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Abstract: The development and constant improvement of accurate predictive models of electricity
generation from photovoltaic systems provide valuable planning tools for designers, producers, and
self-consumers. In this research, an adaptive neuro-fuzzy inference model (ANFIS) was developed,
which is an intelligent hybrid model that integrates the ability to learn by itself provided by neural
networks and the function of language expression, how fuzzy logic infers, and an ANFIS model
optimized by the particle swarm algorithm, both with a predictive capacity of about eight months.
The models were developed using the Matlab® software and trained with four input variables (solar
radiation, module temperature, ambient temperature, and wind speed) and the electrical power
generated from a photovoltaic (PV) system as the output variable. The models’ predictions were
compared with the experimental data of the system and evaluated with rigorous statistical metrics,
obtaining results of RMSE = 1.79 kW, RMSPE = 3.075, MAE = 0.864 kW, and MAPE = 1.47% for
ANFIS, and RMSE = 0.754 kW, RMSPE = 1.29, MAE = 0.325 kW, and MAPE = 0.556% for ANFIS-PSO,
respectively. The evaluations indicate that both models have good predictive capacity. However, the
PSO integration into the hybrid model allows for improving the predictive capability of the behavior
of the photovoltaic system, which provides a better planning tool.

Keywords: photovoltaic systems; intelligent models; ANFIS; particle swarm algorithm; ambiental
variables; electrical energy prediction

1. Introduction

Electrical energy generation with hydrocarbons accounts for about 38% of global CO2
emissions [1]. A Life cycle analysis of photovoltaic plants shows that CO2 emission rates
are significantly lower than those of systems using fossil fuels. Therefore, photovoltaic
systems have a significant potential to mitigate global warming [2,3]. The virtuous circle of
technological development, innovations in design, and the joint action of nations have been
decisive in reducing the costs of generating electricity through photovoltaic technology [4].
The progressive decrease in large-scale solar PV generation prices fell by 85% between 2010
and 2020, from USD 0.381 per kWh to USD 0.057 per kWh [5]. It has driven an increase
in the installed capacity of photovoltaic solar energy (PV) generation, with an annual
growth rate of 38.3% since 2009. Solar photovoltaic energy achieved the most significant
capacity increase ever seen in a single year, in which the annual rate increase was 21.5%
in 2020 compared to 2019 [6]. By 2020, producing electrical energy through PV systems
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would represent only 2.7% of the world’s electrical generation [5]. However, in sustainable
development, projections estimate that, in approximately 40 years, 60% of global electricity
generation will be generated by solar technologies [7].

Since solar power generation technologies are subject to operational intermittencies
according to the hours of the day and local meteorological conditions [8,9], prediction
techniques are a valuable tool in the planning, designing, and operating of photovoltaic
systems [10]. Predictive models based on artificial intelligence provide a productive use of
analyzing geographic and meteorological conditions in the study sites [11,12] and an inno-
vation in the relationship between computational methods, data mining, and optimization
methods based on observations of nature [13,14]. The particular meteorological conditions
that occur in the operating sites of the PV systems are relevant since variations more signifi-
cant than expected can cause fluctuations in the output power of the system [8,15,16], which
is why the appropriate recording and historical analysis of the meteorological variables, as
well as the electrical generation of the system, is essential in the feeding and training of the
predictive models [17–19].

Due to the exponential growth scenario of the use of photovoltaic generation ener-
gies [20] and the variability in their generation [16], it is of essential importance to know the
behavior of their productive capacity, which is key for an efficient annexation to the electri-
cal network. Therefore, implementing techniques that allow building predictive models
of electricity generation has boomed in recent years; using an adequate methodology for
recording experimental data and implementing intelligent computer models can provide a
good forecasting capacity for electricity generation [21,22].

A wide variety of research has been developed in recent years on this topic, from
those that use statistical forecast models to those that use forecast models based on the
use of artificial intelligence, hybrid models, and even those that implement optimization
methods inspired by observations of nature, with which they seek to improve the predictive
capabilities of the models. Zhu et al. [23] presented an investigation where they collected
monthly electricity generation data from 2001–2020 in the province of Xinjiang, China. The
objective focused on predicting electricity generation using the Holt–Winter statistical mod-
els and the mean model autoregressive integrated mobile (SARIMA), obtaining monthly
forecasts for 2021–2022, and determining where the SARIMA model showed less error
in the approach to the evaluated experimental data. Xu et al. [24] presented a predictive
study on future renewable energy trends. They developed predictions using the differential
autoregressive integrated moving average (ARIMA) models, the neural network model,
and the support vector machine model. Later, the authors combined the previous three,
building a fourth hybrid model and achieving this reduced error in the predicted value.

Wang et al. [25] presented a very short-term prediction model of the energy generated
by a photovoltaic system, combining three methods, variational modal decomposition
(VMD), to decompose the sequence of historical photovoltaic power into different segments.
They implemented the grid prediction model of long short-term memory (LSTM) and the
relevance vector machine (RVM) model to predict the error sequence. Combining these
methods improved energy prediction on the five simulated days, obtaining MAPE values
between 2 and 3% for periods with little historical meteorological variability. Comert
et al. [26] presented a study to estimate the monthly solar radiation values of six weather
stations with different radiation indices in Turkey, comparing the empirical angstrom,
Hargreaves–Samani equations, artificial neural network (ANN), machine learning mod-
els of support vectors (SVM), and LSTM, concluding that the latter achieved a better
predictive capacity.

Pazikadin et al. [27] presented an extensive literature review of 87 research articles from
the period 2014 to 2019 on the implementation of different types of artificial neural networks
(ANN) in the prediction of solar energy and the importance of proper instrumentation
calibration in the collection of meteorological data, which, depending on its optimal quality,
can help the ANNs improve their precision. Buturache and Stancu [28] presented a study on
the fundamentals of applying meteorological data in designing predictive solar and wind
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energy models based on standard recurrent neural network models and long-term memory
terms. They closed recurring units and developed their fundamentals and comparisons in
predictive periods within one hour.

Patel et al. [29] carried out a systematic study of the prediction of solar irradiation and
solar PV generation and carried out a detailed analysis of ANN models, such as those based
on the backpropagation algorithm, multilayer forward algorithm, and linear regression,
in addition to hybrid models based on fuzzy logic, analyzing the behavior with various
input parameters and different layer structuring, concluding that hybrid models based on
ANN and fuzzy logic have a better predictive capacity. Dokmen et al. [30] developed three
intelligent models based on the wavelet artificial neural network (WANN), wavelet support
vector machine (WSVM), and ANFIS to estimate solar energy at two stations in Iraq. The
results were compared to experimental data and evaluated with statistical criteria, resulting
in satisfactory predictive results for all three models, with a slightly better predictive ability
for WANN for the two sites.

Perveen et al. [31] developed an ANFIS model to predict short-term power generation
with applications in a smart grid using variables from a composite climate zone. Finally,
the results were compared with other predictive models such as ANN, vector machine,
and fuzzy logic, with the ANFIS model obtaining the best results. Sujil et al. [32] proposed
an ANFIS predictive model for forecasting the output power of a photovoltaic system and
a wind system for a power management system in South China. The ANFIS model was
developed with three different partitioning techniques, compared with the backpropagation
algorithm, and later evaluated with statistical methods, resulting in ANFIS fuzzy c mean
clustering with better results for both algorithms. Viswavandya et al. [33] developed two
predictive models based on fuzzy logic and ANFIS, respectively, where they used historical
meteorological data to predict short-term solar irradiation and then compared them with
on-site historical radiation data, reporting satisfactory results. Haji and Genc [34] proposed
a maximum power point tracking (MPPT) controller for an off-grid photovoltaic system
based on the ANFIS, Perturbation and observation (P&O), and fuzzy logic controller (FLC)
to track the maximum power point, concluding that the ANFIS shows better tracking
efficiency, lower ripple power, and resistance to system voltage and current changes.

In recent years, a large amount of research has been conducted on computational
methods of combinatorial optimization [18,35], where optimization algorithms are used in
the search to improve the capacity of predictive models. Combinatorial optimization [36]
improves their ability to address complex and non-linear problems [37], and coupling has
been successfully applied in various fields of science [38–41]. Slowik and Kwasnicka [42]
extensively studied evolutionary algorithms such as genetic algorithms, genetic program-
ming, differential evolution, evolution strategies, and evolutionary programming, their
nature, properties, and selective application in different areas of engineering. Khosravi
et al. [43] developed an optimized ANFIS model with a hybrid of genetic algorithm and
teaching–learning optimization algorithm (ANFIS-GATLBO) to evaluate central tower solar
systems with thermal storage, using the general parameters of their design depending
on each geographical region and comparing it with the artificial neural network and FIS
models, resulting in ANFIS-GATLBO being more accurate in the results.

Ndiaye [44] implemented an intelligent predictive model, ANFIS, and an optimized
model, ANFIS-GA, to predict the power generated by a photovoltaic system and distribute
it to the national electricity grid in Senegal. The results determined that ANFIS-GA was
more efficient, obtaining a mean square error of 2.027 W compared to ANFIS, which ob-
tained 4.142 W. Lara-Cerecedo et al. [45] developed the intelligent models ANFIS and
ANFIS optimized with a genetic algorithm and carried out a comparative study of their
efficiency in the prediction of electrical energy generated from a photovoltaic system in
northwestern Mexico. The variables of ambient temperature and solar radiation were eval-
uated with statistical methods, concluding that the optimized ANFIS-GA model obtained
better results with a MAPE of 4.56% compared to the ANFIS model, which obtained a
MAPE of 6.98%. Slowik and Kwasnicka [46] presented an investigation regarding swarm in-
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telligence algorithms based on natural collective intelligence. The objective was to describe
the mathematics of its operation and its application in various industries and economic
sectors. Khosravi et al. [47] developed two predictive models, ANFIS and ANN, which
were optimized with GA, and independently, the same two models were optimized with
PSO to simulate the energy and thermal behavior of a Stirling solar collector. They used dif-
ferent meteorological and geometric variables and collector designs for all models. ANFIS
optimized with PSO reported the best results.

Wu et al. [48] presented a hybrid model based on the Elman neural network (ELM)
and the adaptive network-based fuzzy inference system (ANFIS), which in turn was
optimized with the parasitism–predation algorithm to improve the short-term prediction
of energy demand obtained from the consumption statistics of November 2020. Its results
were evaluated with statistical methods. They determined a better substance in the daily
predictive capacity of the optimized hybrid model compared to the non-optimized hybrid,
decreasing the RMSE by 48.4%, the MAE by 46.0%, and the MAPE by 47.4%. Ghenai
et al. [49] developed an ANFIS model to predict energy consumption in the very short term
(0.5, 1, and 4 h) at the University of Sharjah campus, Sharjah, United Arab Emirates, where
their results were very accurate at the 30-min horizon, reducing its estimation approach as
the estimation took a longer amount of time to predict, concluding that the model requires
a large amount of data collected to be able to carry out training that allows the predictive
horizon to be extended without a greater margin of inaccuracies. Eya et al. [50] presented
an improved ANFIS predictive model for the estimation of the weekly and monthly load
consumption for six months of the electrical system of the University of Nigeria, Nsukka.
For its design and training, they carried out a collection of historical environmental and
consumption data during the period 2014 to 2019. The predictive data were statistically
evaluated, obtaining MAPE values below 5%. Yang et al. [51] presented a short-term
novel predictive model for the electricity demand of New South Wales in Australia. This
model combines three models based on the back propagation (BP) neural network and
the adaptive network-based fuzzy inference system (ANFIS) to adopt the advantages of
handling data regarding linearity, non-linearity, and seasonality of the individual models.
A Differential Evolution (DE) optimizing algorithm was added to improve its precision.
They compared the results with the experimental data on electrical demand for half an
hour, giving the combined model a better approach than the three individual models.

Ashari [52] developed an ANFIS-PSO model that allows for the best configuration
of an MPPT controller. The performance was compared with the perturb and observe
algorithms (P&O) and incremental conductance (Inc). The efficiency of an ANFIS-PSO
showed that it worked better than the other algorithms and reached 98.36% under standard
test conditions. Adedeji et al. [53] developed a PSO-optimized ANFIS model for short-
term wind turbine power production forecasting in the Cape, South Africa. The study
addressed the importance of data binning in predictive models using grid partitioning (GP)
techniques, subtractive clustering (SC), and fuzzy-C-means (FCM), evaluating the SC with
better statistical measurements.

The literature survey showed various studies on predictive intelligent models and their
usefulness in broad engineering and science areas. Also showed interest in implementing
new optimization techniques that help improve the robustness and accuracy of the model’s
predictions. We observed that few studies have explored how these models should be
complemented, and even fewer have rigorously compared the results of different models.
The literature analysis indicated the absence of investigations related to predicting the
energy production of photovoltaic systems using neuro-fuzzy adaptive systems coupled to
a particle swarm optimizer algorithm that performs not only the predictions of electrical
power but also the predictions of electric energy generation, which is essential for the
economic analysis of photovoltaic plants. Therefore, the main objective of this research was
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the development of two models, ANFIS and the optimized ANFIS-PSO model, that used
experimentally captured data for their training and allowed us to make predictions over a
window of almost eight months for both models. Each model has processed and learned
from around 225,400 pieces of data per variable and was able to present very accurate
predictive results. In addition, the algorithms showed great flexibility to deliver predictions
for arbitrary periods and showed predictive robustness under volatile weather situations.
A comparison was made between both models using statistical indicators widely used
in the literature. The ANFIS system obtained RMSE values in the test segment: 1.79 kW,
RMSPE: 3.075, MAE: 0.864 kW, and MAPE: 1.47% compared to the ANFIS-PSO, which
obtained RMSE: 0.754 kW, RMSPE = 1.29, RMSPE: 1.29, MAE: 0.325 kW, and MAPE: 0.556 %,
respectively. The above showed the predictive superiority of the optimized model.

2. Experimental Setup and Data Processing

The present research is based on the study of a photovoltaic system located at the Cen-
ter for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-
IPN) in Mexico City, Mexico (latitude 19◦30′48′ ′ N and longitude 99◦07′57′ ′ W). The pho-
tovoltaic array consists of 240 monocrystalline silicon photovoltaic modules of the brand
Solartec (model S60MC, Guanajuato, Mexico), mounted on an aluminum structure with an
orientation of 30◦ in azimuth towards the East of the geographic South and at an angle of
inclination of 20◦. Each module has a nominal power of 250 W and a high cell efficiency of
up to 15%, for a total cumulative capacity of 60 kW. Figure 1 shows the photovoltaic system.
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Figure 1. Photovoltaic system. (a) Front aerial image and (b) Lateral aerial image.

The photovoltaic module array is subdivided into five sections. Each section comprises
a chain of 48 modules, with 12 connections in series and 4 in parallel. The nominal power
of each section is about 11.9 kW. The system has one inverter of the Fronius brand. IG
Plus V11.4.2 DELTA (Pettenbach, Austria): It has a capacity of 11.4 kW per section and
a maximum efficiency of 96.2%. The system has a thermopile-pyranometer EKO MS-602
(Tokyo, Japan) installed at an angle of 20◦ from the horizontal, whose technical characteris-
tics are: spectral Error: ±0.2%, temperature response (−20 ◦C to 50 ◦C): ±2%, wavelength
range (nm): 285 to 3000, irradiance range (W/m2): 0 to 2000, operating temperature: −40 to
80 ◦C, calibration traceability/uncertainty: ISO 17025/WRR/<0.7% (k = 1.96), and an
anemometer installed on-site to measure wind speed. Figure 2 shows the support PV
system instruments.
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Figure 2. Sensors and components of the photovoltaic system. (a) Inverter, (b) Thermopile-
pyranometer, and (c) Anemometer.

Lastly, each data logger records and integrates the system’s weather and power
variables every 5 min, 24 h a day. The registered variables are wind speed (m/s), module
temperature (◦C), ambient temperature (◦C), solar radiation (kWh/m2), and system output
power (kWp), which were used as variables of the intelligent model. The design of the
smart algorithm, record analysis, training, and predictive testing were done on a laptop
with a CPU i3-1005G1 and 8 GB of RAM.

As a first step, information processing (collection, extraction, storage, structure, and
analysis) was carried out due to the large number of records collected. The data was ex-
tracted from historically collected data files and distributed according to the time sequences
of each of the input and output variables stored. Secondly, due to the need to determine the
level of influence of each input variable concerning the electrical generation of the system,
a correlation analysis of each input variable concerning the output variable was made. The
research helps to describe the association between quantitative and categorical variables,
where the associated variables change in tandem [54]. About 225,441 records per variable
for approximately 26 months were used. The Pearson correlation coefficient (Equation (1))
was used, as well as Spearman’s correlation coefficient (Equation (2)), which are explained
in [55]. The results obtained from the correlations are shown in Table 1.

rp =
∑ dxdy√
∑ d2

x∑ d2
y

(1)

rs =
1− 6∑ di
n(n2 − 1)

(2)

where, rp is the Pearson’s correlation coefficient, ∑ dxdy is the product sum of squares,
∑ d2

x∑ d2
y are the sum of squares of X and Y respectively, and rs is the Spearman’s correlation

coefficient, di = Xi −Yi is the variation in the rankings of the corresponding variables, and
N is the number of observations.

Table 1. Correlation of the input variables concerning the output variable generated power of the
PV system.

Input Variables
Power (kW)

Coefficient Correlation R2

Global horizontal solar radiation Pearson 0.997 0.994
Module temperature Pearson 0.94 0.88
Ambient temperature Pearson 0.86 0.74

Wind speed Spearman 1.16 1.35
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The results of the models were evaluated under strict statistical metrics whose mathe-
matical formulations were found and adapted from the literature [56,57]. The statistical
methods used to assess the efficiency of the models were the root mean square error (RMSE),
the root mean square percentage error (RMSPE), the mean absolute error (MAE), and the
mean absolute error in percent (MAPE), where Equations (3)–(6) were used, respectively.
RMSE (Equation (3)) is a quadratic evaluation mechanism measuring errors’ mean magni-
tude. Where, di is the predicted values and yi are the observed values, and n is the number
of observations.

RMSE =

√
1
n

a

∑
i=1

(di−yi)
2 (3)

However, RMSPE (Equation (4)) calculates the square root of the average of the
squared percentage errors. It has the same properties as RMSE, with the difference that the
results are expressed in percentages. Where, n is the number of samples, yt is the current
value, and ŷt is the estimate. The loss function of the measure is the error squared.

RMSPE =

√√√√ 1
n

n

∑
t=1

(
yt − ŷt

|yt|

)2
(4)

MAE (Equation (5)) provides a generic and bounded performance measure for the
model. Corresponds to an estimate of the absolute error. This level indicates the average
magnitude of the true and predicted values. Where Ŷi is the estimated value, Yi is the
present value, and N is the number of simples. As MAE approaches zero, the model is
considered more accurate.

MAE =
1
N

N

∑
i=1

∣∣Yi − Ŷi
∣∣ (5)

MAPE (Equation (6)) determines the percentage accuracy compared to the true value.
Where n is the number of fitted points, At is the actual value, Ft is the forecast value, and Σ
is the summation notation (the absolute value is summed for each point in the forecast time).

MAPE =
1
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (6)

3. Methodology of the Predictive Models
3.1. ANFIS Model

An ANFIS system is a multilayer direct-feed network formed by neurons associated
with connections. The construction process of the hybrid model was based on five layers.
Which have been widely studied and are adapted from [32,58–60]. Using the least squares
method, ANFIS performs a forward propagation to obtain the consequent parameters pi,
qi, ri indicated in Equation (10), in the defuzzification layer and uses the backpropagation
algorithm to minimize errors through gradient descent and thus modify the premise
parameters ai, bi, ci indicated in Equation (7), in the fuzzification layer.

Layer 1. In the first layer, the fuzzification is carried out. In this process, the neu-
rons transfer the previously received signals according to their encoding, which can be
a square node with a square function. Each neuron can generate a value belonging to a
linguistic level.

O1
i = µAi(x), f or i = 1, 2, 3 = exp

−(( x− ci
ai

)2
)bi
 (7)

where, O1
i denotes the output function and µAi denotes the membership function, and

x is the node input, wherein a, b, and c are used to represent the membership function’s
shape-altering premise parameters.
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Layer 2. This layer is called the rules layer because the weights of the membership func-
tions are computed. The rules layer represents the activation force of each rule generated
in the fuzzification layer.

O2
i = µAi(x)× µBi(y), i = 1, 2, 3 (8)

Layer 3. The fuzzy rules are determined, and the beginning of each of them is
calculated.

O3
i = wi =

wi
w1 + w2

, i = 1, 2, 3 (9)

where, O3
i represents the output of the normalization layer and wi the normalized fir-

ing force.
Layer 4, called a defuzzification layer. In this layer, the output values are calculated

considering the trigger strength values from earlier layers.

O4
i = wi fi = wi(pix + qiy + ri) (10)

where, wi represents the output of layer 3, and the set of parameters called consequents are
pi, qi y ri.

Layer 5. In this layer, the total output is calculated as the sum of all the previous
signals. The output value has a value of a continuous type instead of a fuzzy set type.

O5
i = ∑

i
wi fi =

∑i wi fi

∑i wi
, i = 1, 2, 3 (11)

Figure 3 shows an ANFIS structure with four inputs and one output. The model
is composed of five layers, which are subdivided into the premise part and the conse-
quent part.
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3.2. ANFIS Optimized with Swarm Intelligence Algorithms

Evolutionary computing is an area of artificial intelligence that investigates optimiza-
tion algorithms based on nature [61]. They look for solutions based on trial and error,
using stochastic optimization, and provide tools to solve complex engineering problems
involving randomness and non-linear dynamics [62].

Particle swarm optimization (PSO) is a branch of computational intelligence [63] that
can be used as a global optimization technique where, through heuristic optimization, it
seeks to find global minimums or maximums [64]. The operation is based on the swarm
intelligence observed in nature as the behavior of groups of fish or birds, where the
movement of each member is the result of combining individual decisions with the behavior
of the rest, perceived as collective intelligence [46]. In the PSO, each moves in the search
space according to a mathematical formulation, with a dynamically adjusted speed based
on his own experience and his partner’s experience. Each one is a point in the search space
that uses their expertise to find their best position, and the social knowledge of the group
helps to determine the best place of the entire swarm, the global minimum or maximum.
The PSO process is adapted and widely explained in [46,65–67].

The algorithm starts the swarm P(t), where the position
→
xi(t) of each particle is random

in all space, and then the performance F of each particle is evaluated using the current position
→
xi(t), where the speed and position of the particle are given by Equations (12) and (13).

V(t) = V(t− 1) + c1·r1·(Pbest − X(t− 1)) + c2·r2·(Gbest − X(t− 1)) (12)

X(t) = X(t− 1) + V(t) (13)

where, V(t) and X(t), are the velocity and position of the particle, Pbest is the induvial best
value and Gbest is the global best value up until the most recent iteration, r1 and r2 are
random in the 0–1 range, and t finally c1 and c2 are coefficients of particle acceleration.

Subsequently, the performance of each individual is compared with their best per-

formance so far, such that if
−−→
f (
→
xi(t)) < pbesti, then pbesti =

−−→
f (
→
xi(t)), consequently, the

performance of each individual is compared with the best global particle, such that if
−−→
f (
→
xi(t)) < gbesti, then gbesti =

−−→
f (
→
xi(t)). In addition, the velocity vector change is per-

formed for each one using Equation (14).

vi(t + 1) = wvi(t) + c1r1[x̂i(t)− xi(t)] + c2r2[g(t)− xi(t)] (14)

where, vi(t + 1) is the speed of the particle i at the moment (t + 1), vi(t) is the speed of
the particle i at the moment t, w is the coefficient of inertia, it reduces or increases to the
velocity of the particle, c1 is the cognitive coefficient, r1 is the vector of random values
between 0 and 1 of length equal to that of the velocity vector, x̂i(t) is the best position in
which particle i has been so far, xi(t) is the position of particle i at time t. c2 is the social
coefficient, r2 is the vector of random values between 0 and 1 of length equal to that of
the velocity vector, and g(t) is the position of the entire swarm at time t, therefore the best
global value.

Finally, each particle is relocated to its new position according to Equation (15), and
the iteration is repeated until convergence. Subsequently, the particle with the worst local
value is selected and replaced with a new one with a better value. In such a way, PSO helps
optimize the parameters of the antecedent part and the consequent parameters of ANFIS,
improving the model’s predictive capacity.

→
→
xi(t =

→
→
xi(t + 1) +

→
→
vi(t) (15)

The ANFIS-PSO model finds the relationship between the input and output data
to obtain the optimal configuration of the membership functions. The algorithm uses
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least squares methods and the back-trapping algorithm that uses the descending gradient
method to calculate partial derivatives and thus minimizes errors by adjusting the weights
to fit the training data [68,69]. The integration of optimization through PSO aims to improve
the classification capacity of ANFIS so that more accurate predictions can be achieved.

In the ANFIS model, the PSO algorithm is mainly used to optimize the parameters of
the antecedent layer (layer 1), where the parameters of the fuzzy membership functions are
adjusted, and the consequent layer (layer 3), where the optimal values of the weights of the
consequent functions are adjusted to obtain a more accurate output. In the PSO algorithm,
the particles representing different combinations of parameters move in the search space,
updating their velocity and position according to the best individual and global location,
looking for the optimal combination of parameters. The dynamics of the PSO process begin
by randomly generating a set of particles, where each represents a set of parameters of the
ANFIS model (in this case, the weights, and centers of the membership functions). Then
begins an iterative process where the model evaluates the fitness of each particle using a
performance metric, in this case, the RMSE. Then, based on the PSO equations, the particles
are updated to the best individual position, which is those in which the particles have
obtained the best fitness until that moment, and the best global position is the position in
which some particles have obtained the best fitness. The process continues by updating
the velocity and position of each particle. The position is updated based on the current
speed. The process is repeated until the criterion of the maximum number of iterations
is established, obtaining the best global position, and providing the final parameters of
ANFIS. It should be noted that optimizing the ANFIS layer parameters can improve the
accuracy and overall performance of ANFIS, which can indirectly impact rule layer two
and overall model performance.

However, during the optimization process, the parameters of the membership func-
tions and weights are modified, PSO adjusts the initialized parameters randomly from the
first step, and iterative adjustments are made to each parameter until the objective function
is reached. Table 2 shows the PSO parameters of the optimization process. These values
can be modified using the trial-and-error method, in which 1000 iterations were used to
obtain the best cost, which is measured with RMSE. The objective of the PSO is to help
ANFIS optimize the antecedent and consequent parameters.

Table 2. PSO initial configuration parameters.

Parameters Value

Initial population 25

Iterations 1000

Inertia coefficient 1

Personal acceleration coefficient 1

Global acceleration coefficient 2

Damping ratio of the inertial coefficient 0.99

Training population 157,810

It is essential to point out that there is no consensus on a single and unified metric
for the design of the parameters or an ideal initial configuration of the PSO algorithm that
works optimally for all problems. The configuration decision is based on the mathematics
of the algorithm and a trial-and-error adjustment in which several optimization tests
are performed to select the one that provides the most accurate results possible, seeking
to maintain an adequate balance between the results and the computational effort. For
example, the swarm size or number of particles, where a larger swarm size may allow a
better exploration of the search space but may also increase the computational cost. The
inertia coefficient controls the influence of the previous velocity of a particle on its current
motion. When it is high, it may favor the initial exploration of the search space, while
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if it is low, it may favor the exploitation of the best solutions. The personal acceleration
coefficient controls the tendency of a particle to move towards its personal best position; the
global acceleration coefficient determines the tendency of a particle to move towards the
global best position found by the swarm; and the damping ratio of the inertial coefficient
is used to gradually reduce the inertial coefficient as the optimization progresses in each
iteration. In any case, it is essential to point out that the optimal parameter values may vary
depending on the problem and the data type. The selection and configuration of the PSO
parameters could even use some other algorithm that seeks, through an iterative process,
to find the optimal configuration for a specific case. Figure 4 shows the flowchart of the
PSO integration in ANFIS.
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The coding and design of the ANFIS hybrid model and the evolved ANFIS-PSO
model were carried out using Matlab® software v2017b. Each model integrated four
input variables and a single output variable. A total of 225,442 records per variable were
imported into the algorithm. For the model training and testing process, it is essential to
segment the total universe for each of the actions. Experimental studies have shown that
machine learning models that use 70–80% of the data for training and 20–30% of the data
for tests produce the best results [70–73]. The data from the test set is used to determine the
predictive accuracy of the models. The preceding is intended for the model to learn from
the data provided with low bias and training error but also to have the ability to generalize
new data with low variance and low error in the test segment, that is, to avoid overfitting
and underfitting. It is known as the bias and variance dichotomy [74,75].

Poor generalization from data can be characterized by overtraining. If the model
overtrains, it only memorizes the behavior of the training data and cannot give correct
outputs. The difference between the training and testing errors is too high. On the other
hand, it may also present an undertrained. In this case, the model cannot obtain an
admissibly low error value in the training segment. Therefore, the model cannot learn
well enough from the training mapping, which will result in poor levels of accuracy in the
prediction [76].

Empirical training tests were carried out in the evolved ANFIS-PSO model with three
data partitions. They were evaluated with the MAPE statistical method, selecting the data
segmentation that lowered the percentage error presented (Table 3).
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Table 3. Comparisons of data segmentation scenarios used for the training and testing processes
of ANFIS-PSO.

Train (%) Test (%) MAPE (%) Difference (%)

70 30 0.556 0
75 25 0.581 4.5
80 20 0.602 8.28

According to the results, 70% of the total data universe was selected for the training
stage and the remaining 30% for the predictive phase.

It is essential to highlight that the computational effort registered in each training
stage, in the process of 1000 iterations, for the ANFIS model was approximately 625 min,
and in the ANFIS-PSO model was about 460 min, reaching the best cost (that in this case,
the model measures with the RMSE) for ANFIS of 1.79 and for ANFIS-PSO of 0.747 (Table 4).
The above represented a better convergence of the model optimized with the PSO algorithm
over the non-optimized ANFIS model, reaching a percentage decrease of 35.9% in training
time and a decrease in RMSE error of 140%.

Table 4. Comparison of statistical errors of the ANFIS and ANFIS-PSO models during the predic-
tive stage.

Parameters
Data Statistics

RMSE (kW) RMSPE (%) MAE (kW) MAPE (%)

ANFIS 1.797 3.07 0.864 1.478
ANFIS-PSO 0.747 1.29 0.325 0.556

4. Results

As previously indicated, the training of the models (training stage) was carried out
with 70% of all the recorded data (15 October 2020, to 18 April 2022), representing an
accumulated total of 157,809 records per variable collected by the system instrumentation
as indicated in the materials and methods section. At the same time, the remaining 30%
(predictive stage) was used to carry out the prediction tests (19 April 2022, to 12 December
2022), representing a cumulative total of 67,632 records for predictive tests. The statistical
errors between the experimentally recorded PV system power and the estimated results of
both models in the predictive stage are presented in Table 4. The optimized ANFIS-PSO
model shows a considerable reduction in error evaluation, where we observe a lower
average error.

However, the results are presented by comparing the models with the experimental
records individually, and then the two models are compared against each other about
the experimental data. In Figure 5, the predictive results of the ANFIS hybrid model are
plotted against the experimental power records collected from the system from 19 April
to 12 December 2022. In Figure 5a, the entire universe of test data was plotted. It was
considered necessary since, although visually difficult to analyze in detail, the wide range
of predictive capacity that the models presented required. Subsequently, October was
selected, where the MAPE result was most satisfactory (Figure 5b), to show the predictive
behavior of the model in more detail. Figure 5c shows the month with the lowest MAPE
error from 21 to 28 October. In the latter, it is possible to observe the predictive approach of
ANFIS in greater detail visually.



Energies 2023, 16, 6050 13 of 26Energies 2023, 16, x FOR PEER REVIEW 13 of 26 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Comparison of the ANFIS model vs. experimental power records of the photovoltaic sys-
tem: (a) entire universe of test data; (b) month with the lowest MAPE error; and (c) week with the 
lowest MAPE of the month. 

Under these same parameters, Figure 6 shows a sequence of graphs of the results of 
the ANFIS-PSO model against the actual power records of the photovoltaic system during 
the same test period from 19 April to 12 December 2022. In the same way, it starts from 
the global to the specific, subdividing into sections, selecting, and graphing according to 

Figure 5. Comparison of the ANFIS model vs. experimental power records of the photovoltaic
system: (a) entire universe of test data; (b) month with the lowest MAPE error; and (c) week with the
lowest MAPE of the month.

Under these same parameters, Figure 6 shows a sequence of graphs of the results of
the ANFIS-PSO model against the actual power records of the photovoltaic system during
the same test period from 19 April to 12 December 2022. In the same way, it starts from the
global to the specific, subdividing into sections, selecting, and graphing according to the
slightest MAPE error registered by the model. In Figure 6a, the entire predictive period
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of the model is observed. In Figure 6b, June was selected as the month with the lowest
MAPE recorded for ANFIS-PSO. Finally, in Figure 6c, for the week from 8 June to 14 June,
the monitoring of the Gaussian bells was observed in greater detail.

Energies 2023, 16, x FOR PEER REVIEW 14 of 26 
 

 

the slightest MAPE error registered by the model. In Figure 6a, the entire predictive period 
of the model is observed. In Figure 6b, June was selected as the month with the lowest 
MAPE recorded for ANFIS-PSO. Finally, in Figure 6c, for the week from 8 June to 14 June, 
the monitoring of the Gaussian bells was observed in greater detail. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Comparison of the ANFIS-PSO model vs. experimental power records of the photovoltaic 
system: (a) entire universe of test data; (b) month with lowest MAPE error; and (c) week with the 
lowest MAPE of the month. 

Figure 6. Comparison of the ANFIS-PSO model vs. experimental power records of the photovoltaic
system: (a) entire universe of test data; (b) month with lowest MAPE error; and (c) week with the
lowest MAPE of the month.



Energies 2023, 16, 6050 15 of 26

Subsequently, both models were compared with experimental results. In this case, the
graph of the week of the month with the lowest MAPE error for each model was made.
Figure 7a shows the period 15–21 October of the ANFIS model. Later, a non-arbitrary day
was selected and graphed within the same weekly range. Figure 7b shows the predictions
of both models for 16 October.
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Finally, Figure 8a compares both models from 8 to 14 October, corresponding to the
week when ANFIS-PSO presented its lowest measured MAPE error. Finally, Figure 8b
shows greater visual detail of the predictive monitoring on 10 June.

To show in detail the behavior of the MAPE errors of both models, Table 5 numerically
describes the MAPE evaluations of the predictions of both models every month (from
19 April to 12 December, for a total of 237 days). It is displayed visually in Figure 9, which
shows a mapping of the daily dynamics during the periods: (a) 19 April–12 December, (b) 1
to 30 June (which showed the slightest MAPE error for the ANFIS-PSO model), and (c) 1 to
30 October (where the slightest MAPE error was shown for the ANFIS model).
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Table 5. Monthly comparison of the mean absolute percentage error of the predictions of the ANFIS
and ANFIS-PSO models over the entire universe of test data.

Month
MAPE (%)

ANFIS ANFIS-PSO

April 1.686 0.512
May 1.651 0.738
June 1.484 0.43
July 1.682 0.49

August 1.678 0.557
September 1.713 0.527

October 1.25 0.532
November 1.489 0.8
December 1.525 0.9
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Figure 10 presents the behavior in even greater detail, where a mapping of the MAPE
errors was performed in Figure 6a, which indicates the week with the lowest error in
the ANFIS model, and shown in Figures 7a and 6b, which indicate the week with the
lowest MAPE error of the ANFIS-PSO model, as shown in Figure 7b. Figures 11a and 12a
show a general analysis of the errors for ANFIS and ANFIS-PSO, respectively. It concerns
the experimental results during the entire universe of tests, while Figures 11b and 12b
show the corresponding histograms with a distribution fit for the ANFIS and ANFIS-PSO
models, respectively. Figure 13 shows the correlation plots of each model concerning
the experimentally measured output power in the system for the entire universe of test
data (30%). A clear linear relationship between the system power records and the values
estimated by both models can be observed. Even so, it is possible to appreciate that the
optimized model better fits the trend line, giving us a visual idea of the superiority of
ANFIS-PSO.

With the data obtained from the models, a numerical integration was carried out using
the trapezoidal rule to calculate the electrical energy predicted by the models, which was
compared with the real generation data of the system. It is during the four weeks of June
and the four weeks of October, which are shown in Table 6.
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Table 6. Comparison of experimental record and the predictive models of the electrical energy
generated by the PV system (kWh) for June and October.

SOURCE Period Week 1
(kWh)

Week 2
(kWh)

Week 3
(kWh)

Week 4
(kWh)

Total
(kWh)

Experimental data

June

2117.5 1748.1 1844.1 1517.5 7227.2

ANFIS-PSO 2122.9 1725.7 1896.9 1474.5 7220

ANFIS 2115.1 1734.5 1841.9 1543.8 7235.3

Difference with experimental data (%) Mean (%)

ANFIS-PSO 0.26 −1.28 2.86 −2.83 −0.25

ANFIS −0.11 −0.78 −0.12 1.73 0.18

Experimental data

October

1844.5 1650.9 1554.2 1844.1 6893.7

ANFIS-PSO 1788.7 1585.2 1569.2 1896.9 6840

ANFIS 1805 1640.6 1572.2 1841.9 6859.7

Difference with experimental data (%) Mean (%)

ANFIS-PSO −3.03 −3.98 0.97 2.86 −0.8

ANFIS −2.14 −0.62 1.16 −0.12 −0.43
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Subsequently, for a more detailed follow-up, the comparison of the electrical energy
generated by the PV system and that estimated by both models was made for seven days
of the periods of the second week of June and the third week of October, corresponding to
the best MAPES values obtained by ANFIS-PSO and ANFIS, respectively. The results are
shown in Table 7.
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Figure 12. (a) Errors presented by the ANFIS-PSO model concerning the experimental data during
the entire testing process; and (b) standard deviation of the errors.

The results obtained by the models were compared with two other different predictive
models of the electrical generation of PV systems reported in the literature. Table 8 shows
the general characteristics and results based on the RMSE, MAE, and MAPE statistical
metrics. The models from other investigations were designed and trained for a different
photovoltaic system with different generation capacities and different geographical condi-
tions, so it is possible that only the percentage metric could be compared quantitatively. It
is observed that ANFIS-PSO has the best agreement.
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Table 7. Comparison of experimental records and the predictive models of the electrical energy
generated by the PV system (kWh) for seven days corresponding to the second week of June and the
third week of October.

SOURCE Period Day 1
(kWh)

Day 2
(kWh)

Day 3
(kWh)

Day 4
(kWh)

Day 5
(kWh)

Day 6
(kWh)

Day 7
(kWh)

Total
(kWh)

Experimental

June

244.2 193.3 278.2 306.7 273.8 304.0 147.8 1748.1

ANFIS-PSO 245.9 186.1 274.6 305.0 271.4 301.0 141.7 1725.7

ANFIS 239.4 196.2 272.9 301.2 270.3 292.5 161.9 1734.4

Difference with experimental data (%) Mean (%)

ANFIS-PSO 0.7 −3.7 −1.3 −0.5 −0.9 −1 −4.1 −1.6

ANFIS −1.9 1.5 −1.9 −1.8 −1.3 −3.8 9.5 0.04

Experimental

October

318.6 300.7 270.5 118.5 89.4 244.3 212.1 1554.3

ANFIS-PSO 319 311.3 276.0 116.9 88.9 244.7 212.3 1569.1

ANFIS 313.4 301 264 125.22 101.89 248.65 217.99 1572.15

Difference with experimental data (%) Mean (%)

ANFIS-PSO 0.12 3.54 2.04 −1.35 −0.63 0.14 0.08 0.6

ANFIS −1.64 0.11 −2.41 5.64 13.92 1.77 2.75 2.9
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Finally, an analysis was made of the behavior of the ANFIS-PSO model when trained
with 2, 3, or 4 distinct input variables. In this process, the model was trained and tested
in four different cases, and the results were evaluated with the statistical metrics and
presented in Table 9. As can be observed, the present case with four variables (Case 5)
is the one with the lesser MAPE, followed very closely by the cases with two variables
(Case 2) and three variables (Case 3), respectively. It is relevant that the cases without solar
radiation present higher deviations (Cases 1 and 4). Therefore, it can be concluded that
solar radiation is the primary variable to be considered.

Table 8. Comparisons between ANFIS and ANFIS-PSO models with other intelligent predictive
models of electric energy production in photovoltaic systems.

Statistic Metric

Models Reference Output (kW)
Power

Predictive
Period

RMSE
(kW)

MAE
(kW) MAPE (%)

ANFIS This work 60 Eight months 1.797 0.864 1.478

ANFIS-PSO This work 60 Eight months 0.747 0.325 0.556

ANFIS-GA [45] 3.1 2.5 months 0.259 0.132 4.56

VMD-LSTM-RVM [25] 200 10 h 3.04 No reported 2.27

Table 9. The behavior of the ANFIS-PSO model is according to the type and number of train-
ing variables.

CASE VARIABLES

RSME
(kW)

MAE
(kW)

MAPE
(%)

Train Test Train Test Train Test

1 Module and ambient temperatures 3.309 3.702 1.899 2109 3.25 3.6

2 Solar radiation and ambient temperature 1.108 0.77 0.44 0.332 0.76 0.57

3 Solar radiation, ambient temperature, and wind velocity 1.104 0.788 0.459 0.336 0.79 0.63

4 Module and ambient temperatures and wind velocity 3.171 3.594 1.704 1.99 2.92 3.4

5 Solar radiation, module and ambient temperatures, and
wind velocity 1.085 0.747 0.432 0.325 0.74 0.55

5. Conclusions

In this research, two intelligent models that predict the generation of photovoltaic
energy based on the training and learning of historical experimental data of the system
were designed: the hybrid model ANFIS and the novel model ANFIS-PSO, which were
adjusted through an optimization based on swarm intelligence. The training and testing of
the models were carried out with 225,441 records per variable collected from experimental
data from the study photovoltaic system for almost 26 months. The long-term predictive
capacity of both models was evaluated. In addition, monthly and weekly estimation
comparisons were made in cases where the models showed great precision.

The evolved ANFIS-PSO model showed better performance in predicting power gen-
eration, both in operating speed and in the minimum error value, where the results of the
evaluation of statistics errors were RMSE = 1.79 kW, RMSPE = 3.075, MAE = 0.864 kW, and
MAPE = 1.47%, compared to ANFIS-PSO, which obtained RMSE = 0.754 kW, RMSPE = 1.29,
MAE = 0.325 kW, and MAPE = 0.556%, respectively. In the analysis of the electricity gener-
ation predicted by the models, it was observed that the estimates were considerably close,
with both models underestimating or overestimating the actual records with minimal differ-
ences in the results over four weeks. The comparison of two different months indicated that
both models could estimate the actual electricity generation with high precision, finding
minimum percentage differences in each model. Later, once the more specific comparison
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was made, on the daily analysis of the period of 7 days for both models, it was found that
although both models predict very well, the ANFIS-PSO model has a better predictive
capacity for daily electricity generation in almost all cases. Therefore, they may be fed with
a typical meteorological year (TMY) to predict the long-term production of electrical energy
for new photovoltaic plants to facilitate their economic viability.

In analyzing the factors affecting the electric power prediction of a PV system, the solar
radiation variable is shown as the predominant variable due to its very high correlation
with the output variable. In addition, it is observed that when the solar radiation variable
is excluded from the training, the error results are significantly higher than in cases where
it is included. In addition, the case with the four available variables in the study was more
accurate. It leads to the conclusion that to refine the model’s predictive capacity as much as
possible, it is essential to have the variables with the best correlation to the output variable
for training and an adequate time for historical data collection.

Finally, we suggest future research topics. It would be essential to evaluate the models
in other photovoltaic systems under different environmental conditions, even to include
variables of physical conditions that affect the performance, such as the accumulated dust
on the panels. For this, it is necessary to have a sufficient data record that can be included
as an additional input variable. Additionally, it is interesting to study optimization with
more optimizing algorithms, such as the ant colony algorithm and the artificial bee colony
algorithm, to make several comparisons and record the conditions in which one may
be more suitable than the other. All these variants could be beneficial in improving the
predictive model.

Author Contributions: Research ideas and global design: L.O.L.-C., N.P.-D. and J.F.H.; analysis of the
results: L.O.L.-C., N.P.-D., J.F.H. and Y.M.; revision of the document: N.P.-D., J.F.H., Y.M. and A.G.-A.;
data gathering: L.O.L.-C. and Y.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data, models, and/or code that support the findings of this study
are available from the corresponding author upon reasonable request.

Acknowledgments: The authors would like to thank the University of Sonora and CINVESTAV
for the facilities for studying the photovoltaic system and the support from CONAHCYT, Mexico,
through a graduate scholarship with number 480505.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ANFIS Adaptive Neuro Fuzzy Inference System
PSO Particle Swarm Optimitation
PV Photovoltaic
kW Kilowatt
kWh Kilowatt-hour
kWp Kilowatt peak
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