleration. The longitudinal acceleration a is determined by the force balance equation

Ft = Fw + Ff + Fi + Fj, (11)

where Ft, Fw, Ff , Fi, Fj are the traction force, air resistance, rolling resistance, slope resistance,
and acceleration resistance. Further expanding each item of Equation (11), the longitudinal
dynamics of the commercial vehicle in the traction model can be summarized as follows:

η I f Ig

r
Te =

1
2

Cd A f ρv2 + µMg cos(α) + Mg sin(α) + δMa, (12)

where η is the mechanical efficiency of the transmission system, M is the vehicle mass,
Te is the engine torque, I f is the transmission ratio of the vehicle’s main reducer, Ig is
the transmission ratio of the vehicle’s gearbox, and r is the wheel radius, µ is the friction
coefficient of the vehicle on the road, α is the road slope, g is the acceleration of gravity, Cd is
the air resistance coefficient in the driving environment of the vehicle, and A f is the frontal
area of the vehicle, ρ is the density of air, and δ is the lumped rotational inertia coefficient.

When the commercial vehicle is working in the brake mode, the engine provides a
drag resistance force Te,drag. The longitudinal dynamics become

I f Ig

ηr
Te,drag =

1
2

Cd A f ρv2 + µMg cos(α) + Mg sin(α) + δMa. (13)

To facilitate the design of the fuel-saving controller, it is necessary to obtain an accurate
fuel consumption model. Typically, the fuel consumption model is expressed in polynomial
form. The parameters of the polynomial are acquired using the method of least squares.
In line with the approach outlined in [10], the polynomial model employed for the engine
fuel consumption used in this study is as follows:

ṁ f (ne, Te) =
2

∑
i=0

2

∑
j=0

ιi,jTe
inj

e, (14)

where ne is the engine speed, and ιi,j represents the fitting coefficients.
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The fitting coefficients are obtained using the method of least squares. Figure 6
depicts the fitting performance of the engine fuel consumption model. Black dots are the
experimental data points. The experimental data in Figure 6 are the normalized data. It
can be seen from Figure 6 that the experimental data points are evenly distributed near
the fitted surface, which means the fitted polynomial model has a good approximation
performance. The root mean square error between the experimental data and the fitted
model is 0.01871.

Figure 6. Fitting performance in data normalization: (a) fuel consumption rate, (b) model residuals.

Using the conversion relationship between vehicle speed v and engine speed ne

v = 2πrw
ne

60× I f Ig
, (15)

the following fuel consumption model can be obtained as follows:

ṁ f (v, Te) = p1v2 + p2T2
e + p3vTe + p4v + p5Te, (16)

where pi are the converted coefficients from the fitting coefficients ιi,j.

4.2. Formulation of Multi-Objective Function

The objective of the fuel-saving-oriented collaborative driving system is to fulfill the
driver’s intentions while minimizing fuel consumption to the greatest extent possible. To
accomplish this objective, three key goals are devised: (1) minimizing the tracking error of
the driver’s desired speed, (2) minimizing fuel consumption, and (3) minimizing engine
torque ripple.

4.2.1. Minimizing the Tracking Error of the Driver’s Desired Speed

The driver’s desired speed represents their intended longitudinal behavior for the
vehicle, taking into account subjective power demand and driving safety considerations.
A deficiency in tracking the driver’s desired speed can yield unfavorable outcomes, such
as the driver frequently needing to readjust the opening of the accelerator pedal, which
subsequently results in increased fuel consumption. Thus, the problem of satisfying the
driver’s intent is transformed into a speed tracking problem. To guarantee alignment with
the driver’s intention, the first cost function is defined as follows:

Jv =
N

∑
k=1

wr(v(k)− vr(k))
2∆t, (17)

where N is the length of the prediction horizon, wr is the weight coefficient of the speed
tracking term, v(k) is the vehicle speed at step k, and vr(k) is the desired speed of the driver
at step k.
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4.2.2. Minimizing Fuel Consumption

The primary objective of the proposed collaborative driving system is to enhance
fuel-saving performance. To quantify the fuel consumption, the system utilizes the fitting
polynomial of the fuel consumption and defines the fuel consumption index as follows:

JQ =
N

∑
k=1

w f ṁ f (v(k), Te(k))∆t, (18)

where w f is the weight coefficient of the fuel consumption item.

4.2.3. Minimizing Engine Torque Ripple

To reduce the ripple of the engine torque and ensure a smooth change in engine torque,
a cost function for minimizing engine torque ripple is designed as follows:

Ju =
N

∑
k=1

wuu2(k)∆t, (19)

where wu is the weight coefficient of the engine torque ripple item, and uk is the control
input, namely the change rate of the engine torque.

On the basis of the above cost functions, the multi-objective function is formulated
as follows:

J =Jv + JQ + Ju

=
N

∑
k=1

[wr(v(k)− vr(k))
2 + w f ṁ f (v(k), Te(k)) + wuu2(k)]∆t

(20)

The multi-objective function shows that these three penalty terms are in conflict with
each other. Achieving a perfect tracking of the desired speed is often at the expense of
engine torque fluctuation, which results in increased fuel consumption. Consequently, the
selection of appropriate weighting coefficients requires a trade-off between these conflict-
ing objectives.

By the substitution of Equation (16) into Equation (20), the multi-objective function becomes

J =
N

∑
k=1

[((p1 + wr)v2(k) + p2T2
e (k) + p3v(k)Te(k))∆t

+ ((p4 − 2wrvr(k))v(k) + p5Te(k))∆t + wuu2(k)∆t]

=
N

∑
k=1

[x̃T(k)Qx̃(k) + Cx̃(k) + uT(k)Ru(k)]

(21)

where x̃(k) =
[

v(k)
Te(k)

]
, Q =

[
(p1 + wr)∆t p3∆t

2
p3∆t

2 p2∆t

]
, C =

[
(p4 − 2wrvr(k))∆t

p5∆t

]T

, R = wu∆t.

The presence of a first-order item, Cx̃(k), is evident in the multi-objective function (21).
To handle this, two additional variables, ∆1(k) and ∆2(k), are introduced, and a new state

matrix is defined as x(k) =
[

v(k) + ∆1(k)
Te(k) + ∆2(k)

]
= x̃(k) +∆(k). By utilizing this newly defined

state matrix, the multi-objective function (21) can be transformed as follows:

J =
N

∑
k=1

[
(x(k)− ∆(k))TQ(x(k)− ∆(k)) + C(x(k)− ∆(k)) + uT(k)Ru(k)

]
=

N

∑
k=1

[
xT(k)Qx(k) + uT(k)Ru(k) +

(
C− 2∆T(k)Q

)
x(k) + ∆T(k)Q∆(k)− C∆(k)

]
.

(22)
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If ∆(k) = ( 1
2 CQ−1)T, then J =

N
∑

k=1
xT(k)Qx(k) + uT(k)Ru(k) + ∆T(k)Q∆(k)− C∆(k).

In this transformation of the multi-objective function, item ∆T(k)Q∆(k)− C∆(k) is omitted
since it is not related to the variable to be optimized. The multi-objective function (22)
becomes

J =
N

∑
k=1

xT(k)Qx(k) + uT(k)Ru(k). (23)

Evidently, the cost function (23) is quadratic, which makes it easier to find a solution
of the optimization problem.

4.3. Predictive Equation

Predictive equations play a crucial role in MPC because they enable the controller to
make decisions based on predictions of the system’s future states and outputs. By utilizing
predictive equations, the MPC controller can optimize its control actions over a future time
horizon to achieve desired performance objectives.

Taking vehicle speed and engine torque as vehicle states, the mathematical model for
the time-domain discretization is presented as follows:{

v(k + 1) = v(k) + a(k)Ts
Te(k + 1) = Te(k) + Ṫe(k)Ts,

, (24)

where Ts is the sample time interval and Ṫe is the change rate of the engine torque. By
substituting Equation (12) into Equation (24), the longitudinal dynamic model used for
prediction equations is obtained{

v(k + 1) = v(k) + Ts(
η I f IgTe(k)

δMr − µgcos(α)
δ − gsin(α)

δ − Cd A f ρ

2δM v2(k))
Te(k + 1) = Te(k) + TsṪe(k)

, (25)

In the construction of a quadratic objective function, two additional variables of ∆1(k) and
∆2(k) are used. For consistency, the state equation of the discrete system is given as follows:{

x(k + 1) = Ax(k) + Buu(k) + Bdd(k)
y(k) = Ccx(k)

, (26)

where x(k) =

[
v(k) + ∆1(k)
Te(k) + ∆2(k)

]
, u(k) = Ṫe(k), A =

[
1

Tsη I f Ig
Mrwδ

0 1

]
, Bu =

[
0
Ts

]
,

d(k) =

[
Ts

(−η I f Ig∆2(k)
Mδrw

− µg cos(α)
δ − g sin(α)

δ − Cd A f ρ

2Mδ v2(k)
)
+ ∆1(k + 1)− ∆1(k)

∆2(k + 1)− ∆2(k)

]
,

Bu =

[
0
Ts

]
, Bd = Cc = I2×2, and I is the identity matrix.

Beginning from the initial step k, through repeated substitution, the states of the
discrete system at step k + i can be obtained as

x(k + i|k ) = Aix(k) +
i

∑
j=1

[
Aj−1Buu(k + i− j) + Aj−1Bdd(k + i− j)

]
, (27)

The outputs of the discrete system at step k + i is

y(k + i|k ) =
i

∑
j=1

[
Cc Aj−1Buu(k + i− j) + Cc Aj−1Bdd(k + i− j)

]
+

i
∑

j=1
Cc Aix(k),

(28)
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Defining the predicted output as Yp(k+1|k) ∆
=


y(k + 1|k)
y(k + 2|k)

...
y(k + p|k)


p×1

, the future control

input as U(k) ∆
=


u(k)

u(k + 1)
...

u(k + p− 1)


p×1

, and the external disturbance item as

D(k) ∆
=


d(k)

d(k + 1)
...

d(k + p− 1)


p×1

and using Equations (27) and (28), the predictive system

model (26) can be transformed into the following form:

Yp(k + 1|k ) = Sxx(k) + SuU(k) + SdD(k), (29)

where p is the prediction and control horizon. The coefficients in the prediction Equation (29)

are Sx =


Cc A
Cc A2

...
Cc Ap


p×1

, Su =


CcBu, 0, · · · , 0

Cc ABu, CcBu, · · · , 0
Cc A2Bu, Cc ABu, · · · , 0

...
...

. . .
...

Cc Ap−1Bu, Cc Ap−2Bu, · · · , CcBu


p×p

, and

Sd =


CcBd, 0, · · · , 0

Cc ABd, CcBd, · · · , 0
Cc A2Bd, Cc ABd, · · · , 0

...
...

. . .
...

Cc Ap−1Bd, Cc Ap−2Bd, · · · , CcBd


p×p

.

4.4. Solution of the Optimization Problem

Using the predictive system model (29), the multi-objective function (22) can be
transformed as follows:

J(x(k), U(k), n) =
N

∑
k=1

[xT(k)Qx(k) + uT(k)Ru(k)]

= (ΓyYp(k + 1|k))T(ΓyYp(k + 1|k)) + ‖ΓuU(k)‖2

=

[
ΓyYp(k + 1 | k)

ΓuU(k)

]T[ ΓyYp(k + 1 | k)
ΓuU(k)

]
,

(30)

where the weight matrix Γy = diag(Γy,1, Γy,2, . . . , Γy,p) with Γ
T

y,iΓy,i = Q, and the weight

matrix Γu = diag(Γu,1, Γu,2 . . . Γu,p) with Γ
2

u,j = R. Clearly, the weight matrices Γy and
Γu are determined by the weight coefficient of the objective term and remain constant
throughout the predictive horizon.

To facilitate the solution of the optimization problem, an auxiliary variable is defined
as

ρ
∆
=

[
ΓyYp(k + 1|k)

ΓuU(k)

]
=

[
ΓySu

Γu

]
U(k) +

[
ΓySxx(k) + ΓySdD(k)

0

]
= Azz + b

(31)
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where Az =

[
ΓySu

Γu

]
, z = U(k) and b =

[
ΓySxx(k) + ΓySdD(k)

0

]
. The multi-objective

optimization problem can be written as

min
z

J = min
z

ρTρ. (32)

The optimal solution can be found as
d(ρTρ)

dz = 2AT
z (Azz + b) = 0

d2(ρTρ)
dz2 = 2AT

z Az > 0
=⇒ z = (AT

z Az)
−1(−Azb). (33)

Then, the solution of the optimization problem is

U(k) = −
(
ST

u ΓT
y ΓySu + ΓT

u Γu

)−1[
ST

u ΓT
y Γy(Sxx(k) + SdD(k))

]
(34)

The current control input is determined solely by the first element of each solution
sequence. The iterative process will persist at each subsequent horizon.

5. Human–Machine Collaboration

The human–machine collaboration is introduced to provide a trade-off input by blend-
ing driver input and controller input. The trade-off lies in ensuring both meeting the
driver’s intentions and achieving good fuel efficiency. When the controller is inactive,
the driver’s pedal operation directly serves as the engine’s torque demand. The driver’s
operation to the vehicle’s response is straightforward. However, when the controller is
activated, the driver’s control of the vehicle becomes less direct. Considering the driver’s
sensitivity to real-time power feedback from the vehicle, it is typically desired to minimize
the discrepancy between the actual engine torque applied to the vehicle and the driver’s
desired torque.

A simple collaborative rule is proposed to ensure alignment with the driver’s intention.
This collaborative rule is implemented by introducing upper and lower thresholds to control
the direction of the deviation. When there is an upward deviation between the controller’s
input and the driver’s input, the upper threshold comes into play to adjust the controller’s
output towards the driver’s input. Similarly, when there is a downward deviation, the lower
threshold comes into play to align the controller’s output with the driver’s input. Through
this straightforward collaborative rule, consistency between the driver and the controller
is maintained, thereby better achieving the objectives of human–machine collaborative
driving.

By introducing the lower and upper thresholds α1 and α2, the system input is governed
by a collaborative rule as expressed by the following equation:

Tre f
e =


(1− α1)Te,d, Te,c < (1− α1)Te,d

Te,c, (1− α1)Te,d < Te,c < (1 + α2)Te,d
(1 + α2)Te,d, (1 + α2)Te,d < Te,c

(35)

where Te,d is the driver’s desired engine torque, and Te,c is the control input of the optimal
controller. The driver’s desired engine torque, which depends on the position of the
accelerator pedal, can be acquired using a two-dimensional pedal map. The control input
of the optimal controller is derived from the first element of each solution sequence. Finally,
Tre f

e is applied to the engine system to determine the vehicle’s state at the next moment.
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6. Results and Discussion

To evaluate the fuel-saving performance of the proposed human–machine co-driving
system, both simulations and experiments are carried out. The accuracy and effectiveness
of the vehicle speed prediction are verified using real-world driving data. Following
this, a detailed evaluation is performed to validate the fuel-saving performance under
medium-speed and high-speed driving conditions.

6.1. Vehicle Speed Prediction

To thoroughly evaluate the effectiveness of the velocity prediction method, a set of
comparative experiments is carried out, incorporating a range of signal inputs. Additionally,
a comprehensive investigation is conducted to analyze the impact of driving style on the
ability to predict speed. The present analysis encompasses the execution of prediction
experiments, wherein driver style labels are included in some instances and excluded in
others. Subsequently, the prediction error is carefully analyzed and discussed.

The test data used in this study comprises approximately 10 h of real driving data.
The dataset is divided into two subsets: the training set, which constitutes the initial 70%
of the data, and the testing set, comprising the remaining 30%. This division allows for
comprehensive model training and subsequent testing to assess the prediction performance.

6.1.1. Input Feature Selection

The selection of input features directly affects the performance of the prediction.
The key features consist of the historical vehicle speed, the historical acceleration, the
driver’s driving style, and the relative distance and speed between the host vehicle and the
preceding vehicle. Taking into account computational resources and model complexity, a
three-feature input is selected, incorporating features of historical speed (Spe), driving style
(Dri-Sty), and an additional key feature such as acceleration (Acc), relative speed (Rela-Spe),
and relative distance (Rela-Dis). The design of the three-feature input is presented in
Table 2.

Table 2. Settings of input features. (* indicates that the feature is selected).

Variable Spe Dri-Sty Acc Rela-Spe Rela-Dis

S1 * *

S2 * * *

S3 * * *

S4 * * *

In vehicle speed prediction, the historical data consists of 100 steps, and the prediction
horizon spans 20 steps, with each step having a time interval of 0.1 s. The obtained
prediction results are illustrated in Figure 7. The partial enlarged view of Figure 7 is
shown in Figure 8. The analysis reveals that speed prediction stability under setting S1 is
relatively poor, and the accuracy of speed prediction diminishes significantly after a certain
number of prediction steps. Notably, for scenarios involving changes in speed increments
or decrements, the prediction performances of settings S3 and S4 outperform that of
setting S2. Specifically, the prediction accuracy and stability of S3 are superior to those
of S4.
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Figure 7. Vehicle speed prediction under different input features. (a) S1; (b) S2; (c) S3; (d) S4.
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Figure 8. Partial enlarged view of Figure 7: from 7400 s to 7500 s. (a) S1; (b) S2; (c) S3; (d) S4.

The speed prediction results were further analyzed using quantitative methods,
wherein the evaluation metrics of root mean square error (RMSE) and mean absolute
percentage error (MAPE) were selected. The variations of RMSE and MAPE for the four
different settings are depicted in Figure 9. It is evident that prediction errors increase
as the prediction steps increase. Among the evaluated settings, the output results of S3
demonstrated superior accuracy and stability compared to the others. Consequently, for
the subsequent implementation, S3 was selected as the feature input.
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Figure 9. Prediction error varies with prediction step for different input features. (a) RMSE;
(b) MAPE.

6.1.2. Effect of Driving Style on Velocity Prediction

The influence of driving style on speed prediction was further evaluated in two
scenarios: with and without driving style input. The same model parameters were utilized,
following the input set presented in Table 3. The speed prediction results were recorded,
and the corresponding error values were obtained. All the prediction errors in each
prediction step are summed and averaged. The results are shown in Figure 10, with each
data point representing the averaged value at the respective prediction step. To highlight
the performance improvement achieved by introducing the driving style feature, the errors
(RMSE) for different inputs were fitted using the least squares method. The fitted functions
for cases without and with the introduction of driving styles are expressed as follows:

• Without driving style feature: RMSE(t) = 0.0409t + 0.2597
• With driving style feature: RMSE(t) = 0.0376t + 0.2521

It can be seen from Figure 10 that the inclusion of the driving style feature in the input
enhances the overall prediction accuracy compared to the scenario without the introduction
of the driving style input.
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Figure 10. Effect of driving style on velocity prediction.
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Table 3. Settings of input features. (* indicates that the feature is selected).

Variable Spe Rela-Spe Dri-Sty

S3 * * *
S5 * *

6.2. Evaluation on Fuel-Saving Performance

Simulations are conducted to assess the fuel-saving performance of the proposed
human–machine co-driving system, utilizing real-world driving data as the speed refer-
ence. The human–machine co-driving system is implemented within the Simulink/Matlab
environment. To ensure comparability, the drivers and driving tasks remain consistent both
before and after incorporating the proposed system. For simulating the behavior of human
drivers, a speed-tracing PID controller is employed. During the simulations, the control
horizon and prediction horizon are both set to twenty, and the total prediction domain
spans 2 s. To establish a suitable range of speeds for validation, we utilize data on the
typical speeds at which the vehicle operates during daily driving. Subsequently, the fuel
consumption performance is verified within this speed range.

6.2.1. Speed Range Selection

The commercial vehicles under investigation predominantly operate on a specific
route, and the speed profile of real vehicle data is depicted in Figure 11. Probability
distribution graphs are presented in Figure 12 with a speed range of 10 km/h used for
the proportion statistics to evaluate the distributions of the speed profile quantitatively.
Based on the distribution of vehicle speeds, three distinct speed ranges are defined: the
low-speed range (0 km/h–30 km/h), the medium-speed range (30 km/h–60 km/h), and
the high-speed range (above 60 km/h).

0 5,000 10,000 15,000

 Time(s)
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20

40
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80

100

 S
p
ee

d
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m
/h

)

Real-word driving speed

Figure 11. Profile of the real-world driving speed.

From Figure 12, it is evident that there are fewer recorded data points when the
vehicle speed falls within the low-speed range (0 km/h–30 km/h). This observation
suggests that the vehicle spends relatively less time driving within this speed range,
and the fuel consumption in this range has a minor impact on the entire driving cycle.
Therefore, high-speed range and medium-speed range are selected for assessing fuel-saving
performance.
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Figure 12. Probability distribution graphs of the vehicle speed.

6.2.2. Comparison of Performance in the High-Speed Range

Performance in the high-speed range is first evaluated. Simulation results are shown
in Figure 13. It can be seen from Figure 13 that, in comparison to the driver without
the human–machine collaboration, the driver utilizing the human–machine collaboration
achieves not only reliable speed tracking performance but also a certain smoothing effect
on the vehicle speed, effectively suppressing local speed fluctuations. Furthermore, the
sudden torque changes of the engine are suppressed for drivers with the human–machine
collaboration, resulting in smoother engine torque variations and reduced peak torque.
These efforts to suppress speed and engine torque fluctuations contribute not only to
improved driving comfort but also to an enhancement of the vehicle’s overall fuel economy.
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Figure 13. Comparison result in the high-speed range.

The utilization of human–machine collaboration leads to adjustments in engine torque
and vehicle speed profile, ultimately improving the vehicle’s fuel economy and reducing
the overall fuel consumption. The proposed human–machine co-driving system achieves a
fuel saving rate of 3.04% without compromising the speed tracking performance.
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6.2.3. Comparison of Performance in the Medium-Speed Range Range

Performance in the medium-speed range is evaluated, and simulation results are
presented in Figure 14. As depicted in Figure 14, the performance of the proposed human–
machine co-driving system in the medium-speed range is comparable to that observed
in the high-speed range. Concerning vehicle speed, the proposed system exhibits the
capability to maintain smooth vehicle speed while effectively tracking the driver’s desired
speed. Regarding the engine torque, the system achieves smoother torque variations and
suppresses sudden changes. The proposed human–machine co-driving system yields
a fuel-saving rate of 4.1% without compromising speed tracking performance. Table 4
summarizes the performance comparison in both the high-speed range and medium-speed
range. The comparison reveals that the proposed human–machine co-driving system
achieves a fuel saving rate of 3–4% more than that of human drivers, in both the medium
and high-speed ranges.

Table 4. Comparison of fuel-saving performance.

Method Conditions High-Speed Range Medium-Speed Range

Driver 27,754.6 g 12,758.3 g

Proposed control system 26,897.4 g 12,224.3 g

Fuel saving rate 3.04% 4.1%
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Figure 14. Comparison result in the medium-speed range.

7. Conclusions

Driver-centered energy-saving techniques have enormous potential for commercial
vehicles. The paper proposes an innovative collaborative driving strategy aimed at fuel
conservation in the context of commercial vehicles. The collaborative driving strategy
encompasses a sequence of crucial components: driving style recognition, the prediction
of desired vehicle speed, the formulation of an MPC-based optimal controller, and the
establishment of a collaborative rule. Finally, the proposed control scheme is validated
through simulation and real-world driving data. The validation process unfolds as follows:
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• The style recognition experiments show that the proposed SOM+K-means model,
which has the recognition consistency of 90.9% with the GMM model, is accurate
enough to recognize the driving styles of different drivers.

• The comparative experiments of the vehicle speed prediction indicate that the inclu-
sion of the driving style feature in the input enhances the overall prediction accuracy
compared to the scenario without the introduction of the driving style input.

• The fuel-saving evaluation simulation reveals that the human–machine collaborative
driving controller saves 3–4% more fuel than human drivers.

Moving forward, prospective research avenues may encompass the refinement and fur-
ther development of the human–machine collaborative methodology, as well as exploring
the application of nonlinear MPC within the framework of the optimal controller design.
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