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Abstract: Electric vehicles (EVs) are a sustainable transportation solution with environmental bene-
fits and energy efficiency. However, their popularity has raised challenges in locating appropriate
charging stations, especially in cities with limited infrastructure and dynamic charging demands.
To address this, we propose a multi-agent deep deterministic policy gradient (MADDPG) method
for optimal EV charging station recommendations, considering real-time traffic conditions. Our
approach aims to minimize total travel time in a stochastic environment for efficient smart transporta-
tion management. We adopt a centralized learning and decentralized execution strategy, treating
each region of charging stations as an individual agent. Agents cooperate to recommend optimal
charging stations based on various incentive functions and competitive contexts. The problem is
modeled as a Markov game, suitable for analyzing multi-agent decisions in stochastic environments.
Intelligent transportation systems provide us with traffic information, and each charging station
feeds relevant data to the agents. Our MADDPG method is challenged with a substantial number
of EV requests, enabling efficient handling of dynamic charging demands. Simulation experiments
compare our method with DDPG and deterministic approaches, considering different distributions
and EV numbers. The results highlight MADDPG's superiority, emphasizing its value for sustainable
urban mobility and efficient EV charging station scheduling.

Keywords: EV charging station recommendation; reinforcement learning; deep learning; MADDPG;

multi-region; smart city

1. Introduction

Smart cities have emerged as a vision where citizens can securely access, manage,
and exchange data concerning various aspects of their daily lives in a sustainable and
pervasive manner [1,2]. With the increasing prominence of electric vehicles (EVs) in urban
transportation and logistics [3,4], the transition towards greener mobility has become a
global focus. In 2020, there were already 10 million EVs on the road worldwide, with over
2.61 million in China alone [5]. Projections indicate that the number of EVs will reach
40 million by 2030. The European Union’s commitment to significantly reduce greenhouse
gas emissions by 2050 has further accelerated the shift towards EVs in the automotive
industry [6]. As EV adoption grows in smart cities, the establishment of robust public
charging infrastructure becomes imperative [7,8].

However, EVs come with inherent limitations, including restricted battery range, long
charging times, and potential waiting times for charging [9]. Charging an EV often takes
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considerably longer than refueling a conventional vehicle, ranging from 30 minutes to
several hours. Moreover, many EV owners lack the convenience of charging their vehicles
at home, which is primarily due to the high power requirements of EVs. Scaling up EV
charging infrastructure can pose challenges to the power distribution system, necessitating
an increased reliance on charging stations.

The recommendation of electric vehicle charging stations (EVCS) in the context of
future smart cities presents significant challenges. To optimize the charging experience
for EV drivers and improve charging solutions, an intelligent system is needed. Current
approaches, which tend to be deterministic [10-12], overlook the uncertainty of ever-
changing traffic conditions, leading to suboptimal recommendations. Devising EVCS
recommendations in uncertain future states is a complex problem. Renewable-integrated
standalone charging stations provide sustainable EV charging. With growing EV adoption,
integrating smart grid architecture becomes essential. Standardizing power distribution
protocols is critical, and comprehensive proposals for EV charging via current infrastructure
are now available [13-16].

Reinforcement learning (RL) [17] offers a viable solution to tackle intricate decision-
making problems and can be applied for intelligent EVCS recommendations [18]. RL
enables agents to learn from repeated trial and error to maximize long-term objectives.
However, the large-scale setting involving millions of EVs and thousands of charging
stations poses challenges for conventional Q-learning approaches. Additionally, most
RL methods utilize single-agent reinforcement learning, which has limitations, whether
centralized or decentralized.

To address these challenges, deep reinforcement learning (DRL) has gained promi-
nence as it excels in complex sequential decision-making tasks, even surpassing human per-
formance in various domains [17,19]. The deep deterministic policy gradient (DDPG) [20]
is a DRL technique that has shown promise in addressing continuous action problems,
outperforming Deep Q-Learning (DQL) in real-time control tasks. DDPG leverages policy
gradients, iteratively updating the policy’s parameter values to maximize the predicted
cumulative return.

This paper aims to achieve optimal EV charging station recommendations by adopting
the principles of multi-agent deep reinforcement learning (MADRL) [21]. We employ a
framework based on Markov games and evaluate the learning process using all agents’ joint
actions [22-27]. To depict the optimal joint action, we apply the steady state concept from
game theory. Specifically, we consider each region of EV charging stations in the city as an
individual agent and formulate the EV charging recommendations as a multi-agent deep
deterministic policy gradient (MADDPG) task, using a multi-agent actor-critic framework.
Our approach emphasizes coordination and collaboration among all agents within the
large-scale system.

The results of our experiments demonstrate that the proposed approach outperforms
benchmark strategies, including single-agent and conventional methods, as well as state-
of-the-art approaches. Furthermore, our approach effectively minimizes total travel time
under dynamic traffic conditions, accommodating different EV distributions and numbers
of EVs.

The following is a summary of this paper’s significant contributions.

* A novel approach employing the multi-agent deep deterministic policy gradient
(MADDPG) approach, specifically designed for optimal EV charging station recom-
mendation in a city with multiple regions. By considering dynamic traffic conditions,
our method concurrently minimizes the total travel time in a stochastic environment.
This innovative approach addresses the challenges of recommending charging stations
in a rapidly changing urban landscape.

e To facilitate efficient cooperation and communication among agents, a multi-agent
system is devised, featuring a centralized learning model and decentralized execution.
This distinctive amalgamation empowers agents to collaboratively make optimal EV
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charging station recommendations, thereby augmenting the overall efficiency and
performance of the system.

* By adopting a suitable framework for the study of multi-agent decision processes,
we formulate the EV charging station recommendation problem as a Markov game.
This modeling selection adeptly manages the uncertainties and dynamic nature of the
environment, thereby enabling more precise and robust recommendations.

e Rigorous performance experiments are conducted to assess the effectiveness of our
proposed methodology. By comparing our MADDPG against the DDPG algorithm and
conventional deterministic methods, we demonstrate the superiority of our method-
ology. Additionally, we consider two different distributions of EVs to validate the
robustness and generalizability of our approach under varying scenarios.

The remainder of this paper is structured as follows: Section 2 presents the research
background in this field. In Section 3, the key materials and methods of the EV charging
system architecture considered in this paper are introduced. The EV charging station rec-
ommendation problem is then formulated as a sequential decision-making challenge using
Markov games in Section 4. Section 5 outlines our proposed multi-agent deep deterministic
policy gradient algorithm for EVCS recommendation. The simulation results and analyses
are presented in Section 6. Finally, the paper concludes in Section 7, summarizing our
significant contributions.

2. Research Background

The charging and discharging of electric vehicles (EVs) present several challenges due
to the uncertainties arising from dynamic and random charging requests. As a result, sub-
stantial research efforts have been devoted to designing EV charging recommendations and
scheduling strategies to address congestion issues and optimize charging operations. Deep
reinforcement learning has emerged as a promising approach to tackle these challenges.

In [28], the authors proposed a planning model based on stochastic simulation for EV
charging stations (EVCSs) to reduce investment and operational expenses. Another study
by Kim et al. [29] utilized the RL Q-learning algorithm and Markov decision process to
model an energy management system for a smart building, incorporating PV generation,
electrical storage, and a vehicle-to-grid station, leading to reduced overall energy costs.
Zhang et al. [30] addressed congestion control in charging station allocation through
the combination of communication technology using Q-learning. In a different context,
Dabbaghjamanesh et al. [31] proposed a Q-learning method based on recurrent neural
networks for estimating loads of plug-in hybrid electric vehicles under various conditions.

Chics et al. [32] considered the scheduling complexity of EV charging and discharging
and estimated the value-action function using a Q-value table by discretizing power prices
and EV charging activities, aiming to lower long-term electricity costs. Wan et al. [33] for-
mulated the electric vehicle charging scheduling problem using a Markov decision process
(MDP) based on deep reinforcement learning (DRL), engaging with the environment to
teach the ideal policy and handling the randomness in an EV’s arrival and start charge
time. However, their approach did not account for traffic congestion and other realistic
restrictions. These directions center on electric vehicles, encompassing emission and traffic
simulation models. Electric vehicles have distinct traffic traits due to their exclusive torque
and acceleration attributes [34]. This necessitates precise calibration of traffic simulation
models to suit these vehicles.

In another work [35], a combined routing and charging behavior approach based
on network equilibrium and an equilibrium-based charging station location problem
was suggested. In [36], a stochastic model for bidirectional smart charging of EVs was
considered, taking into account the interests of EV customers. Chen et al. [37,38] proposed
a stochastic model predictive control method for energy management and traffic control,
leveraging reinforcement learning and a DQN algorithm to calculate the best action-value
function, involving an RL-controller in the optimization process. Meanwhile, in [39], deep
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reinforcement learning (DRL) was used to overcome the impact of physical restrictions in
the stability properties model to optimize outcomes.

The research [40] presents a smart charging algorithm for electric vehicles (EVs)
that incorporates real-time data on energy prices, grid demand, and charging station
availability. By utilizing deep reinforcement learning (DRL) techniques, the algorithm
dynamically optimizes EV charging schedules to take advantage of lower energy prices
and reduce strain on the grid during peak hours. This not only leads to cost savings for
EV owners but also contributes to grid load balancing. The importance of multi-agent
system (MAS) applications, where agents must compete and collaborate to achieve the
best overall results, was emphasized. To address the challenges of high-dimensional
environments and the limitations of Q-learning in real-world scenarios, several studies
have combined reinforcement learning with deep neural networks. A multi-agent deep
reinforcement learning approach is employed in this study to make sequential decisions
in a multi-agent environment, where single-agent DRL methods may not suffice due to
increasing complexity in real-world problems [22-26]. In such situations, multi-agent
system (MAS) applications become crucial, as agents must both compete and collaborate to
achieve optimal results.

3. Materials and Methods

In this section, we introduce the key concepts and assumptions of the EV charging
system architecture considered in this paper. The number of waiting EVs and the number
of charging electric vehicles may be obtained from each EV charging station, and the traffic
data may be obtained from an intelligent transport system (ITS) as illustrated in Figure 1.

Agent of «—» Communication
B) region . EVES ﬁ TS of the agents
Charging Information
T request of EV T of EVCS

Figure 1. Overall architecture for the multi-region of EV charging station.

3.1. Network Model

The city is partitioned into # regions, with each region containing EV charging stations.
The city’s network topology is represented as a graph G = (V,E), where V = {1,2,--- ,n}
denotes the set of vertices, and E = {;; | i,j € V'} denotes the set of edges representing the
road connections between nodes i and ;.
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To efficiently manage the traffic flow, the system utilizes an intelligent transport system
(ITS) to gather information on the number of waiting EVs and the charging electric vehicles
at each charging station. The traffic data is collected and analyzed to obtain the average road
velocity Ufj between nodes i and j at time step t. This information enables the calculation of
driving times for each link li]- in the network, defined as:

;4

— )

ij vi]'

where Tfj represents the driving time to travel through link /;;, with d;; denoting the distance

1y
between nodes i and j, and vf-]- being the average road velocity at time step .

To optimize the EV charging process, the city’s topological graph is divided into n
regions, each containing an EV charging station. Utilizing information from the intelligent
transportation system and EV charging requests, the system manages traffic matrices and
network topology. To estimate the arrival time, charging time, and charge quantity of EVs,
the Dijkstra algorithm is employed to find the shortest time path from the EV’s current
position to each charging station in the region [41,42]. This allows the system to calculate
the estimated arrival time to each charging station based on the identified route. Since
future traffic conditions are uncertain, the estimates are based on current traffic conditions.

The path to a specific EV charging station can also be used to estimate the charge
required for the EV. A featured state is extracted for each region based on the current time
information received from the EV’s charging request. As a result, the network model for
each region is continuously updated and maintains real-time traffic data acquired from the
ITS center, providing a set of estimated arrival times to each charging station as input to its
respective agent.

The estimated arrival time from the origin position to EV charging station k in region i
is calculated as follows:

o= Y iﬁ, VkeK, Vien 2
% 0
vieLbk 1

where L is the set of links from the origin to EV charging station k in region i. This
information is vital for the intelligent charging recommendation process, enabling the
system to efficiently manage EV charging stations and optimize the overall charging
experience for EV drivers.

3.2. EV Charging Station

The city is equipped with EV charging stations distributed across different regions.
Each EV charging station consists of parking spaces and charging poles. Regular updates
on the charging status, such as the current cost of charging, the number of EVs charging,
and the number of EVs waiting, are sent by all EVCSs in a region to the respective agent
handling that region. Whenever an EV makes a charging request, this data is refreshed
to ensure accurate estimations of charging and waiting times for all EV charging stations,
which serves as the input for the corresponding agent.

To predict the waiting time for upcoming EV charging requests, the agent manages
the charging reservations. The EVs are distributed within the EVCS based on the “First
Come First Serve” (FCES) policy. The expected waiting time for an EV at EVCS k can be
calculated as:

ik _ ik ik
Tgirr = max{0, Ty, — Tear @)

where T;;’;rt represents the time when the EV starts charging at EVCS k in region i. If an

EV can be charged as soon as it arrives at a charging pole, it does not need to wait, and
T%; 47 = 0 based on the EV’s arrival time. Otherwise, the EV has to wait until a charging
pole becomes available.
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The time when an EV starts charging at EVCS k in region i is determined using
the formula:

i,k _ : N("U_NA] tri/k i,k va_Nl f+1ri/k i,k Neo 71,i,k i,k
Tsturt = mln{Tsturt T+ T s Tstart e T Tst;;t + T 4)

where N,y is the number of EV requests for charging, and Ny, is the number of charging
slots at EV charging station k. The earliest charging time for an EV is determined by
considering EVs [Nyy — Nyjot, Nev — Ngjor + 1, -+, Ney — 1] based on the first-come-first-
served principle.

The charging time Té'hk at EVCS k in region i is estimated using the equation:

ik _ (Socreq - Soci'fr)
Tenr = ik

where Cpyy is the maximum battery capacity of the EVs, ¥ is the charging power of EV

X Cmax (5)

charging station k, and 7 is the charging efficiency. socik represents the state of charge of
an EV when it arrives at EVCS k in region i, and it is given as:

SOCik = SOCeyr — SOCHE .., 0 < SOCHK < SOCye 6)

where SOC,, is the current state of charge (starting position) of the EV.

Based on the previously defined path from the EV’s position to each charging station
in each region, along with the data received from the ITS, we can calculate the energy con-
sumption e¢; used to represent the EVCS statuses along with traffic conditions. Consequently,
the state of charge consumption is calculated as:

: d
SOCHk,=¢e Y L, VkeKk, Vien )

ik —max
VleLf

where ¢ is the energy consumption rate (kWh/km). This information is crucial for the
intelligent charging recommendation process, allowing the system to efficiently manage
the EV charging stations and optimize the overall charging experience for EV drivers.

3.3. Communication

Effective communication is at the heart of our multi-agent approach for optimal EV
charging station recommendation. In a complex urban environment, seamless data ex-
change between electric vehicles (EVs), EV charging stations, the intelligent transportation
system (ITS), and agents within each city region is paramount to ensure efficient charging
recommendations as illustrated in Figure 1. Various wireless technologies can be harnessed
to facilitate this dynamic data flow and enable real-time decision-making. These technolo-
gies are chosen based on factors such as communication range, data transfer rates, and
latency requirements.

¢  Communication Channels: each region in the city is equipped with a dedicated agent
functioning as a central system. This agent acts as a communication hub, orchestrating
interactions between all relevant entities. This includes EVs, EV charging stations,
and the intelligent transportation system (ITS). Additionally, agents within a specific
region communicate with each other to exchange vital information.

* Agent Communication: within a region, agents collaborate through wireless com-
munication to ensure coordination and synergy. This communication allows agents
to share insights about charging station occupancy, current traffic conditions, and
pending EV charging requests. The collective intelligence of agents enhances the
accuracy of charging station recommendations.

¢ EVto Agent Communication: EVs within each region establish communication with
the corresponding agent responsible for that region. This communication can be
facilitated through wireless technologies such as Wi-Fi, cellular networks, or Bluetooth.
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EVs share essential information such as battery state of charge (SoC), current location,
and destination.

e ITS: the intelligent transportation system (ITS) plays a pivotal role by providing
real-time traffic information to the central agents. Communication between agents
and the ITS can occur through various wireless technologies, ensuring up-to-date
traffic insights.

¢  Charging Station Interaction: charging stations are equipped with communication
modules that allow them to share real-time information about charging station occu-
pancy, charging rates, and availability with the central agent. Wireless technologies
such as cellular networks or dedicated short-range communications (DSRC) can facili-
tate this exchange.

* Recommendation: through ongoing data exchange, agents gather inputs from EVs,
charging stations, and the ITS. This data fusion enables the agents to make informed
decisions using our multi-agent deep deterministic policy gradient (MADDPG) algo-
rithm. Agents collaborate to recommend optimal charging stations for EVs, consider-
ing travel time, charging station availability, and real-time traffic conditions based on
Algorithm 1.

In conclusion, the communication framework in our methodology is designed to
harness the power of wireless technologies for seamless data exchange in a multi-agent
environment. This facilitates effective decision-making in recommending EV charging
stations, considering the uncertainty of future charging requests and dynamically changing
traffic conditions. By integrating wireless communication between EVs, charging stations,
ITS, and agents, our approach optimizes the overall charging experience for EV drivers
and contributes to the efficient utilization of charging infrastructure in a multi-region
city setting. We deal with the details of the Markov game formulation of EV charging
control thoroughly in Section 4 and with the training process of MADDPG algorithm for
EV charging station recommendation in Section 5.

4. Markov Game Formulation of EV Charging Control

This section presents the electric vehicle charging station recommendation using
a multi-agent reinforcement learning framework. In this framework, each region with
EV charging stations is considered an agent, and these agents collaborate and compete
to maximize the overall reward. Unlike single-agent reinforcement learning, where an
agent interacts with the environment described by a Markov decision process to receive
immediate rewards, multi-agent reinforcement learning involves agents impacted by both
the environment and other agents. As a result, the environment can no longer be described
solely by a Markov decision process, leading to the formulation of a Markov game [26],
which combines elements of both MDP and game theory [43,44].

Markov Game. An n-agent Markov game (n > 2) is represented as a tuple:

S, AL ... A" P
< 1 n n >

where 7 is the number of agents, S is the set of environment states, usually referring to the
joint state of all agents, A’ is the set of actions available to the i-th agent, and the joint-action
space is defined as A! x --- x A",

O': S+ R? is the set of observations for agent i, returning a d-dimensional observa-
tion, and O!,- - - ,O" is the set of joint observations. Each agent i utilizes a stochastic policy
1, : O' x Al '+ [0,1] to select actions.

The transition probability function P : S x Al x --- x A" + P(S) describes the
probability distribution from the current state s; € S to a new state s, 1 € S when action
a € Ais executed. Additionally, each agent i receives its own immediate rewards based on
the state and agent’s action, given the reward function 7' : S x Al x --- x A" > R.

The deep reinforcement learning (DRL) agents engage in sequential interactions with
electric vehicles (EVs), EV charging stations in each region, and the intelligent transport
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system center (ITSC) within discrete-time steps to determine the optimal charging station
recommendation in a stochastic environment. Considering the multi-regional environment,
each region participates in simultaneous cooperation and competition with other regions,
leading to a mixed-cooperative-competitive setting. As depicted in Figure 2, each region
uses observations of the environment state to select an action a’ € A’ from its action space
A' based on the current policy 7y, at time step t. The goal of each agent i is to maximize
its own total expected return R' = YL v'r!, where T is the time horizon and v is a
discount factor.

Observations

(R E-L =L

011 a1|
= Agent 1
r1t
ad
egion 1
= =2 &
( \ s . Region 2
ok a¥ | Joint Action )
> Agent k >
k| (@l ... akl, =al
S \ &1 )
: \Region 3/
¥,
o"t Environment
§ Agentn -
a’t
Mt —

(g ey e 1T

Rewards

Figure 2. Multi-agent reinforcement learning.

4.1. Agent

In our approach, each region containing EV charging stations in the city is treated as an
individual agent. These agents are responsible for providing timely recommendations and
decisions regarding the optimal and suitable EV charging stations for a sequence of charging
requests. These decisions are based on real-time information received from requesting EVs,
charging stations, and transportation systems, with the objective of achieving long-term
optimization goals.

4.2. Observation

The observation o} at time step ¢ for agent i consists of various features related to the
arrived electric vehicle charge request (CR;) and the EV charging stations located in region
i. It can be formulated as follows:

ik ik i,k
of = {CRy, TETAfTWmtT' T W} ®)

ik ik . . .
where ¢4, Tyt TChT’ and ' are sets of features representing the estimated time of

arrival from the starting position to each EV charging station k in agent i, the waiting
time, the charging time, and the charging power of each EV charging station k in agent
i, respectively.

The charge request CR; includes various parameters such as the time state T, the
current state of charge SOCq,y, the required state of charge SOCye;, the maximum battery
capacity of the required EV Cy,4y, the starting position Ps, and the destination position P;.

CR; = {T SOCCW, SOCreq, Crax, Ps, Py }

TIZEIT(‘A = {TETA’ TETA' " TETA}

TIZ/\;Cath = {TWuth’ TWmtT’ o TWmtT} (9)
T(l:hT = {x ChT' TChT’ STt

T R UG R Ty
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Additionally, we define s; = {o},0?,---,0'} as the state of all agents at step t. It
should be noted that the observation is just a partial perspective of the environment, as it
excludes details about the other agents.

4.3. Action

Based on the observation of the environment, each agent i jointly determines the
appropriate offer for the charging request. Specifically, each agent makes a recommendation
for the charging request by selecting the optimal charging station located in its region. The
joint action is defined as a; = {a},a%,- -, ap}.

4.4. Transition Probability

At time step t, each agent i takes an action a € A’, which induces a transition in the
environment from the current charging request CR; to the next charging request CR;;

after it is finished. This transition is governed by the state transition function P (o} j|of;, ap).

4.5. Reward Function

The EV charging station recommendation in region i is based on the minimization of
the total travel time expected for EV charging requests, which can be expressed as:

ik ik ik ik
Tiravel = TETA T TWaitT T TChT (10)

In our system, the total reward is defined as the difference between the actual travel
time detected at the end of the EV charging and the estimated travel time derived by
selecting the appropriate action for the EV charging station recommendation. If the actual
travel time cannot be determined due to current traffic circumstances and other EV charging
patterns, the reward is specified as the estimated travel time.

ik ik . .
T = {_ {Ttmvel,act B Ttmvel,estm , SiEV terminal (11)
ik .
_Ttravel,estm’ Otherwise

The objective of MADRL is to maximize total rewards, where reducing travel time
is specified as a negative value. Directly extending single-agent reinforcement learning
methods, such as the deep Q-network (DQN) algorithm [19] or deep deterministic policy
gradient (DDPG) algorithm [20], to learn synchronized policies by training each agent
individually presents several challenges. Training in a multi-agent structure is more compli-
cated and intricate than in a single-agent case. Each agent’s policy changes constantly, and
the environment appears non-stationary from the agent’s perspective due to interactions
with other agents, preventing the simple use of experience replay, which is critical for
a DON to learn consistency. Recently, a solution called multi-agent deep deterministic
policy gradient (MADDPG) [45], which is an extension of DDPG to multi-agent systems,
has been developed. This approach is based on the centralized training and decentralized
execution architecture.

5. MADDPG Algorithm for EV Charging Station Recommendation

MADDPG is an actor-critic algorithm designed for continuous actions and states,
capable of learning policies for complex coordination among multiple agents, considering
the actions of other agents. In our study, the city is divided into multiple regions, each
housing EV charging stations, creating a mixed-cooperative-competitive environment
where agent policies and the environment are unstable and non-stationary.

Our approach encourages agents to learn coordinated policies and addresses the non-
stationary environment problem. To achieve this, agent policies consist of two separate
deep neural networks with different parameters: an actor-network (policy-network) with
parameters 6? , which generates an action distribution to approximate policy u o (0;),and a

critic network with parameters OIQ, which predicts discounted future returns to approximate
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the state-value function inQ (si,a). We also include time-delayed copies 9? "and GZQ, of these
networks to act as targets, enabling more stable training.

This framework of centralized training and decentralized execution helps us achieve
our goal of efficient EV charging station recommendations. The centralized training phase
allows the multi-agents to exchange additional information, depicted by dotted lines in
Figure 3, such as observations and actions of other agents, as well as local observations
of the environment, making the training process more effective. On the other hand, the
decentralized execution mechanism ensures speed and flexibility in real-time recommen-
dation as it operates independently and does not require comprehensive information
during execution.

Q-value Q-value Q-value
Critic 1 Critic 2 Critic n
L T T N --- f‘r
l—-';’-—‘-"_#‘a_ —— I}_-"#' |
(01,31) (02,32) e (on,an)
e = = = = & e s & = s s - oo e <
Actor'1 Actor 2 Actor n

Decentralized Execution

Centralized Training

Figure 3. Centralized training and decentralized execution of the MADDPG algorithm.

The actor creates an exploratory policy such that a} = M (0l) + N at time step ¢

by deterministically transferring a local observation o;'( to a particular continuous action
jigr (0}) and then adding a random noise process . In order to use the experience in the
sulbsequent decision-making steps, i.e., to improve sampling efficiency and training stability,
the agent’s transition, as well as the supplemental information, the joint actions of all agents
a = {a}, a%, .-+ ,a}'}, and returns the immediate reward ri and the next observation oi 41 to
the respective agents, are stored in a reply buffer D in the form of ei = (sf, az, ri, si +1) of
the agent 1.

A random mini-batch of S samples (s/,a/, 7/, s')| ]$=1 is extracted from the replay buffer
D to train the main networks, denoting a sample index by j, and the critic for each agent is
updated by minimizing the loss function:

LO) = s X(v ~ Q- ah) (12)
]
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where y/ is the target value expressed as
j_ W ot /
yo=r+7Q; (57,4, ay)|

a =i ()

More precisely, by applying the gradient, the parameters of the critic network QiQ, are
modified by (12) so that:

07 02 — BV, (67)

where B is the learning rate of the critic network. On the other hand, the actor-network
updates its parameters to optimize agent i predicted long-term discounted reward return,
Jor (1i) = E[R;], according to

ol ol — Bu™ g o (1)

where f, represents the actor network’s learning rate, and V gu Ju (y;) is the deterministic
1 1

policy gradient, can be written as:

(13)

Vo Jor (1) = g L Vo) Ve, QL (51l iyl o
] 1

Soft updates are applied to update the target parameters in both actor and critic
networks as described below:

9/,‘ — 10; + (1 — T)Q’i (14)

where T is a constant close to zero.

The DDPG algorithm is used to train learning agents over many episodes, each with
several time steps. The pseudocode of the DDPG algorithm’s specifics is described in
Algorithm 1.

Algorithm 1 Multi-agent deep deterministic policy gradient for n agents

1: for episode =1 to M do

2. Initialize a random process N\ for action exploration.
3:  Receive initial state s.

4:  for t =1 to max-episode-length do

5 for each agent 7, select action

a; = pg,(0;) + Ni

w.r.t. the current policy and exploration

6: Execute actions a = (ay, - - - ,ayn) and observe reward r and new state s’
7: Store (s,a,r,s’) in replay buffer D
8: s
9: foragenti =1tondo
10: Sample a random mini-batch of S samples (sf Jal, v, sl ) from D
11: Update critic by minimizing the loss given by (12).
12: Update actor using the sampled policy gradient given by (13).
13: end for
14: Update target network parameters for each agent 7 to (14).

15:  end for
16: end for
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6. Performance Evaluation

In this section, we present a detailed implementation of our proposed MADRL-based
approach and determine the training parameters for simulations to illustrate its efficacy.

6.1. Experimental Setup

In our case study, the transportation network in our simulation is represented using a
topological graph that captures the connectivity and relationships between different city
regions. The city center is divided into three distinct regions, each covering a 4 x 4 km 2
area. Within these regions, roadways, intersections, and travel routes are defined based on
a realistic urban layout. This network topology serves as the foundation for EV movement
and travel time calculations. The charging station locations are strategically positioned
within the city’s regions. Specifically, the first and second regions are equipped with three
charging stations each, while the third region houses two charging stations. These charging
stations are geographically dispersed to ensure equitable coverage and accessibility for EV
users across the city. Additionally, we consider that each charging pole at each charging
station offers a different charging power. To realistically replicate dynamic traffic conditions,
we introduce traffic variations that change throughout the simulation’s 24-h duration. The
fluctuating traffic conditions include factors such as congestion, road closures, and varying
travel speeds during peak and off-peak hours. These conditions impact EV travel times
and charging station availability, adding a layer of realism to our evaluation.

To evaluate our approach, the simulated EV context encompasses a diverse set of
factors that mirror real-world EV behavior. The number of EVs involved in our simulation
varies based on the specific scenario under investigation. For instance, scenarios with
different numbers of EV charging requests arriving within a day are generated using
both uniform and normal distributions, as detailed in Table 1. Our approach takes into
account a dynamic scenario where EVs are in constant movement, and their battery state of
charge (SoC) is regularly monitored. Users’ transportation behavior is treated as random
variables, as described by [46]. Each EV’s behavior is modeled using random variables,
such as the current state of charge (SoC), required SoC, and estimated arrival time (ETA),
which are sampled from normal distributions. We assume EVs with a battery capacity of
Cax = 60 kWh. The EVs’ driving patterns are derived from a range of average speeds
randomly generated between 2.7 m/s and 16.6 m/s. This variation in speeds reflects the
diversity of driving styles and conditions encountered in urban environments. Furthermore,
the EVs’ interactions with the transportation network database enable them to navigate
through the city, dynamically adapting to changing traffic conditions. This variety of
scenarios allows us to demonstrate the efficiency and versatility of the proposed algorithm.

Table 1. User transportation behavior as random variables.

Distribution Boundary
Battery current SoC SoCeyur ~ N(1,0.12) [0.2,0.4]
Battery required SoC S0Creq ~ N(0.2, 0.12) [0.8,0.9]
ETA Tk ~ N(10,1?) [12,22]

The MADDPG-based approach utilizes two neural networks for each agent: an actor
network and a critic network. The networks consist of fully connected layers with ReLU
activation functions, comprising 128 nodes per layer for the actor and 256 nodes per layer
for the critic. The actor network’s outputs employ a sigmoid activation function. During
training, we use the Adam optimizer with a learning rate of 0.01 for the critic network and
0.001 for the actor network. To stabilize the learning process, target networks are updated
every 1000 samples, with a discount factor of 0.99 and a replay buffer size of 20, 000. We
use a mini-batch size of 512 for training efficiency.
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The implementation is in Python using TensorFlow, and the training was performed
on a computer equipped with an Intel Core i5-4860 CPU. The MADDPG approach demon-
strates convergence after 16,000 episodes of training.

6.2. Performance Evaluation

The performance of the proposed MADDPG-based algorithm approach is compared
with two other methods: the DDPG-based one-agent algorithm and a conventional bench-
mark strategy based on the deterministic environment.

e  The DDPG implementation uses a centralized control mechanism where a single agent
oversees all regions in the city concurrently and recommends EV charging stations for
dynamically arriving charging requests.

*  On the other hand, the benchmark strategy in the deterministic environment does
not consider the uncertainty arising from constantly changing traffic conditions and
the presence of other electric vehicles entering the charging stations at the time of EV
charging station recommendation.

For a fair comparison, all methods are performed with identical parameters, and the
number of EV charging requests arriving in one day is set to 100. Figure 4 illustrates the
experimental results of the training process.

As depicted in Figure 4, the average cumulative reward for MADDPG surpasses that
of the DDPG algorithm, although at the initial stages of training, the effects may not be
immediately noticeable as the agents require some time to learn. However, after around
5000 episodes, the proposed algorithm’s average reward value starts to increase signifi-
cantly, reaching a value of approximately —20 after around 8000 episodes and stabilizing
at around 10,000 training episodes. On the other hand, the DDPG algorithm reaches a
maximum average reward of “—29.7”. The MADDPG approach maintains remarkable
stability after reaching its peak performance, in stark contrast to the DDPG algorithm,
which is unstable and challenging to converge.

|

Average Cumulative Reward

. Bk |

o 2000 4000 G000 8000 10000 12000 14000 16000
Episode

Figure 4. Agent reward on different algorithms during the process of training.

In Figure 4, MADDPG exhibits a clear convergence trend, with the average cumula-
tive reward steadily increasing over time. This indicates that the agents are consistently
improving their performance as they learn from their interactions with the environment.
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The algorithm’s stability is evident as the reward curve stabilizes after a certain number of
training episodes, showcasing its capacity to converge to a consistent and optimal policy.
In contrast, DDPG, while initially improving, shows fluctuations and instability in the
learning curve. This behavior aligns with the challenge of training a single agent to oversee
all regions concurrently, leading to difficulties in finding an optimal policy consistently.

To demonstrate the efficiency and versatility of the proposed approach, we conducted
experiments with different numbers of EV charging requests arriving in one day, specifically
“50”, “100”, “200”, “300”, and “400” based on both uniform and normal distributions.
The results were compared with the DDPG algorithm and an approach based on the
deterministic environment (det-env). The proposed approach selects the EV charging
station for each EV to minimize the travel time.

In Figure 5, we compared the total travel time of our MADDPG algorithm with DDPG
and the deterministic environment methods for different numbers of EV charging demands
arriving using two distributions, uniform and normal. As shown, our MADDPG approach
consistently outperforms all other methods, and as the number of EV charging requests
increases, the total travel time for all methods also increases. For instance, with 400 EVs,
MADDPG exhibits approximately 16.1% and 38% performance improvements compared
to DDPG and the deterministic environment strategy under the uniform distribution, and
9.8% and 34.9% performance enhancements under the normal distribution. In this scenario,
EV charging requests spike at random times, arriving dynamically.

Uniform distribution Normal distribution

16 mmm MADDPG = MADDPG
18 DDPG DDPG

m det-env m detenv
12
10
6
4
p ™ | | [ | I . mmill l I

8 g g g g g g g

2 2

Total travel time (Hour)
S N OE @

Total travel time (Hour)
L==]

= M B @ @

o o
Mumber of EVs Mumber of EVs

Figure 5. Comparison of total travel time by the hour of MADDPG, DDPG, and the deterministic
environment methods count distributed uniformly and normally with different numbers of EVs.

MADDPG demonstrates clear superiority in recommending charging stations, par-
ticularly when many charging requests arrive simultaneously, while effectively handling
high-dimensional states and uncertainties in the environment. In this Markov game, all
agents are treated as common components of the environment, resulting in a static in-
variance of the environment. This enables effective cooperation between agents to make
optimal decisions in a stochastic environment with unknown future requests.

The impact of our approach goes beyond performance enhancement. Our algorithm’s
dynamic adaptation to real-time traffic data has a direct positive influence on traffic conges-
tion reduction. By intelligently distributing EVs to strategically located charging stations,
our approach mitigates unnecessary congestion caused by inefficient routing. Furthermore,
our method’s ability to optimize energy distribution across charging infrastructure is of
paramount importance for long-term sustainability. Our results exhibit that through opti-
mal EV charging station assignments, we achieve improved energy utilization and reduced
overall energy consumption. When compared to other methods, our MADDPG approach
displays superior adaptability to dynamic traffic conditions and EV charging demand. The
multi-agent nature of MADDPG facilitates efficient coordination among charging stations
and EVs, leading to better utilization of resources and enhanced system performance. This
comparison underlines the long-term advantages of employing a collaborative multi-agent
approach such as MADDPG in complex urban mobility scenarios. Comparing our ap-
proach to other deep learning methods, MADDPG’s multi-agent nature grants it superior
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adaptability to dynamic traffic conditions and EV charging demands. The collaborative
decision-making between charging stations and EVs, facilitated by MADDPG, results in
better resource utilization and system performance. This comparison underscores the
long-term benefits of employing a collaborative multi-agent approach such as MADDPG in
complex urban mobility scenarios.

7. Conclusions

This study introduces a methodology for optimal EV charging station recommenda-
tion within a multi-region city, based on the multi-agent deep deterministic policy gradient
(MADDPG) algorithm. The primary objective is the minimization of total travel time in
a stochastic environment, accounting for the dynamic and random arrival of charging
requests. The city is divided into multiple regions, each supervised by an agent responsible
for recommending EV charging stations and collaborating with other agents to manage
charging requests efficiently. The agents obtain traffic information from an intelligent
transportation system and charging station information within their regions. By learning a
central critic based on collective agent observations and actions, optimal decisions for each
EV charging request are achieved. Through simulation experiments with different numbers
of EVs and two distribution scenarios (uniform and normal), we compared our proposed
MADDPG approach with DDPG and the deterministic environment method. The results
demonstrated the superiority of MADDPG in minimizing total travel time, indicating its
effectiveness and consistency in a complex multi-agent environment with unknown future
requests. As part of our future work, we aim to extend the algorithm to consider multiple
charging stations with diverse objectives in formulating the reward functions. Additionally,
we plan to implement the proposed algorithm in real-world scenarios using more complex
data for validation and practical application. One notable challenge lies in overcoming the
computational complexity entailed in training and coordinating multiple agents. As agent
numbers rise, the training process could grow time-consuming and resource-intensive,
necessitating a nuanced balance between agent count and computational efficiency. Fur-
thermore, the efficacy of our approach hinges significantly on the precision and accessibility
of real-time traffic data and charging station information. Discrepancies or inaccuracies
within these data streams could undermine recommendation quality, highlighting the im-
perative of a dependable data pipeline and data quality management to ensure algorithmic
robustness. This would further establish the robustness and applicability of MADDPG in
addressing real-world EV charging station recommendation challenges.
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