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Abstract: Distributed generators (DGs) have a high penetration rate in distribution networks (DNs).
Understanding their impact on a DN is essential for achieving optimal power flow (OPF). Various
DG models, such as stochastic and forecasting models, have been established and are used for
OPF. While conventional OPF aims to minimize operational costs or power loss, the “Dual-Carbon”
target has led to the inclusion of carbon emission reduction objectives. Additionally, state-of-the-art
optimization techniques such as machine learning (ML) are being employed for OPF. However, most
current research focuses on optimization methods rather than the problem formulation of the OPF. The
purpose of this paper is to provide a comprehensive understanding of the OPF problem and to propose
potential solutions. By delving into the problem formulation and different optimization techniques,
selecting appropriate solutions for real-world OPF problems becomes easier. Furthermore, this
paper provides a comprehensive overview of prospective advancements and conducts a comparative
analysis of the diverse methodologies employed in the field of optimal power flow (OPF). While
mathematical methods provide accurate solutions, their complexity may pose challenges. On the other
hand, heuristic algorithms exhibit robustness but may not ensure global optimality. Additionally,
machine learning techniques exhibit proficiency in processing extensive datasets, yet they necessitate
substantial data and may have limited interpretability. Finally, this paper concludes by presenting
prospects for future research directions in OPF, including expanding upon the uncertain nature of
DGs, the integration of power markets, and distributed optimization. The main objective of this
review is to provide a comprehensive understanding of the impact of DGs in DN on OPF. The article
aims to explore the problem formulation of OPF and to propose potential solutions. By gaining
in-depth insight into the problem formulation and different optimization techniques, optimal and
sustainable power flow in a distribution network can be achieved, leading to a more efficient, reliable,
and cost-effective power system. This offers tremendous benefits to both researchers and practitioners
seeking to optimize power system operations.

Keywords: optimal power flow; distributed generators; distribution network; mathematical
optimization; artificial intelligence
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1. Introduction

The proportion of DGs connected to DNs has increased significantly due to the imple-
mentation of the “Dual-Carbon” strategy. DGs, which typically consist of photovoltaic cells
(PVs) and wind turbines (WTs), offer clean and renewable energy. However, the output
from these DGs is often intermittent, resulting in challenges for grid stability. To address
these challenges, a battery energy storage system (BESS) is commonly used to smooth
out the output curve. The integration of DGs has transformed the traditional DN model
from a passive energy receiver into an active network that participates in energy exchange.
The energy exchange of DGs is typically achieved through power routers (PRs). OPF is a
common technique used to reduce network loss and the cost of DN [1,2]. The objective
of OPF is to minimize system losses and to allocate power rationally among different
nodes while ensuring system safety and stability. In addition to these objectives, carbon
emissions [3] are also considered as optimization targets.

To achieve OPF with DGs, understanding their impact on DNs is of utmost importance.
Ref. [4] investigated the relationship between nodal voltage and the placement of DGs.
Two types of DG models, namely stochastic and forecasting, were established to account
for their uncertainty. Additionally, the combination of OPF with the electricity market is a
hot topic, with recent studies, as seen in references [5–7], establishing a demand response
(DR) model for calculating locational marginal prices (LMP) and scheduling DG output.

The power flow model, which is the basis of the OPF problem, is also reviewed. The
model can be categorized into conventional nonlinear and linear approximation models. The
conventional model can reflect the power flow distribution directly, but its nonlinear nature
makes it less desirable for calculations. Linear models, on the other hand, can speed up the
calculation process but may lose some accuracy. In addition, new component models have
been added to the equality and inequality of the model to reflect the new components in DNs.

After defining the basic problem of OPF, various methods for solving the OPF problem
are reviewed. However, changes and uncertainties in energy demand, energy flow, and
load changes in active distribution networks (ADNs) can lead to voltage offset, frequency
dislocation, and power losses at various nodes in the network. As a result, the scheduling and
optimization of ADNs can be complex. To address these challenges, it is necessary to optimize
the energy distribution and load control of ADNs through an optimal power flow analysis.

In this paper, state-of-the-art methods for solving the OPF problem are reviewed. The
optimization methods reviewed in this paper are divided into four categories: mathematical,
heuristic, ML, and mixed methods. Each method has its own strengths and limitations, and
its suitability depends on the specific characteristics of the ADN under analysis.

Mathematical optimization methods for solving the OPF problem include conven-
tional OPF, Alternating Direction Method of Multipliers (ADMM), Mixed Integer Linear
Programming (MILP), Semi-Definite Programming (SDP), Second-Order Conic Program-
ming (SOCP), Quadratic Programming (QP), and others. While mathematical optimization
methods can provide rapid convergence and are easy to implement, they may require
significant computation resources. The primary concept behind mathematical optimization
is to transform the original non-convex OPF model into convex models, thus improving
the accuracy and convergence time of the model.

Heuristic optimization methods for solving the OPF problem include Sunflower
Optimization (SFO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and
others. Heuristic optimization methods can handle non-convex and nonlinear problems,
but they may not guarantee convergence or optimality and may depend on random factors.
These methods reveal the design principles of optimization algorithms by understanding
the behavior, function, experience, rules, and mechanisms of action in biological, physical,
chemical, social, artistic, and other systems or domains. Under the guidance of specific
problem characteristics, the corresponding feature models are refined to design intelligent
iterative search-type optimization algorithms.
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To the best knowledge of the authors, there is no previous review that extensively
covers problem formulation and optimization methods for the OPF problem. Refs. [8–14]
have reviewed optimization methods to solve OPF problem, Ref. [12] has reviewed heuristic
and conventional algorithms in the DN while introducing some basic principles of OPF;
Ref. [8] focused on the mathematical model of OPF, but has not considered other methods
or modeling of new models in DN. In their articles, Refs. [13,14] individually reviewed the
ADMM and heuristic methods for OPF. However, it is important to note that these reviews
do not encompass the entirety of available optimization methods for OPF. Refs. [9,10] mainly
focused on the problem formulation and the benefits of different methods but only presented a
table for the drawbacks without providing a detailed explanation of how the algorithms work.
On the other hand, Ref. [11] explained and analyzed some of the methods through case studies
but included only a few methods and only in a certain network. In summary, this paper makes
a significant contribution by addressing the lack of extensive coverage in previous reviews
regarding the problem formulation and optimization methods for the OPF problem. While
several existing reviews have reviewed optimization methods for OPF, they either focus on
specific aspects or do not provide a comprehensive analysis. Some reviews cover heuristic and
conventional algorithms, others focus on mathematical models, and a few address individual
methods such as ADMM. However, none of these previous reviews encompass the entirety
of available optimization methods for OPF or provide a detailed explanation of algorithm
workings. Moreover, the limited case studies conducted in previous research further highlight
the need for a more comprehensive and holistic assessment. Therefore, this review paper
fills an important gap by providing a comprehensive analysis of problem formulation and
optimization methods, establishing its novelty and significant value in the field.

The main contributions of this paper are detailed next.

• Through a comprehensive analysis of the model development and optimization meth-
ods for the optimal power flow problem in distribution power systems, this study
provides a profound understanding and valuable references for solving this problem.
Therefore, it establishes a solid theoretical framework for promoting the application
and advancement of optimal power flow solutions in distribution power systems, thus
making notable contributions to this field.

• A detailed discussion of the power flow and component models necessary for imple-
menting the various applications mentioned above is provided.

• Furthermore, future opportunities and challenges for the application of OPF in DN
are identified.

The organization of this paper is as follows: the OPF problem is formed in Section 2,
then optimization approaches are reviewed in Section 3, and the advantage or disadvan-
tages of these approaches and future works are discussed in Section 4. The reviewed OPF
methods are shown in Figure 1.
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Figure 1. Reviewed OPF formulation and methods.

2. Problem Formulation

In general, distribution networks comprise loads, power lines, transformers, and DGs.
However, the widespread deployment of DGs such as PV and WT, in addition to the use of
various new smart meter technologies, has played a crucial role in transforming distribution
networks. As a result, the nature of the distribution network has significantly changed.

2.1. Impact of DG in DN

When DGs are connected to DNs, they typically have an impact on nodal voltage and
power loss in the network. A comparison of DNs before and after any DGs are connected
to the DN is shown in Figures 2 and 3.
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Figure 2. DN with DGs.

Figure 3. DN without DGs.

In [4], the influence mechanism of DGs on reactive power and voltage characteristics of
DNs was explained. Additionally, Ref. [15] showed that the placement of loads in different
positions can have varying impacts on voltage stability. Loads located too close to the
substation can cause the voltage to be too high and can overload the load, while loads
located too close to the end of the line can cause the voltage to be too low and can create an
unstable power supply.

To determine the optimal placement of DGs, Ref. [16] evaluated the impact of solar PV
systems on the reliability of power distribution systems using various methods. They used
energy not supplied (ENS) as the primary indicator to evaluate the impact. The results
revealed that distributed solar PV input significantly affects the ENS value, and the ENS
value was reduced by 50% when the capacity factor of the solar PV system was equal to



Energies 2023, 16, 5974 6 of 42

one. The researchers also assessed the impact of installing solar PV systems under different
conditions and further evaluated the improvement in grid reliability by adding energy
storage facilities.

In [17], the impact of integrating squirrel cage induction generator (SCIG) WTs at
different positions on the power system was investigated. The study concluded that
integrating SCIG WTs into the power system can achieve better voltage and can reduce
power losses. However, voltage stability issues may arise when SCIG WTs are integrated
into the power system at certain positions.

2.2. Generator Modeling

Due to the uncertainty aspect of PVs and WTs, the uncertainty of DGs can be ad-
dressed in the following ways: stochastic and forecasting models. A brief summary of the
two models is expressed in Figure 4.

Figure 4. Brief summary of DG models.

2.2.1. Stochastic Model

The output of DGs is a stochastic event and, hence, can be expressed by a set of random
variables. This uncertainty arises from various factors such as weather conditions, load
variations, and system disturbances. In their research, Ref. [18] addressed the uncertainty
of power outputs of DGs based on probability. They proposed a probabilistic approach to
model the output fluctuations of DGs within a certain range. They noted that the output of
DGs fluctuates within a range, and thus, they proposed a probabilistic approach to model
the uncertainty.

Similarly, in their study, Ref. [19] expressed uncertainty via a range of random vari-
ables, which were observed over a specified time interval. The goal of these approaches is
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to effectively capture the uncertainty associated with the output of DGs, thereby supporting
the optimization of power system operations.

Stochastic models offer several advantages in the evaluation of the reliability and
stability aspects of photovoltaic systems. By analyzing probability distributions, these
models facilitate the identification and resolution of potential issues. Moreover, they con-
sider uncertainties associated with DGs, effectively incorporating risk factors into system
design and planning. This integration enhances the reliability of decision-making processes.
Furthermore, stochastic models are particularly well suited for long-term planning pur-
poses. Leveraging historical data, these models can forecast and evaluate future power
generation over extended time periods, providing valuable guidance for system design
and investment decisions.

However, stochastic models also have certain limitations. They heavily rely on the
quality and reliability of available data, making them highly dependent on data quality.
Insufficient or inaccurate data can adversely impact the accuracy and efficacy of probability
models, potentially leading to flawed results and incorrect applications. Furthermore,
stochastic models prove inadequate in handling short-term fluctuations and exceptional
cases. Due to their inherent characteristics, these models encounter challenges in effectively
addressing short-term power generation variations and individual anomalous situations.
Consequently, these limitations can introduce forecasting biases and should be carefully
considered when utilizing stochastic models in practice.

2.2.2. Forecasting Model

Utilizing the relation between weather conditions and output, it is possible to establish
a mathematical function to estimate the DG output. Ref. [5] estimated the output of DG by
using the weather conditions. The active power output of a PV module was determined
based on the input solar irradiance and ambient temperature. The equation was used in
the paper to generate an active power curve that corresponds to the solar irradiance and
ambient temperature data entered [20]. The commonly used PV power prediction formula
calculates the predicted PV power (PV) based on weather conditions such as solar radiation
intensity (G) and PV panel temperature (T). The formula is as follows:

PV(t) = A× G(t)× (1− β× (T(t)− Tre f )) (1)

where PV(t) represents the predicted PV power, A is the rated power or area of the PV
panel, G(t) is the solar radiation intensity, T is the PV panel temperature, Tre f is the
reference temperature, and β is the temperature coefficient.

The commonly used wind turbine power prediction formula calculates the predicted
wind turbine power P based on weather conditions such as wind speed (V), air density (ρ),
and the rated power of the turbine (Prated). The formula is as follows:

P = 0.5× ρ× A× Cp ×V3 (2)

where P represents the predicted wind turbine power, ρ represents air density, A represents
the swept area of the turbine blades, Cp is the power coefficient, and V represents the
wind speed.

Forecasting models offer several advantages in the context of DGs. These models
leverage advanced algorithms and real-time data to provide accurate short-term predictions,
enabling informed decision-making in electricity market operations and real-time dispatch.
By considering multiple influencing factors such as weather conditions, seasons, and
system parameters, forecasting models enhance the accuracy and reliability of predictions.
Additionally, these models support intelligent operation and optimization, providing
decision support for power plant operations to optimize generation scheduling and to
improve energy utilization efficiency.
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However, forecasting models also have certain limitations that should be taken into
account. They require high-quality and timely input data to ensure accuracy and reliability.
Particularly, accurate weather data and real-time operational data are crucial for achiev-
ing optimal performance. Moreover, the establishment and maintenance of high-quality
forecasting models involve substantial costs. These costs include the acquisition of exten-
sive data, the implementation of complex algorithms, and the allocation of appropriate
computational resources. Therefore, cost-related challenges can arise in the development
and maintenance phases. Finally, forecasting models are unable to account for future
uncertainties, such as unforeseen weather events. While they provide accurate short-term
predictions, unexpected uncertainties in the future cannot be accurately predicted using
these models.

2.3. Demand Response

DR is a mechanism by which power users receive direct notifications or price increase
signals from the power supplier to induce load reduction when the wholesale market price
of electricity rises or the system reliability is threatened. This allows users to modify their
inherent electricity consumption habits and to reduce or shift their electricity load over a
certain period in response to the power supply, ensuring the stability of the power grid
and suppressing short-term behavior of electricity price increases.

In [5–7], the commonly used model for the OPF problem was the electricity elasticity
model, which changes the price of electricity for consumers. The article [5] provided an
implementation of electricity elasticity in a DR model. The DR model assumes that multiple
consumers are connected to each node and that their loads are classified as either flexible
or non-flexible. Furthermore, this paper considered the difference between expected load
and actual load to ensure the accurate implementation of DR.

Another approach presented in [6] used electricity prices to build a DR model that
modifies the load curve to obtain an equivalent daily load curve. The model considers the
elasticity coefficient of the electricity price, which measures the sensitivity of electricity
demand to price changes. The elasticity coefficient matrix was used to model user demand
response behavior, ensuring that electricity demand in each period is related not only to the
current price but also to the electricity price of other periods. This approach is particularly
effective when Time-of-Use (TOU) rates are adopted.

Finally, the paper [7] proposed a combination of DR and OPF problems, the former
being combined with LMP through a Lagrangian function in the latter. This approach
optimizes load management by ensuring that LMP reflects the real cost of operating the
power system while optimizing the use of flexible loads.

2.4. Power Flow Model

Power flow calculations, which involve solving complex equations and handling
large-scale networks, often require significant computational time and resources. Ref. [21]
introduced a general power flow calculation method for DN with DGs and voltage regula-
tors. The power line can be represented by the π model. Transformers can be represented
by admittance matrices, while the load can be represented by a vector. The voltage output
of a step-voltage regulator can be described using a function of tap, and the impedance and
voltage drop of a compensator can be computed using the ratio of the voltage transformer
and current transformer and the impedance of the line. A brief summary of the power flow
models is expressed in Figure 5.
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Figure 5. Brief summary of power flow models

In [11], the Backward/Forward Sweep (BFS) method, a well-established and highly
regarded power flow calculation algorithm, was shown to be a popular choice for accu-
rately evaluating power flows in distribution networks. This method was used to calculate
the power flow in the network. In [22], the Bus Injection Model (BIM) was discussed,
which is used for analysis and optimization using nodal variables such as voltages, current,
and power injections. This model does not directly deal with power flows on individ-
ual branches.

Based on the conventional power flow model, several approximation models have
been established. The simplest approximation is to ignore some nonlinear factors in power
flow calculations. In [1], a linearized power flow model was introduced, which assumes
the network to be lossless. In [23], a linearized model was proposed that assumes the
voltage drop to be small and uses per-unit (p.u.) values to replace real values. The model
also introduces loss factors for distribution systems, which linearizes and divides the
distribution grid into a few sub-areas to improve accuracy and efficiency. In [24], the Zero-
Inflated Poisson (ZIP) model was combined with the current injection method to linearize
the four-wire system. In [25], two linearizations based on polar coordinates were mentioned.
The first approximation considers the phase angle deviation caused by impedance to be
small, making sin θ 0 and cos θ 1 [26]. The second approximation is based on the same
assumption; [27] proposed a novel power flow model, the decoupled linearized power
flow model, which is state-independent and highly accurate in voltage magnitude.

Another approach to obtain linear equations is to use other methods for linearization.
In [28], an approximate model for the power flow problem in three-phase unbalanced ADNs
was proposed based on the Wirtinger model. In [29], a linearization method for three-phase
unbalanced power systems was proposed. The method linearizes the magnitude and
phase of voltage on the complex plane by representing small perturbations in voltage
amplitude and phase as complex numbers and by performing a Taylor series expansion on
the complex numbers to approximate the voltage changes. In [25], Taylor expansion was
used for DC networks. Certain variables, such as voltage magnitude or voltage squares,
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are treated as independent variables, and the power flow equations are expressed using
these variables to obtain linear formulas.

Similarly, Ref. [7] used first-order Taylor expansion for power loss linearization.
Ref. [30] used a linearized Euclidean norm for branch current magnitudes and nodal
voltages. The voltage angle range was limited for better accuracy, and an approxima-
tion of DG power injection was acquired via first-order expansion of the estimated value.
In [23,31], a linearized power flow model was proposed. The model was linearized based

on the loss factor-based linearization method, which is commonly used in most electricity
markets in the U.S. The losses are naturally quadratic and cannot be linearized using a
cold start in a non-iterative manner. Therefore, the loss factor-based linearization method
was used to facilitate the fully linear formulation of the network model. The losses were
linearized based on a base case system operating condition.

The conventional power flow calculation model offers high accuracy and reliability,
making it suitable for various scales and types of power systems. However, it is limited by
its high computational complexity and stringent data requirements, making it unsuitable
for real-time calculations. Conversely, the approximate power flow calculation model
provides fast computation speeds and is applicable for real-time calculations.

Considering different scenarios, some devices are used for optimization, these devices
need to be modeled and added to the power flow model:

• Various models have been proposed from the grid perspective to enhance and op-
timize power system operations. These models include the superconducting cable
model, voltage regulator model, flexible loop converter, and energy router model.
Each model serves a specific purpose, such as improving transmission efficiency, volt-
age regulation, and interconnection between microgrids. In [32], the zero-resistance
characteristic of superconducting material was considered, and the superconducting
magnet parameters were introduced to reflect the superconducting properties. The
modeling of the superconducting cable was constructed using a nonlinear inductance,
current source, and leakage resistance to model the cable as an element within the
circuit analysis. Voltage regulators play a crucial role in maintaining stable power
transmission by adjusting the voltage levels of transformers. These devices ensure that
voltage remains within the desired range, mitigating potential issues associated with
voltage fluctuations. The power flow calculation method proposed in [21] considers
the influence of distributed generation and voltage regulators. The method adds the
power equation of distributed generation to the power flow equation of the system
and uses the three-phase power injection method in the calculation, which overcomes
the convergence problem that traditional power flow calculation methods face. In
[33], the modeling of step voltage regulators (svrs) was achieved by assuming that the
svr is an ideal component and by modeling it as a three-phase element. The series
impedance of the single-phase autotransformer of the svr wes assumed to be zero.
The Virtual Power Plant (VPP) model was proposed in [34], which allows for the
integration of distributed energy resources as a virtual unit and can participate in the
energy market. To interconnect microgrids, power routers must be used. In [35], a
stable model for PRs was proposed based on the steady-state power flow calculation
model. The line structure in the hybrid AC/DC distribution system based on PR is
divided into eight types according to the bus type at both ends of the line and the
line type. The power transaction between microgrids relies on energy routers, as
proposed by [36]. The energy router is modeled using the port-bus incidence matrix
by expressing the energy router using nodal currents and by applying constraints such
as Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL) before embedding
it into the existing power system power flow model.

• The flexible closed-loop converter, constructed using power electronic devices, can
achieve DC transmission and can solve the impact of closing AC load loop on the
power grid, providing ideas for the closed-loop control of distribution networks. Ac-
cording to [37], there are four operational modes for the flexible closed-loop converter:
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closed-loop operation mode, power flow transfer mode, circulating current limiting
mode, and power flow control mode. The power flow transfer and power flow control
modes involve solving the power flow equations. In the power flow transfer mode,
when a line of a substation fails or stops operating due to maintenance, the closed-loop
controller transfers the remaining load to another line. In the power flow control mode,
the closed-loop controller outputs adjustable voltage amplitudes and phases according
to the power demand of the secondary power supply line, such as load balancing
and minimum line loss, and inserts it into the line for the control of four-quadrant
power flow.

• From the regional perspective, a Community Load Aggregator (CLA) is established. In
some studies, a whole residential area is considered to be a node. Ref. [38] established
the CLA model by integrating and modeling the residential load, electric vehicle
load, and communication load in a community. The model is divided into static and
dynamic loads, where static loads refer to the residential and communication loads
that have relatively stable characteristics, while dynamic loads refer to the electric
vehicle load, which has significant time-varying characteristics and requires optimized
scheduling strategies.

• For a single node, the Soft Opening Point (SOP) model and the State of Charge (SOC)
model are established. Ref. [39] modeled SOP and estimated the loss of SOP with the
least square estimator. To describe the status of energy storage of a single nodal DG,
Ref. [40] used SOC. The formula was used to determine the SOC of a battery based
on the battery’s charging and discharging power, charging and discharging efficiency,
rated capacity, and calculation time interval.

2.5. Objective Function

There are two main types of objective functions with constraints: one considers
network loss, while the other also considers the cost of generators and node voltages. A
brief summary of the objective functions is expressed in Figure 6.

In [29], the objective function was set as the minimization of power loss after deploying
DGs in a distribution network. In [41], the objective function was adjusted to include power
loss as a Lagrangian function for ADMM. In [2], power transfer distribution factors (PTDFs)
were introduced to calculate the estimated contributions of changes in power output from
each generator to each flow into the corresponding transmission line/interface based on the
topology of the power system’s transmission network. This approach is used to establish
mathematical relationships between characteristics such as line resistance and node stress,
representing the interconnectivity and power transfer capacity between nodes and lines.
In [34], the objective function was set as the Source–Load–Storage Matching Index, which
aims to allocate distributed energy resources (DERs) to support the grid’s load demand
while minimizing the economic cost. In [23,42], not only power loss but also the LMPs were
considered for pricing. The LMPs reflect the power production and demand characteristics
of the network, and the pricing information can provide economic incentives to encourage
optimal utilization of resources.

In addition to traditional objectives such as power loss and cost, carbon emission is
also being considered in power system optimization due to the “Dual-Carbon” policy. For
example, in [43], an electrothermal model for thermal loads in DNs was established, and a
carbon dioxide emission cost was put into consideration when optimizing, in addition to the
general loss and cost functions. Similarly, in [44], the effect of temperature on transmission
line load was considered, and the goal was to reduce power flow losses accordingly. In [3],
the carbon dioxide generated when renewable generators cannot supply the loads was
considered as a goal when optimizing. In [45], security was also introduced as one of the
objectives of power system optimization.
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Figure 6. Brief summary of objective functions [2,41,43–45].

3. Optimization Methods

This paper discusses three optimization methods for the OPF problem: mathematical
optimization, heuristic optimization, and ML-based optimization. While mathematical
optimization is a widely used approach for solving OPF problems, heuristic optimization
methods are known to provide more flexibility and dependability. In recent years, ML-
based optimization has emerged as a promising technique for handling complex and
large-scale OPF problems. Thus, the selection of the most appropriate optimization method
depends on the specific problem requirements and the available resources for implementing
the solution. In this section, optimization methods are introduced and compared.

3.1. Mathematical Approach

OPF models are often solved using mathematical methods, which are scalable and
easy to implement. While the simplest and most direct way to solve the OPF model is to
do so directly without an optimization model, this approach can be impractical due to the
model’s non-convex and nonlinear nature requiring significant computational resources.
The conventional OPF problem can be expressed in (3)

min F(x)

s.t. Pi − PDi + ∑(Gij ×Vi ×Vj − Bij ×Vi ×Vj × cos(θi − θj)) = 0

Qi −QDi + ∑(Gij ×Vi ×Vj × sin(θi − θj) + Bij ×Vi ×Vj × cos(θi − θj)) = 0

Pi(V, δ) = PG
i − PL

i ∀i ∈ N

Qi(V, δ) = QG
i −QL

i ∀i ∈ N

PG,min
i ≤ PG

i ≤ PG,max
i ∀i ∈ G

QG,min
i ≤ QG

i ≤ QG,max
i ∀i ∈ G

Vmin
i ≤ Vi ≤ Vmax

i ∀i ∈ N

δmin
i ≤ δi ≤ δmax

i ∀i ∈ N

(3)

F is the objective function to be optimized, for example, minimizing the total genera-
tion cost or minimizing the transmission loss. Pi and Qi are the active and reactive power
injections at node i, respectively. PDi and QDi are the active and reactive load demands at
node i, respectively. Gij and Bij are the admittance matrix elements between node i and
node j. VI and vj are the voltage between node i and node j.

Combining conventional OPF problems with power flows, the direct solution can
be sped up. In [46], the Forward/Backward Sweep (FBS) load flow algorithm and the
Exhaustive Search Algorithm were used to compute load flow parameters and to inject
optimal reactive power in the distribution system. In [23], the nonlinear OPF problem was
transformed into a convex optimization problem. In [47], based on the linear power flow
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model, the power flow model was iteratively calculated, starting with no loss. The criterion
for convergence was the maximum voltage deviation and error.

Other techniques to reduce power loss were also adopted. In [48], network reconfigu-
ration was achieved during the optimization process by strategically opening or closing
certain lines in the power system’s topology to alleviate congestion and to reduce overall
system costs following N-1 contingencies. In [49], two new linear approximation methods
were proposed, i.e., the Enhanced DC (EDC) OPF and Coupled OPF (COPF) approxi-
mations. The EDC OPF method considers the impact of resistance by establishing an
equivalent inductance between resistance and inductance. Specifically, for a given line with
resistance and reactance, an equivalent inductance is introduced to simplify the calculation.
This improves the accuracy of the model and makes the EDC OPF method more applicable
to distribution network optimization problems. The COPF method can be regarded as
an improved version of the EDC OPF by optimizing the entire network OPF problem to
minimize the potential energy loss of the base station while considering the characteris-
tics limitation of each component, such as load and converter, in the system. To achieve
fault current-constrained optimal power flow on unbalanced distribution networks, the
algorithm presented in [50] encodes the full short-circuit current flow as a constraint. This
constraint limits fault current by adjusting the DG set points to redistribute power while
ensuring that load is supplied. The method is applicable to generalized unit commitment
and determines the optimal configuration for generation deployment while limiting fault
current at fault locations.

As mentioned in Section 2, the uncertainty of DGs can be expressed with the stochastic
model. The OPF problem can utilize this model for optimization. In [51], a probabilistic
model based on the traditional static power flow optimization mathematical model was
constructed, considering the uncertainty of photovoltaic power generation and electric
vehicle loads. The model uses a stochastic optimization algorithm to solve the problem and
describes the probability distribution of the total network loss using probability density
curves and cumulative distribution curves.

To achieve multiple objectives, the conventional OPF model can be adjusted. In [52], a
weighted sum method was used to combine different optimization objectives, resulting
in a comprehensive single-objective problem. The Newton–Raphson (N-R) method was
employed to solve the problem. Ref. [53]’s objective function was to increase the maximum
utilization ratio of DR in the voltage and reactive power optimization process. Capacitor
banks (CBs), reactor banks (RBs), and static var generators (SVGs) as well as DR are used
as control variables to optimize the voltage and reactive power of the power grid, aiming
to achieve the best regulation effect. Ref. [54], based on the three-phase optimal power flow
model at medium voltage level, adjusted the output of distributed power sources in the
medium voltage distribution network based on targets such as network losses, voltage
offsets, and distributed power consumption.

The conventional OPF model could achieve the optimal value of a certain performance
indicator of the system while satisfying all operating constraints; however, in some cases,
this optimization problem itself may not have a solution. To further improve the conver-
gence time of the OPF problem, researchers have taken measures to convert OPF models
into mathematical models like QP, SDP, ADMM, etc.

3.1.1. Quadratic Programming

QP is the process of solving certain mathematical optimization problems involving
quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a mul-
tivariate quadratic function subject to linear constraints on the variables. To convert a
conventional OPF problem into a QP model, we can express it using Formula (4):

min
1
2

x>Px + q>x

s.t. Ax = b
(4)
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where x is a vector containing the variables to be solved, typically representing power
generation, node voltages, or other relevant quantities. P is a positive semi-definite matrix
that describes the quadratic coefficients in the objective function. q is a vector representing
the linear coefficients in the objective function. A is the constraint matrix that defines the
physical constraints related to the power system. b is a column vector representing the
right-hand side of the equality constraints. Ref. [55] transformed the general AC OPF
model into a QP model by making the variables that were originally V (voltage), I (current),
P (power), and a/d × Q (var) into V2, I2, P, and Q for QP. Ref. [56] applied a linear PF
model and then a combination of QP and Benders decomposition for acquiring the solution.
Ref. [57] proposed a convex iteration technique to simultaneously achieve optimal and
feasible solutions. The algorithm obtains linear inequality constraints by analyzing the
quadratic equality constraints mathematically, ensuring problem feasibility.

For multi-objective optimization, some improved QP methods have been introduced.
Ref. [58] proposed a method for simultaneously optimizing the location and capacity of
DGs in radial power distribution networks using a Mixed Integer Linear Programming
(MIQP) approach. The optimization formula of the MIQP was constructed by utilizing the
modified DistFlow method and by linearizing products of real and binary variables.

Multi-objective optimization would add constraints to the model. The model con-
struction involves two stages, where the first stage is used to determine the upper and
lower bounds of the McCormick envelopes proposed in [59] and the environmental vari-
ables, and the second stage involves eliminating the non-convexity introduced via the
McCormick relaxation.

QP offers several advantages, including the ability to accurately solve OPF problems
with quadratic objective functions and linear constraints, along with a faster computation
speed compared with other methods, particularly for moderate-sized OPF problems. Addi-
tionally, QP methods allow for the transformation of the OPF problem into a linear model,
resulting in a more efficient and concise modeling and solving process. However, there are
also some disadvantages to consider. QP methods may encounter numerical instability,
requiring additional efforts for stability checks and handling. They may also have higher
memory requirements for large-scale OPF problems, as storing related matrices and vectors
consumes computational resources. Furthermore, QP methods face limitations in solving
non-convex OPF problems, finding only local optimal solutions instead of global ones.

3.1.2. Alternating Direction Method of Multipliers

ADMM is a powerful algorithm used to solve convex optimization problems by
decomposing them into smaller and more manageable subproblems. The solutions to these
subproblems are then coordinated to find a global solution to the original problem. In the
context of the OPF problem in power systems, ADMM has been implemented using various
techniques to enhance convergence speed and accuracy. These techniques include the use
of different penalty methods, employing preconditioning techniques, adjusting the step
size parameter in the algorithm, and incorporating real-time measurements and control
strategies into the ADMM framework. To transform the conventional OPF problem into
ADMM form, auxiliary variables and an augmented Lagrangian function were introduced,
as shown in Formula (5):

L(x, z, u) = F(x) + u>(Ax− z) + (ρ/2)||Ax− z||2. (5)

Here, auxiliary variable z = [P, Q, V, θ], the multiplier variable u = [uP, uQ, uV , uθ], A
is the linear transformation matrix, ρ is a non-negative multiplier factor, and ||.|| denotes
the Euclidean norm.
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Repeated ADMM algorithm steps are as shown in Formula (6):

xk+1 = arg min
x

L(x, zk, uk)

zk+1 = arg min
z

L(xk+1, z, uk)

uk+1 = uk + ρ(Axk+1 − zk+1).

(6)

Through the iterative process of ADMM, it can transform the conventional OPF
problem into a series of subproblems and gradually approach the optimal solution by
alternating between optimizing variables, auxiliary variables, and multipliers. In each
subproblem, various mathematical optimization techniques can be used, such as gradient
methods, interior point methods, and others.

One technique involves using a variable separation method to relax the original
problem, as discussed in [60]. Then, the relaxation variables and multipliers are updated
iteratively through the ADMM process, using the augmented Lagrangian method to handle
the relaxed constraints. These improvements have been shown to enhance the effectiveness
and efficiency of the algorithm.

In another approach, as discussed in [61], conventional OPF was converted to SDP-
OPF by adopting semi-definite relaxation. The model was then given to an accelerated
ADMM algorithm, which breaks the OPF problem into a few subproblems, each of which
adopts a self-adapted penalty parameter. This technique has shown promising results in
solving complex optimization problems in power systems.

A few improvements to ADMM were made as follows:

• Ref. [62] discussed Harmonic Optimal Power Flow (HOPF) problems that involve
harmonic coupling factors. To efficiently solve these problems, they employed SDP
optimization techniques. SDP is an effective approach for handling non-convex and
nonlinear constraints, particularly for complex power system models that incorporate
significant harmonic components. The authors used SDP to optimize the power flow
and to ensure voltage stability even under harmonic conditions. Additionally, by
incorporating harmonic coupling factors into the HOPF problem, they were able to
achieve higher accuracy in their power flow solutions under harmonic scenarios.

• Ref. [41] improved the convergence speed of ADMM by proposing an adaptive scheme
to improve the convergence of the ADMM on the component-based dual decomposition
of the AC OPF. The proposed method incorporates a local curvature approximation
scheme with underlying parameter update steps inspired by the local residual balancing
scheme to automatically tune the penalty parameters locally without central oversight.

• Ref. [63] iteratively applied ADMM and the Sequential SOCP algorithm (SSA) with
ADMM for optimal gas power flow and SSA for OPF and optimal gas flow.

• Ref. [64] made improvements by proposing a new penalty factor selection method.
This method can achieve better optimization results by designing a smaller penalty
factor while keeping the voltage deviation and the relative objective function value
small and dynamically adjusting the step size parameter at each iteration cycle, which
can improve the convergence speed and stability of the algorithm.

ADMM offers several advantages, including convergence properties, distributed
solving capabilities for accelerated computation, and effective handling of constraints.
However, it has certain drawbacks. For instance, when seeking high-precision solutions, its
convergence performance is not optimal. Additionally, the choice of step size is complex,
where a value that is too small can result in insufficient constraint satisfaction, whereas a
value that is too large can weaken the optimization strength of the objective equation. It
is worth noting that the applicability of ADMM depends on the conditions of the given
scenario. Specifically, the sub-problems to be addressed after fixing a set of constraint
variables should be simple and linear equality constraints should be in place.
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3.1.3. Mixed Integer Linear Programming

MILP is a mathematical method for determining the optimal outcome of an objective
function, subject to a set of linear constraints, where some of the variables are required to
be integers. To convert a conventional OPF model into an MILP model, we can express it
using (7):

min F(x)

s.t. G(x) = 0

h(x) ≥ 0

x ∈ Z

(7)

where x is a vector containing variables, including both continuous and integer variables;
F(x) represents the objective function to be minimized; and G(x) and h(x) are the equality
and inequality constraint functions, respectively.

Ref. [30] made the OPF problem into an MILP model for optimization. In [65], the SVG
MILP model was built by setting upper and lower constraints for variables such as SVG
capacity and level, active and reactive power of each branch, SVG output power, voltage at
each node, and SVG installation location.

The MILP model in [66] was formed through mathematical equations to minimize
the peak load of the electric power distribution network and annual energy losses. At
the technical level, the model considers the lifespan of battery energy storage systems
to minimize energy losses and peak load of the power distribution network, while at
the economic level, the model takes into account the costs associated with application,
maintenance, and degradation of BESS, as well as costs related to energy losses and peak
demand–supply.

To implement parallel optimization, Ref. [67] proposed an algorithm that uses adaptive
sampling and divided the parameter space into small partitions. The algorithm then applies
MILP to solve the problem in each partition. During optimization, the algorithm adaptively
adjusts the sampling strategy and the number of parallel processors based on the error
tolerance and the number of partitions.

MILP offers advantages such as accuracy in finding optimal solutions, flexibility in
handling various constraints and objective functions, and efficiency for medium-sized
problems. However, MILP can become computationally complex for large-scale OPF
problems with integer variables, and the vast number of possible combinations can increase
the difficulty of finding solutions. Careful consideration is also needed for numerical
stability during the solution process. Therefore, a large amount of research can only use
heuristic strategies to find local optimal solutions.

3.1.4. Semi-Definite Programming

SDP deals with the optimization of a linear objective function over the intersection of
the cone of positive semi-definite matrices with an affine object, such as a spectrahedron. To
convert a conventional OPF model into an SDP model, we can express it using Formula (8):

min c>x (8)

s.t. Ax = b (9)

Gx ≤ h (10)

where x represents the variables to be optimized. In a conventional OPF problem, it
may include continuous variables such as generator outputs, node voltages, etc. c is the
coefficient vector of the objective function. A, b, G, and h are coefficient matrices and
vectors representing the constraints. xi denotes semi-definite matrix variables. Covariances
or covariance matrices involved in the conventional OPF problem can be modeled using
semi-definite constraints.
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In [22], optimization was performed through SDP. The nodal voltage constraint in
the Bus Injection Model is converted into a 2 by 2 matrix to fit SDP. In [68], a power flow
equation was first established based on the branch flow model. Then, the S-lemma was
used to prove that the original ACOPF problem is a convex optimization problem. Next,
the problem was reformulated by introducing equivalent variables, and an SDP problem
was established based on the dual problem of the original problem.

SDP could also combine with other methods.

• Ref. [69] established an SDP-OPF model which focuses on branch current and branch
power flows rather than nodal injections. To perform convex relaxation of power
flow equations, new variables were introduced to define branch currents and voltages.
Ref. [33] reduced the complexity of OPF model with a sparse decomposition technique.
Then, to further reduce the complexity of the optimization problem, it was transformed
into a first-order semi-definite-constrained nonlinear minimization problem which
was solved using a branch flow Semi-Definite Programming relaxation method.

• Ref. [70] replaced the nonlinear terms with new variables. The original AC-OPF
problem was transformed into a “graph + relaxation”-based SDP problem. Ref. [71],
based on [70], further proposed an intermediate variable that turns the general OPF
problem into a mixed-integer SDP model. Ref. [72] combined SDP-OPF with the
Branch Injection Model OPF (BIM-OPF) and then added constraints for nodal voltage,
P, Q, and voltage angle to ensure the convex relationship of the model.

SDP offers several advantages, such as its ability to handle quadratic and semi-definite
constraints, allowing for greater flexibility in dealing with nonlinear and non-convex
constraints and objective functions in the OPF problem. SDP provides precise solutions
by finding the global optimal solution for the OPF problem and is compatible with other
optimization methods, enabling integration to improve solution efficiency. However, SDP
can be more complex to solve, particularly for large-scale OPF problems, and requires
higher memory usage due to the storage of large matrices. Numerical stability challenges
may also arise during the solution process, requiring careful numerical treatment and
stability checks.

3.1.5. Second-Order Cones

SOCP is a type of convex optimization problem where a linear function is minimized
over the intersection of an affine set and the product of second-order (quadratic) cones. To
convert a conventional OPF model into an SOCP model, we can express it using (11):

min c>x

s.t. Ax = b

Gx ≤ h

Fix + gi ≥ 0

lT
i x + mi ≥ ||(Fix + gi)||

(11)

where x represents the variables to be optimized and in a conventional OPF problem, it
may include continuous variables such as generator outputs, node voltages, etc.; c is the
coefficient vector of the objective function; A, b, G, and h are coefficient matrices and vectors
representing the constraints; Fi and gi are coefficient matrices and vectors representing
the equality constraints; li and mi are vectors representing the inequality constraints; and
||.|| denotes a norm operator, usually the Euclidean norm.

Ref. [73] used the standard SOCP algorithm to transform the distributed power gener-
ation modeling problem into a SOCP model that can be solved. In [74], the SOCP model
was established by transforming the capacity constraint of flexible open point into rotated
cone constraints and by converting the power flow constraints of the system into standard
second-order cone constraints.

Some articles have focused on improving the SOCP model:
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• Ref. [75] improved the SOCP algorithm by introducing relaxation variables to simplify
the power flow equations and by deriving a SOCP optimization problem, also con-
sidering the stochastic model, resulting in a chance-constrained optimal power flow
model based on the SOCP algorithm.

• In the field of optimization, combining different models can often lead to further
improvements. For instance, Ref. [76] introduced the SDP framework for modeling
and the SOCP method for solving. The SDP framework leverages generalized matrix
inequalities to handle problems with quadratic cost functions and arbitrary inequality
constraints, while the use of the SOCP method for solving ensures high efficiency
and universality.
Similarly, the approach in [18] is a second-order method based on Robust Optimization
(RO) and solved using the Column-and-Constraint Generation (C&CG) algorithm.
This approach transforms the model into a problem of normal state optimization and
corrective dispatch confirmation, enabling the variables and constraints involved in
corrective dispatch to be introduced into normal state optimization. This yields a
tight and efficient representation, resulting in accurate solutions. By utilizing different
optimization frameworks in conjunction with one another, the resulting solution can
be more robust, efficient, and flexible in handling complex problems.

• In [77], the authors proposed a mixed-integer SOCP model that comprises two signifi-
cant parts. The first part involves the minimization of generation cost with Conditional
Value at Risk (CVaR) as the constraint function. CVaR is a risk measure commonly
used in finance and risk management that captures the expected loss beyond a certain
confidence level. In this approach, CVaR is utilized as a constraint function to ensure
the system’s stability while minimizing the generation cost. The second part of the
model is the complete optimization model, which consists of multiple constraint con-
ditions. The constraints ensure that the system operates within specific parameters,
such as generator output limits, transmission line capacity, and demand balance. By
using a mixed-integer SOCP model and by incorporating the CVaR constraint func-
tion, the optimization solution can simultaneously address the issues of cost and risk
in power systems.

• In [78], the problem addressed is how to maximize economic, environmental, and relia-
bility objectives under PV uncertainty. To solve this problem, the authors decomposed
the original problem into multiple sub-problems. For each storage node, they used a
SOCP model to solve the investment and operation problem. Then, they combined all
the sub-problems using the Benders decomposition method. The Benders decomposi-
tion method is a powerful technique for solving large-scale optimization problems,
particularly in cases where the problem structure is separable. This approach can
achieve efficient and accurate solutions by solving each sub-problem independently
and then by integrating the results of each sub-problem.

SOCP offers several advantages, such as its flexibility in handling non-convex con-
straints and nonlinear objective functions, making it suitable for problems involving convex
functions like square roots and absolute values. Additionally, SOCP methods exhibit im-
proved numerical stability, providing reliable solutions even in situations with singular
or infeasible matrices. They also offer compact and efficient problem representations by
utilizing second-order cone constraints, resulting in optimized memory usage and faster
solution times. However, it is important to acknowledge that solving SOCP problems can
be more complex, especially for large-scale scenarios, and global optimality cannot always
be guaranteed, potentially leading to local optimal solutions.

3.1.6. Multi-Level OPF

OPF tends to be multi-objective, and using a single mathematical method may not
achieve global optimization. Thus, a multi-layer structure is often considered to be a possi-
ble solution. By considering one or a few targets in each layer and facilitating interactions
between every layer, the best compromise could be achieved.
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Ref. [3] proposed a two-layer optimization with the top-level adopting SOCP for
maximum usage of renewable power, and the bottom-level aiming for max usage of
electric vehicle (EV) aggregators that purchase and sell electricity to consumers through
ADMM. In [79], a bi-level optimization problem was used to manage the day-ahead
scheduling of multiple microgrids in an unbalanced distribution system. The first level
minimizes costs, and the second level adjusts the transformer and capacitor banks to
minimize power loss. Ref. [80] proposed a bi-level optimal dispatching model considering
dynamic reconfigurations. The model achieves coordinated optimization by defining
identical optimization objective functions for both upper and lower levels, which are the
minimization of operating cost and maximization of the fast voltage stability index. Ref. [81]
also proposed a bi-level framework, in the upper layer, that determines the curtailment
rates of distributed generators and injection power of tied microgrids. In the lower layer,
an energy management model was proposed to schedule the power generation of tied
microgrids and to determine the adjustable range of their injection power, which was set as
a complementary constraint in the upper layer model.

Apart from considering different objectives, the combination of different mathematical
methods is also a solution. As an example, Ref. [82] proposed a model-free coordinated
control algorithm based on a two-dimensional adaptive control method to enable the
provision of transmission-level services. In this control algorithm, each DER device utilizes
an orthogonal detection signal and modulation signal’s sine and cosine components to
sample real power.

Another example is the strategy model proposed in [83], which is a Nash bargaining
solution to the power flow coordination problem among smart microgrids based on game
theory. The lower level involves the coordination of control agents within each microgrid
towards their local objective, while the upper level considers the interaction between power
exchange coordination agents in the distributed system and each microgrid to satisfy power
balance constraints among multiple microgrids.

3.1.7. Other Mathematical OPF Models

Some other mathematical methods are also used in the problem:

• Other mathematical models are also used in power system optimization. For example,
in [84], Model Predictive Control (MPC) was used to predict future energy demand
and renewable energy generation, and these predictions were used to schedule the
active distribution network, minimizing overall costs while increasing consumption
of renewable energy. In [85], two indices were introduced: Power Stability Index
(PSI) and Power Loss Index (PLI). PLI uses the reactive power values of all nodes
to determine the optimal placement location for a Distribution Static Synchronous
Compensator (D-STATCOM), while PSI determines the optimal placement location
for a D-STATCOM by considering the stable voltage values of nodes. In [86], a
Gaussian mixture model was established to describe the complementarity of power
flows amongst AC/DC lines, which is a probabilistic distribution model obtained
by linearly combining several Gaussian distributions. The Expectation-Maximum
(EM) algorithm was used to estimate the parameters of the Gaussian mixture model.
In [87], the C&CG algorithm was adopted. This algorithm was used to transform
two-stage robust optimization problems into a master problem and subproblems
and was iteratively solved using the CPLEX solver. In [88], Generalized Generation
Distribution Factor (GGDF) was adopted to replace the voltage and angle variables in
the general DC OPF model.

• Another approach to power system optimization is to use graph-theory-based meth-
ods. In [89], a minimum-spanning-tree-based approach was used, taking into account
the measurement cost of each measurement in the optimization. In [90], the tradi-
tional minimum spanning tree algorithm was modified by incorporating microgrids
as vertices and by connecting them with their corresponding load nodes. In [91], an
Equivalent Network Approximation (ENApp) algorithm was proposed, which can be
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solved through reduced network equivalents and the augmented Lagrangian multi-
plier method. Building on [91], in [92], the impact and properties of communication
network topology on the cooperative operation between microgrids were discussed. It
was concluded that the network topology has a significant effect on the performance
of the OPF algorithm and an efficient communication network topology can improve
the algorithm’s performance and convergence speed, enabling microgrids to achieve
optimal operation quickly.

• Some articles have established a sensitivity index for determining the optimal place-
ment of DGs. For example, in [93], a DG placement optimization method was proposed
based on a sensitive index algorithm. This method evaluates the sensitivity of each
node in the power distribution grid to voltage and determines the optimal placement
of DGs according to this sensitivity index to improve voltage and to minimize power
losses. In [17], the Sensitivity Sequence Energy Algorithm (SSEA) was relied upon to
adjust loads. The algorithm estimates the sensitivity of the flow based on a sensitivity
matrix and calculates an implicit representation of reactive power based on energy
scheduled for each management period. The energy scheduling was adjusted by
translating some of the demand response strategies into load adjustment strategies in
each management period. Additionally, corresponding power scheduling decisions
can be made for each management period.

As the scale of the DN increases, the amount of data generated using DGs also
increases, which can make the calculations for a centralized distribution system operator
(DSO) too time-consuming. To address this issue, it is common to adopt a distributed
optimization approach, whereby optimization calculations are performed locally at each
DG site. This reduces the computational burden on the centralized DSO and creates a more
resilient and fault-tolerant system, as each DG can operate independently if communication
with the DSO is lost.

• Ref. [94] proposed a smart power distribution system for both residential and indus-
trial applications. The system utilizes decentralized methods to determine optimized
real and reactive power set points for inverters that provide auxiliary services such
as voltage support and harmonic filtering. The entire distribution system is divided
into multiple zones, and controllers that make use of local measurements to calculate
the optimized power points are deployed in each zone. These controllers also com-
municate with each other to share information and to create a cohesive system-level
strategy. The system is built to be scalable and flexible, easily adjusting to various
applications and system sizes. By employing decentralized optimization techniques,
the suggested system efficiently distributes the workload, ensures power quality, and
maintains the stability and reliability of the distribution system.

• The paper in [95] presented a decentralized algorithm for reducing allocation costs
and optimizing the deployment of DERs. The algorithm consists of two steps: first, a
distributed optimization model calculates the allocation amount of each DER; second,
local information exchange among allocation agents enables quick convergence on the
optimal allocation scheme. The goal is to improve system efficiency while reducing al-
location costs. Through decentralization, the algorithm can handle large-scale systems
with multiple DERs and can maintain scalability and flexibility. The algorithm’s fast
convergence speed makes it suitable for real-time applications.

• The paper in [96] proposed a modular structure for addressing the OPF problem in
distribution networks. The structure consists of two parts: the first part solves the
OPF problem using a gradient-descent algorithm, while the second part sends signals
to devices in the distribution network, such as BESS, to control their power output.

• In [97], the authors proposed a method for integrating and coordinating multiple
energy sources to optimize the energy flow system. The proposed method uses a
unified energy pathway approach to model and analyze all the energy sources, treating
them as a single integrated system comprising all energy sources and transmission
lines in a unified model. By considering all energy sources and transmission lines
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together, this unified approach enables efficient optimization of the energy flow system.
The authors devised an optimization algorithm that coordinates the operation of
diverse energy sources while considering the constraints and uncertainties associated
with each source.

• The paper in [98] introduced a hierarchical distributed algorithm designed for solving
large-scale mixed-integer convex problems. The algorithm presented in [98] employed
an enhanced Generalized Benders Decomposition (GBD) technique, aiming to ensure
computational efficiency and to effectively handle intricate problems. The algorithm’s
ability to optimize integer variables is useful for optimization problems in the energy
and power systems domain.

Other articles have provided an implementation of the above OPF method:

• The paper in [99] presented a hardware implementation of an optimal power flow
(OPF) algorithm for distribution networks using decentralized measurements. The al-
gorithm was based on the MATPOWER OPF and optimizes power flow in the network
using a decentralized approach. In [100], the cost optimization problem of energy stor-
age systems was solved using Gurobi. The paper in [101] addressed the analysis and
management needs of large-scale integrated transmission and distribution networks
through the implementation of an integrated power flow algorithm. The algorithm
in [101] was optimized through the utilization of an adaptive Lavenberg–Marquardt
method and an incomplete LU decomposition. An improved DC OPF model with
linear constraints was constructed. An adaptive interior point method was proposed
to solve the problem based on branch loss. This approach provides an efficient solution
for the operation and planning of integrated transmission and distribution networks,
taking into account technical and economic aspects.

• In [102], a comprehensive optimization model was proposed to model active distri-
bution networks, and the primal-dual interior point method was used to solve the
optimization problem. The approach offers a promising solution for optimal operation
and planning of distribution systems, considering both technical and economic aspects.
The paper in [103] proposed the use of topology adjustment as a means to optimize
the power generation of offshore wind farms. The proposed approach focuses on
optimizing the power output of wind turbines and reducing transmission losses by
making adjustments to the network topology. An efficient solution to the optimization
problem is achieved through the utilization of the interior point method. The proposed
approach shows promise in improving the performance and efficiency of offshore
wind power generation systems.

The comparison between mathematical methods is shown in Table 1.

Table 1. Comparison of mathematical methods.

Method Advantages Limitations

Conventional [51–54] Simple and easy to understand/implement;
Efficient computation

Can only handle linear constraints and variables;
Cannot handle certain nonlinear constraints;

Results may be local optima

MILP [30,66,67]
Handles discrete variables and

logical constraints;
High flexibility

Computational complexity for large-scale problems;
Difficulties in solving non-convex problems

ADMM [41,62–64]
Handles structured constraints;

Suitable for large-scale problems;
Convergence guaranteed

Limited by sparsity;
Requires proper problem decomposition;

Parameter tuning required

QP [55–58] Widely used;
Efficient solution algorithms

Unable to handle certain nonlinear constraints;
Computational complexity for large-scale problems

SOCP [18,73–78]
Handles some nonlinear
and convex constraints;

Efficient solution

Requires higher modeling requirements for the problem;
Not suitable for general non-convex problems

SDP [22,33,68–72]
Capable of representing

a wide range of constraints and variables;
Precise convex optimization solution

Higher computational complexity;
Suitable for medium-sized problems
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3.2. Heuristic Approach

This section discusses various heuristic methods for OPF in distribution networks, such
as Sunflower Algorithm, Bees Algorithm, Particle Swarm Algorithm, sin–cos algorithm,
and Whale Algorithm.

3.2.1. Sunflower Algorithm

The SFO is a new meta-heuristic algorithm inspired by the movement of sunflowers
toward the sun. The algorithm mimics sunflowers’ movement to absorb solar radiation
and comprises two phases: pollination and movement.

In their work [104], the authors proposed an enhanced version of the SFO algorithm.
This improved version incorporates an adaptive mechanism that adjusts the pollination rate
and death rate of individuals within the population. In [105], a further enhancement was
suggested, incorporating several improvements to expedite convergence and to decrease
computational complexity. These enhancements involve variable normalization, inclusion
of extra constraints, employment of smaller time constants, and utilization of variable
speed factor coefficients.

SFO is a versatile algorithm that can be applied to a wide range of optimization
problems, including continuous optimization, discrete optimization, and multi-objective
optimization, among others. The algorithm is straightforward to understand, and its
parameters can be easily adjusted for optimal performance. In some problems, SFO has a
fast convergence speed and can find the global optimal solution. However, its drawbacks
include a slow convergence speed in some problems that may require a long time to find
the global optimal solution. Achieving optimal performance with the algorithm relies
heavily on appropriately adjusting its parameter settings, as they significantly impact its
overall performance. While SFO is a versatile algorithm with easy-to-adjust parameters, it
is worth noting that its convergence and stability may not match those of other optimization
algorithms like GA and PSO.

3.2.2. Particle Swarm Algorithm

PSO is a meta-heuristic algorithm designed to optimize a problem by iteratively
enhancing a candidate solution using a predefined quality measure. The algorithm utilizes a
population of particles, each representing a candidate solution, and guides their movement
within the search space using mathematical formulae that modify their position and velocity.
This iterative process aids in solving the problem at hand.

In PSO, each particle’s movement is influenced by its local best-known position but is
also guided toward the best-known positions in the search space, which are updated as
other particles find better positions. The algorithm uses this global and local optimization
approach to converge to the optimal solution.

Some articles focus on improving PSO:

• To improve the PSO algorithm, several researchers have proposed different variations
of the algorithm. For instance, Ref. [106] proposed an adaptive weight updating
mechanism and an early stopping strategy to improve the algorithm’s performance
and to reduce computation time. Likewise, another study [107] proposed an En-
hanced PSO (EPSO) approach, which incorporates various heuristic operators, inertia
weight adjustment, and chaotic mapping mechanisms. These enhancements were
introduced to improve the overall performance of the traditional PSO algorithm.
The study aimed to optimize the algorithm by introducing additional features and
mechanisms. A study by [108] presented an improved PSO algorithm that enhances
the analysis capability of each optimization direction by dividing the single-particle
vector into sub-vectors. This partitioning approach was introduced to improve the
algorithm’s ability to analyze and optimize individual dimensions separately. The
algorithm utilizes a regionally coordinated control structure for intelligent distribution
networks. It incorporates the energy generated via controllable distributed generators
and energy storage systems and takes into account the charging and discharging
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process of the energy storage system. This holistic approach aims to optimize the
coordination and utilization of energy resources within the distribution network. In
another research paper [109], a framework was proposed to enhance the performance
of Performance Index Optimization (PIO). This framework introduced the utilization
of Power Management Unit (PMU) data, leading to the development of the PMU-PIO
algorithm. The incorporation of PMU data aimed to improve the accuracy and effec-
tiveness of the optimization process in the PIO algorithm. The PSO-PIO algorithm
combines the strengths of both approaches to achieve more efficient and accurate
optimization results.

• Several articles focus on using multi-objective optimization methods with the PSO
algorithm to solve complex optimization problems. For instance, Ref. [110] improved
the traditional Network-Structured Multi-Objective Particle Swarm Optimization
(NS-MOPSO) algorithm by introducing crowding distance as a feasibility evaluation
criterion. The paper also proposed a new weight coefficient updating strategy and a
solution set pruning strategy to better manage the solution set size and to maintain its
global optimality. Furthermore, the algorithm uses Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) to calculate the optimal solution for multi-
objective problems. Similarly, Ref. [111] presented an improved version of the Multi-
Objective Particle Swarm Optimization (MOPSO) algorithm for solving problems in
electrical distribution systems. The algorithm coordinates transformer tap settings,
capacitor bank injection, and DG active power output to minimize power flow losses
and voltage deviations.
In another study, Ref. [112] introduced the Pareto Entropy-based Multi-Objective Par-
ticle Swarm Optimization (PE-MOPSO) algorithm to solve optimal control problems
in distribution networks. The PE-MOPSO algorithm is based on an elite strategy in the
multi-objective PSO algorithm, which addresses the problem of non-uniform distribu-
tion of non-dominated solutions in the traditional MOPSO algorithm. Additionally,
the algorithm introduces a region-updating strategy to balance the trade-off between
global and local searches. The research paper in [113] introduced an enhanced version
of the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm known as
Competitive Multi-Objective Particle Swarm Optimizer (CMOPSO). The Improved
CMOPSO algorithm improves upon the traditional Particle Swarm Algorithm by
incorporating an archive strategy that utilizes an adaptive grid. During the iteration
process, the paper proposes updates to the position and velocity of each particle using
different equations. These enhancements aim to improve the overall performance and
optimization capabilities of the CMOPSO algorithm.
Finally, in [114], a multi-objective optimization algorithm based on PSO is presented.
This algorithm aims to minimize two objective functions concurrently. By utilizing
different weighting factors and random coefficients, the algorithm calculates the
velocity and displacement of each particle in order to search for the global optimal
point during iterations. Through this approach, the algorithm aims to achieve superior
solutions by efficiently exploring the solution space and by balancing between the two
conflicting objectives.

• Ref. [115] improves upon the traditional PSO algorithm by applying it to the distribu-
tion network reconfiguration problem and by optimizing multiple objective functions
such as power loss and the voltage level of the system.

• The research paper [116] introduces a novel hybrid algorithm called Hybrid Firefly and
Particle Swarm Optimization (HFPSO). This algorithm combines the Firefly Algorithm
(FA) with PSO to leverage their respective strengths. By incorporating the velocity
concept from PSO and the brightness concept from FA, a mixed velocity is obtained
and used to update the position of fireflies. This combination enables the algorithm
to benefit from the fast convergence speed of PSO, while also mitigating the risk of
getting trapped in local optima, which is a common issue in FA. The HFPSO algorithm



Energies 2023, 16, 5974 24 of 42

provides a promising approach for optimization problems by effectively combining
the advantages of both FA and PSO.

The PSO algorithm can handle multi-dimensional optimization problems, including
continuous optimization, discrete optimization, multi-objective optimization, and more.
The algorithm is simple and easy to understand, and its parameters are easy to adjust.
The PSO algorithm’s parallelization in a distributed environment can also improve its
efficiency. By distributing the particles and their computations across multiple processors,
the algorithm’s search capability and speed can be significantly enhanced.

However, the PSO algorithm suffers from poor local search ability and low search
accuracy. Due to PSO’s stochastic nature, the algorithm cannot guarantee finding the global
optimal solution, and it may converge prematurely or get stuck in sub-optimal solutions.
Therefore, researchers have proposed various modifications to address these issues and to
improve the PSO algorithm’s performance and effectiveness.

3.2.3. Genetic Algorithm

The Genetic Algorithm (GA) is a metaheuristic that belongs to the broader class of
evolutionary algorithms. It is inspired by the process of natural selection and mimics the
principles of survival of the fittest. GAs are widely employed in addressing optimization
and search problems. They make use of biologically inspired operators, namely mutation,
crossover, and selection, to generate high-quality solutions. These operators mimic the
processes of genetic variation, reproduction, and natural selection in biological organisms.

In particular, Refs. [117,118] have used GA to determine the optimal active and reactive
power outputs of DG converters to minimize power losses. The GA-based approach enables
these papers to search for optimal solutions efficiently and effectively by using genetic
operators and processes similar to natural selection and evolution. The optimal operation
of DGs is critical to improving the efficiency and stability of power systems, so the use
of GA in these studies exemplifies the wide-ranging applications of GA as a flexible and
versatile optimization technique.

Several studies have sought to enhance the performance of GAs:

• Several papers have proposed improvements to GA algorithms to optimize power
systems and control mechanisms. For instance, Ref. [119] combined GA with an N-R
method to obtain the necessary reactive power factor that minimizes power losses
across different PV-BESS connection schemes in a distribution network. Similarly,
Ref. [120] used a combination of GA and a FBS power flow method to optimally place
BESS in a unidirectional power distribution network. The authors used mathematical
modeling and heuristic algorithms to quickly evaluate different scenarios and to de-
termine the optimal placement of BESS. In another study, Ref. [121] proposed a GA
algorithm that uses a search algorithm based on spanning trees during the selection
operation to filter out invalid configuration combinations effectively. Another improve-
ment was proposed in [122], where an improved GA based on dynamic weighting
was presented. The paper considered both the weight of active power loss and grid
voltage to achieve better coordination and more efficient solutions. In [123], a method
to preserve the optimal solution from disruption caused by genetic crossover and
mutation was proposed. This was achieved by incorporating an elitism selection mech-
anism. This mechanism ensures that the best solution discovered so far is preserved
in the population, even if it is not improved in the current generation. By including
elitism, the algorithm can prevent the loss of favorable solutions and can maintain the
progress made towards finding the optimal solution. This enhances the effectiveness
and robustness of the Genetic Algorithm in solving optimization problems.

• Various variants of GA algorithms have been applied to optimize OPF models, aiming
to enhance performance and optimize capabilities. For example, in [124], the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) is utilized as a foundation, with
several improvements proposed to enhance its performance. NSGA-II is a multi-
objective Genetic Algorithm known for maintaining the diversity of Pareto-optimal
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solution sets. The paper introduced strategies such as an elite strategy, crowding
distance comparison, and crowding distance control to further augment the algorithm.
In another study [125], the Immune Genetic Algorithm (IGA) was employed to de-
termine the optimal allocation and sizing of shunt capacitor banks in distribution
networks while considering technical constraints. In this approach, chromosomes
represent potential solutions, and a fitness function is employed to assess the quality
of each chromosome. Genetic operators are employed to generate fresh populations,
promoting the search for the global optimal solution. The fitness function is then used
to evaluate the best solution obtained through IGA.
Furthermore, in [126], a Multi-Objective Genetic Algorithm (MOGA) was employed
to simultaneously optimize multiple objective functions. MOGA, which is a multi-
objective variant of the original GA, offers improved optimization performance and
the ability to effectively handle problems involving multiple objectives.

GAs have several advantages, such as the ability to perform global search in the
solution space efficiently, without falling into the rapid descent trap of locally optimal
solutions. Its inherent parallelism also enables distributed computing, which can speed up
the search.

However, GA also faces challenges and disadvantages. Notably, the local search ability
of GA is often poor, and it is prone to premature convergence in practical applications.
Additionally, selecting a method that preserves excellent individuals while maintaining
group diversity is a difficult problem in GA. These limitations call for continued efforts
to develop new and improved variants of GA, such as hybrid methods with other opti-
mization algorithms, to overcome these challenges and to optimize complex problems
more effectively.

3.2.4. Other Heuristic Approaches

Apart from the above frequently used algorithm, other heuristic methods were also
used for OPF:

• Apart from the previously mentioned algorithms, there are several other heuristic
optimization algorithms that have been utilized for OPF problems. For instance,
Ref. [127] used the Increasing Population size Covariance Matrix Adaptation Evolution
Strategy (IPOP-CMA-ES) algorithm, which is a type of optimization algorithm that
introduces a new start trigger and can increase population size for Covariance Matrix
Adaptation Evolution Strategy (CMA-ES). The IPOP-CMA-ES algorithm has the ability
to cover a large search space in a shorter time, which results in faster convergence
to global optimal solutions. In another study, Ref. [128] proposed improvements
to the Water Cycle Algorithm (WCA). These improvements include including non-
dominated sorting, a new solution type called “sea”, and a phase-based strategy for
raindrop generation. Moreover, Ref. [129] used the Flower Pollination Algorithm (FPA)
to optimize the optimal capacity and location of PV distributed generation to minimize
power loss on the distribution grid. In another study, Ref. [130] used the Grey Wolf
Optimization (GWO) algorithm to determine the optimal placement and size of PV
stations in rural unbalanced distribution networks to minimize losses and to reduce
the imbalance. The algorithm uses a set of randomly generated grey wolf populations
to estimate the prey’s position using alpha, beta, and gamma wolves, and to optimize
the objective function and position with the corresponding wolf population to obtain
the optimal PV placement. Additionally, Ref. [131] introduced a modified heuristic
function for updating the positions of teachers and students in Teaching Learning-
Based Optimization (TLBO). The new function called the Weighted Parameter and
Resonance Frequency Heuristic Function, defines a weighted parameter based on a
concept similar to the resonance frequency. Furthermore, Ref. [132] used a heuristic
multi-objective coordinated search algorithm based on the Multi-Objective Harmony
Search (MOHS) algorithm to solve the problem of optimizing and dispatching DGs and
obtained a set of Pareto optimal solutions. Finally, Ref. [133] proposed improvements
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to the Cuckoo Search algorithm by introducing a parameter that balances global and
local random walks and by using the Levy distribution to describe the step size of
the random walk. The Mantegna equation and gamma function were also used to
generate random numbers, resulting in an improved trade-off between convergence
time and global optimum.

• Some of the articles proposed improvements based on other articles. For instance,
in [134], an improved version of the Whale Optimization Algorithm (WOA) was
proposed based on the original WOA proposed in [135]. This improved version
introduced a nonlinear update factor to increase the diversity of the population and
to improve speed and accuracy. Similarly, in [136], an improved Multi-objective Bees
Algorithm (BA) was proposed based on the BA proposed in [137,138]. This improved
version incorporated both crowding distance and fuzzy mechanism to manage the
size of solutions and to select non-dominating solutions in the algorithm. Moreover,
in [139], an improved version of the Sine Cosine Algorithm (SCA) was proposed
based on the original SCA proposed in [140]. The improvement involved the use of
different operators to update position variables in the optimization problem, such as
mutation operation to enhance exploration performance and to improve exploitation
performance by targeting the position.

A comparison between heuristic methods is shown in Table 2.

Table 2. Comparison between common heuristic methods.

Method Advantages Limitations

SFO [104,105] Strong global optimization capability.

High computational complexity,
especially for large-scale problems.

Requires parameter tuning
and appropriate convergence criteria.

Lack of maturity compared to GA and PSO.

GA [117–125]

Widely applicable to various optimization problems.
Can handle both discrete
and continuous variables.

Suitable for problems with multiple constraints
and uncertainties.

Relatively slower convergence speed,
especially for complex problems.

May converge to local optima.
High complexity for large-scale problems.

PSO [106–116]
Powerful global search capability.

Suitable for optimization problems with constraints.
Can handle high-dimensional problems.

Performance may degrade for complex problems.
Requires parameter tuning

and appropriate convergence criteria.
May become trapped in optima when multiple exist.

3.3. Machine Learning Approach

In addition to using mathematical models, machine learning is also widely used in
solving the OPF problem. This is particularly useful for predicting the output of PV and
WT generators using historical data. For instance, in [141], a statistical machine learning
model, involving Non-negative Matrix Factorization (NMF) and Stochastic Robust Search
Method (SRSM), was utilized to optimize stochastic optimal planning by reducing the
dimensionality and correlation of input data. Similarly, in [142], decision trees, support
vector machines, and k-nearest neighbors were used to build a forecasting model for OPF.

Furthermore, in [39], a polynomial-based estimation algorithm was proposed to esti-
mate the loss of SOP for a High Voltage Direct Current (HVDC) network. This algorithm
was trained with past OPF data and weather data for better accuracy, even under the circum-
stance of communication interruption. In [143], Multiple Linear Regression and Random
Forest Regression algorithms were used to predict the output of solar power plants.

One of the common machine learning models used in the OPF is the Neural Network
(NN). The NN consists of layers of interconnected nodes that process information and learn
by adjusting their weights and biases according to the feedback from training examples.
For instance, in [144], an NN was trained using data from smart meters, which means
that the electrical model of the distribution network was not required. Additionally, this
approach has led to the proposal of several improved NN models.
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A few improvements to NN were made as follows:

• Ref. [145] NN in this paper is designed as a deep recurrent NN that has more hidden
layers than a simple recurrent NN. The additional layers enable the network to learn
more complex historical and temporal information and to provide a more compact
representation of the input–output relationship.

• Ref. [146] applies an Artificial Neural Network (ANN) to control the direct and quadra-
ture axis currents of D-STATCOM improving the damping performance of power
systems. The nonlinear characteristics of the ANN controller make it more adaptable
to different operating conditions. In addition, by optimizing the parameters of the NN
such as gain constants, the control performance and stability of D-STATCOM can be
further improved.

• Ref. [147] overcomes the long convergence time of a conventional NN by updating the
weight of the NN model with Lavenberg–Marquardt and Bayesian Regularization.

Other ML methods can also be implemented into the OPF problem:

• Supervised learning is another approach to dealing with the OPF problems. For
instance, in [1], supervised learning was used to map the solutions of linear OPF
to nonlinear control variables using a two-node approximation of radial networks
with a radial basis function network. Similarly, in [148], a Message Passing Graph
Convolution OPF (MPGCN-OPF) model based on graph convolution and message
passing interface was proposed. This approach utilizes the property of graph convolu-
tion feature mapping and collects, aggregates, and updates the feature matrix from
neighboring nodes through information passing. The performance of this approach
was found to be better than Deep Neural Network (DNN) models in terms of the loss
function and performance evaluation parameters, and it has been validated through
accurate predictions.
Moreover, in [149], a data-driven approach was used to combine Support Vector
Regression (SVR) and Ridge regression (RR) to minimize the linearization error of
the power flow model. The accuracy of the model was improved by considering the
covariance of the input data and using Principal Component Analysis (PCA) to reduce
the impact of data collinearity. This data-driven approach was found to be effective
for solving OPF problems.

• Multiple methods of deep reinforcement learning have been applied in the field of
power system optimization. For example, Double Deep Q-learning has been used
in [150,151], where two NNs are used for optimization simultaneously.
Another method called Soft Actor-Critic (SAC), has been used in [152], where it was
combined with Multi-Agent Reinforcement Learning techniques such as DDPG to
solve the OPF problem. In [153], the optimal power flow problem over multiple
time periods was described as a Markov process to control PV and WT output, thus
avoiding local optima. Additionally, in [154], Deep Deterministic Policy Gradient
(DDPG) was employed to solve dynamic OPF problems by describing the problem
over multiple time periods as a Markov process and by utilizing active and reactive
outputs of PV generation and an energy storage system as control actions. The
algorithm then used deep learning to train the agent for decision-making.
Similarly, in [155], the DDPG algorithm was used to solve the optimal control problem
in the ADN, which is a Markov Decision Process. DDPG is a policy gradient method
consisting of two neural networks—an actor and a critic—both based on DNNs. The
critic network learns a Q-function that estimates the expected future rewards of state–
action pairs. DDPG can handle continuous action spaces without discretization and
learn deterministic policies that are more efficient and less noisy.

• A power flow model can also be added to the ML solution. Ref. [156] combines
an exact nonlinear AC power flow model and an approximate linear power flow
model to reflect the system’s response under uncertainty and proposed a data-drive
AC-OPF model.
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ML has the ability to process large amounts of data quickly and can improve model
performance through continuous learning. ML algorithms can also handle complex nonlin-
ear relationships and detect patterns automatically, making it a powerful tool for solving
problems in various fields, including power systems.

However, the dependence on large amounts of data can result in high computational
costs and can make it difficult to train models effectively. ML algorithms can also suffer
from overfitting, which can lead to poor performance on new data. To mitigate overfitting,
techniques such as regularization and early stopping can be used. Finally, the tuning of
hyperparameters can be complex, requiring significant expertise and time, which can make
model selection and adjustment challenging.

3.4. Mixed Approach

The combination of different methods in power system optimization is an effective
way to harness the strengths of each method and to achieve greater effectiveness and
performance. Mathematical methods offer a rigorous theoretical foundation and framework
for solving problems, while machine learning algorithms can extract useful information
from large amounts of data and can make accurate predictions.

For example, Ref. [157] proposed a strategy for optimizing SOC by using GWO under
normal circumstances, but when communication interruptions occur, a neural-network-
based algorithm is used to find the most likely status from historical data according to the
available data. In [158], a chance-constrained OPF approach was used for central control,
while Support Vector Machines (SVM) were used for determining the operation of local
DGs. Similarly, Ref. [44] proposed a method called Artificial Neural Network-Primal-Dual
Interior Point Method-Temperature (ANN-PDIPM-T), which combines ANNs and the
primal-dual interior point method algorithm, a type of interior point method, for reactive
OPF calculation based on Temperature-Dependent Power Flow.

To achieve multi-dimensional optimization, Ref. [159] proposed a multi-layer opti-
mization approach where the top-level optimizes through a mathematical approach for
potential solutions, while the middle and low-level optimizes through GA and PSO to
determine the output, location, and number of devices such as capacitors and BESSs.

Other studies, such as [160], proposed a bi-level structure with Linear Programming for
feeder optimization at the top-level and heuristic methods like PSO and GA for coordinating
between regions at the bottom level. An improvement to the PSO algorithm was used
in [161], which introduced an adaptive inertia coefficient ω and a compression coefficient φ
to reduce the risk of the algorithm falling into local optimal solutions [162]. Additionally,
Ref. [40] solved the optimization problem of multi-terminal DC distribution networks by
using multi-objective optimization and fuzzy decision-making methods to select the final
solution from a non-dominated set of solutions obtained by using a hybrid PSO.

In summary, combining different optimization methods can help us better understand
and solve complex problems in power systems, leading to greater efficiency and performance.

4. Discussion

Figure 7 summarizes the steps involved in the technical process of optimal power flow.
To compare the three methods (mathematical, heuristic, and machine learning) men-

tioned earlier, Table 3 summarizes the experimental data from the literature, all of which
utilize the IEEE-33 bus case study. From the table, we can observe that, in the IEEE-33 bus
case study, the mathematical method exhibits shorter computational time but relatively
fewer optimization gains. The heuristic algorithm requires slightly more computation time
than the mathematical method, but it achieves better optimization results. On the other
hand, the machine learning method, despite the need for learning from historical data and
parameter tuning, outperforms both methods in terms of optimization effectiveness and
computational time.
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Figure 7. Steps involved in the technical process of optimal power flow.

Optimizing using mathematical methods often yields results in a shorter time frame
but may be limited to finding local optima. Heuristic algorithms, on the other hand, employ
intelligent search strategies and can discover better solutions, albeit at a slightly longer
computational cost. Machine learning methods, leveraging historical data for learning and
parameter adjustment, can generate more accurate results while being more efficient in
terms of computation time compared with the other two methods.

In summary, based on these experimental data, it can be inferred that heuristic algo-
rithms and machine learning methods hold greater optimization potential in the IEEE-33
bus case study, offering improved solutions. However, the selection of a specific method
still depends on the application context and problem requirements.

Table 3. Case study of three types of methods.

Type Method # Loss Reduced (%) Compared to Simulation
Platform

Computation
Time (s)

Mathematic

QP [56] 7.9 Conventional OPF MATLAB 0.0750

ADMM [56] - - MATLAB 2.1030

MILP [34] 2.42

No optimization

MATLAB -

Conventional OPF [54] 30.0 CPLEX -

Heuristic

PSO [114] 25.4 - -

IPOP-CMA-ES [127] 62.9 MATLAB 24.9000

GA [127] 61.6 MATLAB 9.1000

PSO [127] 62.8 MATLAB 12.9000

SCA [139] 25.8 MATLAB -

ML

DDQN [150] 18.4 - -

DDPG [154] 64.4 - -

NN [157] 45.3 - -

ANN [147] - - - 0.0095

- represents item not mentioned in reference.

Mathematical optimization methods are commonly used to solve optimal power
flow problems. They are fast, able to handle large-scale problems, and can obtain global
or local optimal solutions with some accuracy guarantees. However, due to OPF’s non-
convex nature, mathematical optimization methods may lose accuracy. Additionally,
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certain requirements on the form of the problem must be met, such as differentiability and
convexity, or the solution may be difficult or fail. Mathematical optimization methods are
also sensitive to the choice of initial values and parameters, which can lead to different
results or convergence.

Heuristic methods can handle non-convex and nonlinear problems that may be diffi-
cult for mathematical optimization methods. They can explore a large and diverse search
space, making them more adaptive to different problem settings and constraints. However,
they may not guarantee convergence or optimality and may depend on random factors.
It may require a lot of trial and error, guesswork, or historical data analysis to find a
satisfactory solution. Additionally, heuristic methods may have high computational costs
and memory requirements, especially for large-scale problems.

Machine learning methods can learn from data and can adapt to changes in the system,
such as load demand, generation capacity, and network topology. However, they may
suffer from overfitting or local minima, which means that they may perform well on the
training data but poorly on the testing or new data. Machine learning methods may also
require a lot of data and computational resources to train and test the models. Furthermore,
they may have low interpretability or transparency, which means that they may not explain
how they reach the solution or what factors influence the solution.

In summary, the paper highlights the advantages and limitations of three different
approaches for solving optimal power flow problems: mathematical optimization methods,
heuristic methods, and machine learning methods.

Mathematical optimization methods offer speed and the ability to handle large-scale
problems while providing accurate global or local optimal solutions. However, they may
lose accuracy due to the non-convex nature of the OPF problem, and specific problem
requirements must be met for successful solution convergence.

Heuristic methods, on the other hand, excel in handling non-convex and nonlin-
ear problems and can explore diverse search spaces. However, they may not guarantee
convergence or optimality and can be computationally expensive, particularly for large-
scale problems.

Machine learning methods have the advantage of learning from data and adaptabil-
ity to system changes. However, they may suffer from overfitting, require substantial
computational resources and data, and lack interpretability.

In conclusion, combining multiple methods can leverage the strengths of each ap-
proach and compensate for their limitations, leading to improved results in solving optimal
power flow problems. For a better understanding, Table 4 illustrates the advantages and
limitations of the three optimization methods.

Table 4. Advantages and limitations of three optimization methods.

Comparison Factor Mathematical Heuristic Machine Learning

Interpretability High Medium Low
Accuracy High Medium-High Medium-High
Scalability Medium-High Medium-High High

Computational Complexity High Medium-High Low-Medium
Data Requirement Low Low-Medium High

Algorithm Tuning Requirement High Medium Low-Medium
Robustness High Low-Medium Medium-High

Applicability Complex Problems Medium-Complex Problems Complex Problems

Given these considerations, our next step is to further refine the DG model by in-
tegrating both power market optimization and distributed optimization techniques. By
combining mathematical optimization methods with market optimization, we can optimize
the scheduling and dispatch of DG units, considering factors such as electricity prices and
demand fluctuations. This approach takes advantage of the speed and accuracy offered by
mathematical optimization methods. Additionally, by incorporating distributed optimiza-
tion techniques, we can improve efficiency and scalability, addressing the limitations of
both mathematical optimization and heuristic methods. Furthermore, machine learning
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methods can be applied to leverage historical and real-time data for improved predictions
and operational optimization, enhancing the overall performance of the DG model. Thus,
combining these approaches will enable us to pursue a comprehensive solution that op-
timizes the DG model, taking into account power market dynamics and the distributed
nature of the problem. The future developments of OPF can be summarized as follows:

4.1. Further Exploiting Uncertainty of DG

The uncertainty of the DGs still plays a significant role in optimization, as accurate
predictions can result in better optimization results. To address this issue, ML can be
used to analyze historical data and to improve prediction accuracy. By training models
on large amounts of historical data, machine learning can help capture complex patterns
and correlations in the data, which can improve the accuracy of predictions for power
generation, demand, and other critical factors. These more accurate predictions can then
be used to inform optimization decisions and to improve overall system performance.
Machine learning can play an important role in enabling smarter decision-making and
effective system management, especially in complex and dynamic power systems.

4.2. Distributed Optimization

DG, which is often referred to as prosumer, has created challenges for DSOs since it
consumes and produces electricity, making power flow dataset management difficult. DN
are becoming larger and more complex. The optimization of power flow in such large-scale
grids poses challenges in terms of computational speed, complexity, and convergence.
Addressing these challenges requires the development of efficient algorithms and optimiza-
tion techniques to improve computational efficiency and accuracy. Therefore, distributed
optimization is becoming a new trend that optimizes power flow management locally and
regionally. However, communication interruptions may occur among different regions,
and optimization should consider them.

To address this issue, a combination of heuristic and mathematical optimization
methods can be used since they are easier to implement. Heuristic optimization methods
are flexible, adaptive, and suitable for handling non-convex problems. They can explore
a large solution space to escape from local minima. Mathematical optimization methods
provide a rigorous theoretical foundation and can obtain global or local optimal solutions
with accuracy guarantees. Combining these two methods can take advantage of their
strengths and compensate for their limitations.

By utilizing distributed optimization based on a combination of heuristic and mathe-
matical optimization methods and considering communication interruption, future power
systems with high DG penetration can be managed more efficiently and effectively. This
would allow DSOs to improve power flow management and ensure the reliability and
stability of the power grid.

4.3. Combination of OPF with Electricity Market

The DR model formulated in Section 2 provides a solid foundation for the integration
of OPF and electricity market, enabling the development of innovative algorithms and
methodologies for the optimal coordination of energy resources in the power grid. One
of the primary objectives of OPF is to minimize costs, which can play a significant role
in calculating electricity prices. In the electricity market, OPF technology can help fully
consider the adjustment of active and reactive power, take into account safety constraints
such as line overload, and provide complete information on optimized power flow. By
doing so, it becomes possible to generate an optimized dispatch plan for the power system
while meeting safety requirements.

With the OPF technology, electricity pricing can be optimized, allowing for more
efficient pricing in the electricity market. In addition, safety constraints, such as line
overload, can be taken into account, ensuring the safe and reliable operation of the power
system. Furthermore, the complete information provided by the OPF technology can aid in
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generating an optimized dispatch plan, which can enable a more efficient use of resources.
In summary, the electricity market has become a critical component of the power industry,
playing a crucial role in the operation and management of power systems. Focusing on its
development as a future direction is supported by the need for effective demand response
management, the flexibility and scalability offered by the electricity market model, and
the alignment with policies promoting market-oriented operations and renewable energy
integration. Additionally, the incorporation of optimal power flow provides the foundation
for nodal electricity pricing, which further enhances the efficiency and effectiveness of the
electricity market. By optimizing the electricity market and integrating it with distributed
generation, we can achieve sustainable development, efficient resource allocation, and
better adaptability to changing market conditions.

5. Conclusions

This paper provides an extensive overview of DG models and power flow calculation
models, along with a comprehensive analysis of optimization methods for solving the OPF
problem. These optimization methods are categorized into three main approaches: mathe-
matical optimization, heuristic optimization, and ML. The study reveals that mathematical
and heuristic optimization methods have been widely adopted and proven to be effective
in solving OPF problems. However, the ML method shows promise in addressing the
uncertainty inherent in DNs, presenting a potential avenue for resolving OPF problems.

While mathematical optimization methods provide a solid theoretical foundation
for finding optimal solutions, their applicability may be limited in certain situations, par-
ticularly when dealing with high-dimensional problems. On the other hand, heuristic
optimization methods demonstrate greater flexibility and suitability for handling non-
convex problems. However, they do not always guarantee optimality.

The application of machine learning methods offers a data-driven approach to ef-
fectively tackle the OPF problem by addressing uncertainty. Nonetheless, it is important
to note that ML methods may face challenges related to overfitting and the requirement
of significant computational resources and data. Additionally, the interpretability of ML
solutions may vary.

In conclusion, this paper contributes valuable insight into the optimization methods
employed for addressing the OPF problem. It emphasizes the advantages and limitations
of each approach and provides a potential direction for future research to further enhance
the efficiency and effectiveness of the OPF problem. This includes exploring approaches
that combine OPF with the electricity market and distributed optimization, as well as
addressing the uncertainty of distribution systems.

The findings presented in this study serve as a foundation for researchers and prac-
titioners to make informed decisions in selecting appropriate optimization methods for
solving OPF problems. The identified potential for applying machine learning methods
opens up avenues for further advancements in this field.

Author Contributions: Conceptualization, C.Y. and Y.S.; methodology, C.Y. and Y.S.; formal analysis,
C.Y. and Y.S.; investigation, C.Y., Y.Z., F.Z., S.L. and B.Z.; resources, F.Z., S.L. and B.Z.; writing—original
draft preparation, C.Y. and Y.S.; writing—review and editing, C.Y., F.Z., S.L., B.Z. and M.W.; visualiza-
tion, Y.S.; supervision, C.Y. and H.C.; project administration, C.Y. and H.C.; funding acquisition, C.Y.
and H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under grant 62202286 and grant 52177185 and in part by Natural Science Foundation of Shanghai
under grant 23ZR1424400.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 5974 33 of 42

Abbreviations
The following abbreviations are used in this manuscript:

ADMM Alternating Direction Method of Multipliers
ADN Active Distribution Network
ANN Artificial Neural Network
ANN-PDIPM-T Artificial Neural Network-Primal-Dual Interior Point Method-Temperature
BA Bees Algorithm
BJM-OPF Branch Injection Model OPF
OPF Optimal Power Flow
DG Distributed Generator
DN Distribution Network
D-STATCOM Distribution Static Synchronous Compensator
BESS Battery Energy Storage System
BIM Bus Injection Model
CVaR Conditional Value at Risk
C&CG Column-and-Constraint Generation
CB Capacitor Banks
CLA Community Load Aggregator
COPF Coupled OPF
CMA-ES Covariance Matrix Adaptation Evolution Strategy
CMOPSO Competitive Multi-Objective Particle Swarm Optimizer
DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DSO Distribution System Operator
EA Evolutionary Algorithm
EDC Enhanced DC
EM Expectation-Maximum
ENApp Equivalent Network Approximation
ENS Energy Not Supplied
EPSO Enhanced PSO
EV Electric Vehicle
FA Firefly Algorithm
FBS Forward/Backward Sweep
FPA Flower Pollination Algorithm
GA Genetic Algorithm
GBD Generalized Benders Decomposition
GGDF Generalized Generation Distribution Factors
GWO Grey Wolf Optimization
HFPSO Hybrid Firefly and Particle Swarm Optimization
HOPF Harmonic Optimal Power Flow
IGA Immune Genetic Algorithm
IPOP-CMA-ES Increasing Population size Covariance Matrix Adaptation Evolution Strategy
IPSO Intelligent Single Particle Optimization
LF Loss Factor
LMP Local Marginal Price
MILP Mixed Integer Linear Programming
MIQP Mixed Integer Quadratic Programming
ML Machine Learning
MOGA Multi-Objective GA
MOHS Multi-Objective Harmonic Search
MOPSO Multi-Objective Particle Swarm Optimization
MPC Model Predictive Control
MPGCN-OPF Message Passing Graph Convolution OPF
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N-R Newton–Raphson
NMF Non-negative Matrix Factorization
NN Neural Network
NSGA-II Non-Dominated Sorting Genetic Algorithm II
NS-MOPSO Network-Structured Multi-Objective Particle Swarm Optimization
OPF Optimal Power Flow
PCA Principal Component Analysis
PE-MOPSO Pareto Entropy-Based Multi-Objective Particle Swarm Optimization
PIO Performance Index Optimization
PLI Power Loss Index
PMU Power Management Unit
PR Power Router
PSI Power Stability Index
PSO Particle Swarm Optimization
PTDF Power Transfer Distribution Factors
PV Photovoltaic Cell
QCP Quadratic Constraint Programming
QP Quadratic Programming
RB Reactor Banks
RO Robust Optimization
RR Ridge Regression
SAC Soft Actor–Critic
SCA Sine Cosine Algorithm
SCIG Squirrel Cage Induction Generator
SDP Semi-Definite Programming
SFO Sunflower Optimization
SOC State Of Charge
SOCP Second-Order Conic Programming
SOP Soft Opening Point
SRSM Spectral Regularized Similarity Matching
SSA Sequential SOCP algorithm
SSEA Sensitivity Sequence Energy Algorithm
SVG Static Var Generator
SVM Support Vector Machines
svr step-voltage regulators
SVR Support Vector Regression
TLBO Teaching Learning-Based Optimization
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
TOU Time of Use
WCA Water Cycle Algorithm
WOA Whale Optimization Algorithm
WT Wind Turbine
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41. Mhanna, S.; Verbič, G.; Chapman, A.C. Adaptive admm for distributed AC optimal power flow. IEEE Trans. Power Syst. 2019,
34, 2025–2035. [CrossRef]

42. Wei, W.; Wang, J.; Wu, L. Distribution optimal power flow with real-time price elasticity. IEEE Trans. Power Syst. 2018, 33,
1097–1098. [CrossRef]

43. Zhao, Z.; Wang, Z.; Hao, J.; Wang, S.; Wang, X.; Xie, H.; Li, X. A multi-objective power flow optimization model of electric and
thermal distribution network using the power flow method. In Proceedings of the 2022 9th International Forum on Electrical
Engineering and Automation (IFEEA), Zhuhai, China, 4–6 November 2022; pp. 687–690.

44. Picanco, A.F.; Oliveira, A.P. Reactive optimal power flow in the temperature-dependent power flow using interior point method
with artificial neural network. In Proceedings of the Mediterranean Conference on Power Generation, Transmission, Distribution
and Energy Conversion (MEDPOWER 2018), Dubrovnik, Croatia, 12–15 November 2018; pp. 1–6.

45. Anthony, I.O.; Mokryani, G.; Zubo, R.H.; Ezechukwu, O.A.; Ivry, P. Distribution network reconfiguration considering security-
constraint and multi-dg configurations. In Proceedings of the 2020 55th International Universities Power Engineering Conference
(UPEC), Torino, Italy, 1–4 September 2020; pp. 1–6.

46. Sanam, J.; Sowjanya, M.L.; Pujitha, D.; Chaithanya, S.; Deepika, B.M. Optimal reactive power sizing in distribution systems to
optimize the voltage profile and power loss using fbs based esa algorithm. In Proceedings of the 2020 IEEE 17th India Council
International Conference (INDICON), Delhi, India, 10–13 December 2020; pp. 1–6.

47. Kumar, P.; Vaishya, S.R.; Abhyankar, A.R. A linearized optimal power flow framework for a balanced active distribution network.
In Proceedings of the 2019 8th International Conference on Power Systems (ICPS), Jaipur, India, 20–22 December 2019; pp. 1–6.

48. Li, X.; Xia, Q. Stochastic optimal power flow with network reconfiguration: Congestion management and facilitating grid
integration of renewables. In Proceedings of the 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T&D),
Chicago, IL, USA, 12–15 October 2020; pp. 1–5.

49. Moutis, P.; Hug, G.; Kar, S. Resistive-aware linear approximations for solving the optimal power flow problem for distribution net-
works. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019;
pp. 1959–1963.

50. Tabarez, J.E.; Barnes, A.K.; Mate, A.; Bent, R.W. Fault current-constrained optimal power flow on unbalanced distribu-
tion networks. In Proceedings of the 2022 IEEE PES Innovative Smart Grid Technologies—Asia (ISGT Asia), Singapore,
1–5 November 2022; pp. 205–209.

http://dx.doi.org/10.1109/TPWRS.2017.2718551
http://dx.doi.org/10.1109/TPWRS.2019.2915795
http://dx.doi.org/10.1109/TSG.2017.2672821
http://dx.doi.org/10.1109/ACCESS.2021.3116982
http://dx.doi.org/10.1109/TPWRS.2018.2886344
http://dx.doi.org/10.1109/TPWRS.2017.2691558


Energies 2023, 16, 5974 37 of 42

51. Zhong, R.; Teng, Y.; Wang, X.; Zhu, Y.; Zhang, H. Probabilistic optimal power flow calculation of AC/DC hybrid distribution
network with photovoltaic power and electric vehicles. In Proceedings of the 2018 International Conference on Power System
Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 20–27.

52. Levis, C.; Phan-Tan, C.-T.; Hill, M. Multi-objective optimal active and reactive power dispatch for centrally controlled distributed
pv systems. In Proceedings of the 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK,
4–7 September 2018; pp. 1–6.

53. Gao, F.; Zhu, Z. Multi objective optimal method for new energy power grid considering maximum demand response. In
Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022;
pp. 654–658.

54. Chen, G.; Wang, Z.; Qian, F.; Jia, D.; Yu, H.; Kang, T. Optimal strategy for centralized regulation of distributed power supply in
medium-voltage distribution network. In Proceedings of the 2022 5th International Conference on Energy, Electrical and Power
Engineering (CEEPE), Chongqing, China, 22–24 April 2022; pp. 569–573.

55. Franco, J.F.; Ochoa, L.F.; Romero, R. AC OPF for smart distribution networks: An efficient and robust quadratic approach. IEEE
Trans. Smart Grid 2018, 9, 4613–4623. [CrossRef]

56. Wu, C.; Gu, W.; Zhou, S.; Chen, X. Coordinated optimal power flow for integrated active distribution network and virtual power
plants using decentralized algorithm. IEEE Trans. Power Syst. 2021, 36, 3541–3551. [CrossRef]

57. Jha, R.R.; Dubey, A. Exact distribution optimal power flow (d-opf) model using convex iteration technique. In Proceedings of the
2019 IEEE Power& Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5.

58. Pham, V.N.; Do, D.Q.; Nguyen, Q.D.; Nguyen, T.T. Optimal dg placement for power loss minimization in radial power distribution
networks using mixed-integer quadratic programming method based on modified distflow. In Proceedings of the 2022 6th
International Conference on Green Technology and Sustainable Development (GTSD), Nha Trang City, Vietnam, 29–30 July 2022;
pp. 166–171.

59. Javadi, M.S.; Gouveia, C.S.; Carvalho, L.M.; Silva, R. Optimal power flow solution for distribution networks using quadratically
constrained programming and mccormick relaxation technique. In Proceedings of the 2021 IEEE International Conference on
Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS
Europe), Politecnico di Bari, Bari, Italy, 7–10 September 2021; pp. 1–6.

60. Peng, Q.; Low, S.H. Distributed optimal power flow algorithm for radial networks, i: Balanced single phase case. IEEE Trans.
Smart Grid 2018, 9, 111–121. [CrossRef]

61. Biswas, B.D.; Hasan, M.S.; Kamalasadan, S. Decentralized distributed convex optimal power flow model for power distribution
system based on alternating direction method of multipliers. IEEE Trans. Ind. Appl. 2023, 59, 627–640. [CrossRef]

62. Zhang, D.; Miao, S.; Yang, W.; Tu, Q. Harmonic optimal power flow considering harmonic coupling factors. In Proceedings of the
2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021; pp. 1–6.

63. Wang, C.; Wei, W.; Wang, J.; Bai, L.; Liang, Y.; Bi, T. Convex optimization based distributed optimal gas-power flow calculation.
IEEE Trans. Sustain. Energy 2018, 9, 1145–1156. [CrossRef]

64. Korompili, A.; Pandis, P.; Monti, A. Distributed OPF algorithm for system-level control of active multi-terminal DC distribution
grids. IEEE Access 2020, 8, 136638–136654. [CrossRef]

65. Liu, Y.; Zhang, Q.; Li, J.; Peng, Y. Research on reactive power optimization configuration of distribution network based on small
hydroelectric generating units. In Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Computer
Applications (ICAICA), Dalian, China, 24–26 June 2022; pp. 534–539.

66. Keshani, A.; Rafiei, A.; Mazaheri, H.; Pourghaderi, M. Optimal allocation and utilization of battery energy storage systems in
electric power distribution network for peak shaving and loss reduction: A case study in Iran. In Proceedings of the CIRED Porto
Workshop 2022: E-Mobility and Power Distribution Systems, Porto, Portugal, 2–3 June 2022; Volume 2022 , pp. 279–283.

67. Guo, Z.; Wei, W.; Chen, L.; Dong, Z.; Mei, S. Parametric distribution optimal power flow with variable renewable generation.
IEEE Trans. Power Syst. 2022, 37, 1831–1841. [CrossRef]

68. Biswas, B.D.; Kamalasadan, S. Semidefinite program based optimal power flow formulation with voltage regulators in multiphase
distribution networks. In Proceedings of the 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA,
17–21 July 2022; pp. 1–5.

69. Chowdhury, M.M.-U.-T.; Kamalasadan, S. An angle included optimal power flow (OPF) model for power distribution network
using second order cone programming (SOCP). In Proceedings of the 2020 IEEE Industry Applications Society Annual Meeting,
Online, 10–16 October 2020; pp. 1–7.

70. Liu, Y.; Li, J.; Wu, L.; Ortmeyer, T. Chordal relaxation based acopf for unbalanced distribution systems with ders and voltage
regulation devices. IEEE Trans. Power Syst. 2018, 33, 970–984. [CrossRef]

71. Liu, Y.; Li, J.; Wu, L. Coordinated optimal network reconfiguration and voltage regulator/der control for unbalanced distribution
systems. IEEE Trans. Smart Grid 2019, 10, 2912–2922. [CrossRef]

72. Usman, M.; Cervi, A.; Coppo, M.; Bignucolo, F.; Turri, R. Cheap conic OPF models for low-voltage active distribution networks.
IEEE Access 2020, 8, 99691–99708. [CrossRef]

73. Fan, Y.; Feng, L.; Li, G. Dynamic optimal power flow in distribution networks with wind/pv/storage based on second-order
cone programming. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu,
China, 4–7 June 2020; pp. 1136–1142.

http://dx.doi.org/10.1109/TSG.2017.2665559
http://dx.doi.org/10.1109/TPWRS.2021.3049418
http://dx.doi.org/10.1109/TSG.2016.2546305
http://dx.doi.org/10.1109/TIA.2022.3217023
http://dx.doi.org/10.1109/TSTE.2017.2771954
http://dx.doi.org/10.1109/ACCESS.2020.3010876
http://dx.doi.org/10.1109/TPWRS.2021.3110528
http://dx.doi.org/10.1109/TPWRS.2017.2707564
http://dx.doi.org/10.1109/TSG.2018.2815010
http://dx.doi.org/10.1109/ACCESS.2020.2998054


Energies 2023, 16, 5974 38 of 42

74. Jin, Y.; Moduo, Y.; Zong, M.; Duan, R.; Lu, C. Research on optimal power flow of active distribution network based on soft open
point. In Proceedings of the 11th International Conference on Renewable Power Generation—Meeting Net Zero Carbon (RPG
2022), Shanghai, China, 14–15 October 2022; Volume 2022 , pp. 60–64.

75. Liang, Y.; Tang, S.; Tian, H.; Wang, Z.; Li, X.; Li, G.; Bie, Z. A chance-constrained optimal power flow model based on second-
order cone. In Proceedings of the 2020 4th International Conference on HVDC (HVDC), Xi’an, China, 6–9 November 2020;
pp. 1195–1200.

76. Ogundairo, O.; Kamalasadan, S.; Biju, K. Integrated transmission and distribution optimal power flow simulation using linear
decision approach. In Proceedings of the 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems
(PEDES), Chennai, Indiea, 14–17 December 2022; pp. 1–6.

77. Cai, X.; Chen, M.; Lin, K.; Lyu, J.; Zhang, S.; Cheng, H. Optimal dispatch of active distribution network for solar power
accommodation based on conditional value at risk. In Proceedings of the 2021 China International Conference on Electricity
Distribution (CICED), Changsha, China, 7–8 September 2022; pp. 642–646.

78. Nick, M.; Cherkaoui, R.; Paolone, M. Optimal planning of distributed energy storage systems in active distribution networks
embedding grid reconfiguration. IEEE Trans. Power Syst. 2018, 33, 1577–1590. [CrossRef]

79. Ansari, M.; Ansari, M.; Valinejad, J.; Asrari, A. Optimal daily operation in smart grids using decentralized bi-level optimization
considering unbalanced optimal power flow. In Proceedings of the 2020 IEEE Texas Power and Energy Conference (TPEC),
College Station, TX, USA, 6–7 February 2020; pp. 1–6.

80. Ni, S.; Zhang, L.; Wu, G.; Shi, P.; Zheng, J. Multi-objective bi-level optimal dispatch method of active distribution network
considering dynamic reconfigurations. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering
(ACPEE), Chengdu, China, 4–7 June 2020; pp. 2077–2082.

81. Qiao, F.; Yuan, L. Improved energy management scheme in active distribution network with grid-tied microgrids. In Proceedings
of the 2021 International Conference on Advanced Technology of Electrical Engineering and Energy (ATEEE), Qingdao, China,
24–26 December 2021; pp. 93–98.

82. Arnold, D.B.; Sankur, M.D.; Negrete-Pincetic, M.; Callaway, D.S. Model-free optimal coordination of distributed energy resources
for provisioning transmission-level services. IEEE Trans. Power Syst. 2018, 33, 817–828. [CrossRef]

83. Lahon, R.; Gupta, C.P.; Fernandez, E. Power flow coordination among smart migrogrids: A game theory approach. In Proceedings
of the 2022 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 28 February–1 March 2022; pp. 1–6.

84. Sheng, H.; Wang, C.; Li, B.; Liang, J.; Yang, M.; Dong, Y. Multi-timescale active distribution network scheduling considering
demand response and user comprehensive satisfaction. IEEE Trans. Ind. Appl. 2021, 57, 1995–2005. [CrossRef]

85. Sinha, S.; Roshan, R.; Alam, M.A.; Banerjee, S. Optimal placement of d-statcom for reduction of power loss and improvement of
voltage profile using power stability and power loss indices in a radial distribution system. In Proceedings of the 2019 IEEE 5th
International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–4.

86. Zhang, L.; Tong, B.; Wang, Z.; Tang, W.; Shen, C. Optimal configuration of hybrid AC/DC distribution network considering the
temporal power flow complementarity on lines. IEEE Trans. Smart Grid 2022, 13, 3857–3866. [CrossRef]

87. Zhang, Y.; Hu, P. Optimal exploitation of mobile emergency generator and distributed energy resource for improving the resilience
of incremental power distribution system under extreme grid faults. In Proceedings of the 2021 IEEE International Conference on
Electrical Engineering and Mechatronics Technology (ICEEMT), Qingdao, China, 2–4 July 2021; pp. 470–476.

88. Contreras, J.M.P.; Gutierrez-Alcaraz, G.; Hinojosa, V. Comparative study of optimal power flow solution using DC and generalized
generation distribution factor formulations. In Proceedings of the 2018 IEEE PES Transmission & Distribution Conference and
Exhibition—Latin America (T&-LA), Lima, Peru, 18–21 September 2018; pp. 1–5.

89. Chen, R.; Zhou, M.; Zhang, P.; Li, X.; Fang, H.; Chen, Y. An optimal configuration of multiple measurements in distribution
network based on graph theory. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System
Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5.

90. Chen, Q.; Hao, W.; Zeng, P. Research on optimal planning of distribution network with multi-microgrids based on the improved
minimum spanning tree algorithm. In Proceedings of the 2022 Asian Conference on Frontiers of Power and Energy (ACFPE),
Chengdu, China, 21–23 October 2022; pp. 7–12.

91. Sadnan, R.; Dubey, A. Distributed optimization using reduced network equivalents for radial power distribution systems. IEEE
Trans. Power Syst. 2021, 36, 3645–3656. [CrossRef]

92. Gray, N.; Sadnan, R.; Bose, A.; Dubey, A. Effects of communication network topology on distributed optimal power flow for
radial distribution networks. In Proceedings of the 2021 North American Power Symposium (NAPS), College Station, TX, USA,
14–16 November 2021; pp. 1–6.

93. Moloi, K.; Hamam, Y.; Jordaan, J.A. Optimal location of dgs into the power distribution grid for voltage and power improvement.
In Proceedings of the 2020 IEEE PES/IAS PowerAfrica, Online, 25–28 August 2020; pp. 1–5.

94. Komathi, C.; Durga Devi, S.; Thirupura Sundari, K.; Sahithya, T. Smart power distribution system for residential and industrial
applications. In Proceedings of the 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS),
Chennai, India, 10–11 December 2020; pp. 1–4.

95. Wang, Y.; Ge, X.; Dai, H.; Wang, G.; Wang, F. Optimal dispatching strategy for virtual power plants based on distributed
optimization considering network constraints. In Proceedings of the 2022 IEEE IAS Global Conference on Emerging Technologies
(GlobConET), Arad, Romania, 20–22 May 2022; pp. 869–874.

http://dx.doi.org/10.1109/TPWRS.2017.2734942
http://dx.doi.org/10.1109/TPWRS.2017.2707405
http://dx.doi.org/10.1109/TIA.2021.3057302
http://dx.doi.org/10.1109/TSG.2021.3102615
http://dx.doi.org/10.1109/TPWRS.2020.3049135


Energies 2023, 16, 5974 39 of 42

96. Hanif, S.; Alam, M.J.E.; Bhatti, B. A modular optimal power flow method for integrating new technologies in distribution grids.
In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020;
pp. 1–5.

97. Chen, L.; Lu, Y.; Wang, L.; Du, J.; Xu, C.; Sun, W.; Song, X. Optimal power flow of distribution network considering comprehensive
flexibility resources. In Proceedings of the 2022 China International Conference on Electricity Distribution (CICED), Changsha,
China, 7–8 September 2022; pp. 643–648.

98. Chai, Y.; Liu, Y.; Bai, L.; Wang, C.; Guo, L.; Wang, Z.; Xue, Y. Hierarchical Distributed Optimal Power Flow of HV and MV
Distribution Networks with Continuous and Discrete Devices. IEEE Trans. Power Syst. 2023, 38, 1009–1021. [CrossRef]

99. Palaniappan, R.; Molodchyk, O.; Rehtanz, C. Hardware implementation of an optimal power flow algorithm in a distribution
network with decentralised measurements. In Proceedings of the CIRED 2020 Berlin Workshop (CIRED 2020), Berlin, Germany,
22–23 September 2020; Volume 2020 , pp. 580–583.

100. Xiangyu, Z.; Jing, L.; Yao, M.; Wenxiu, D.; Hedong, Z. Optimal control and configuration of energy storage devices in regional
distribution network with renewable energy sources. In Proceedings of the 2022 IEEE 2nd International Conference on Digital
Twins and Parallel Intelligence (DTPI), Beijing, China, 26 October–13 November 2022; pp. 1–5.

101. Ma, X.; Li, Z.; Cui, J.; Lv, L.; Chen, Y. Optimal power flow algorithm for large-scale integrated transmission and distribution net-
works. In Proceedings of the 2021 International Conference on Power System Technology (POWERCON), Online, 8–9 December
2021; pp. 2–7.

102. Blasi, T.M.; Fernandes, T.S.P.; Aoki, A.R.; Tabarro, F.H. Multiperiod optimum power flow for active distribution networks with
provisioning of ancillary services. IEEE Access 2021, 9, 110371–110395. [CrossRef]

103. Yan, J.; Huang, L.; Ying, F.; Wang, Q.; Liu, Y. Topology adjustment and optimal flow power based power control for offshore
wind power. In Proceedings of the 2021 11th International Conference on Power and Energy Systems (ICPES), Shanghai, China,
18–20 December 2021; pp. 696–700.

104. Shaheen, A.M.; Elattar, E.E.; El-Sehiemy, R.A.; Elsayed, A.M. An improved sunflower optimization algorithm-based monte carlo
simulation for efficiency improvement of radial distribution systems considering wind power uncertainty. IEEE Access 2021,
9, 2332–2344. [CrossRef]

105. Shaheen, M.A.M.; Hasanien, H.M.; Mekhamer, S.F.; Talaat, H.E.A. Optimal power flow of power systems including distributed
generation units using sunflower optimization algorithm. IEEE Access 2019, 7, 109289–109300. [CrossRef]

106. Mendoza, G.E.; Vacas, V.M.; Ferreira, N.R. Optimal capacitor allocation and sizing in distribution networks using particle swarm
optimization algorithm. In Proceedings of the 2018 Workshop on Communication Networks and Power Systems (WCNPS),
Brasilia, Brazil, 7–9 November 2018; pp. 1–5.

107. Liu, B.; Shi, L.; Yao, Z. Multi-objective optimal reactive power dispatch for distribution network considering pv generation
uncertainty. In Proceedings of the 10th Renewable Power Generation Conference (RPG 2021), Online, 14–15 October 2021; Volume
2021 , pp. 503–509.

108. Gu, X.; Xu, X.; Yu, Z.; Huang, S.; Lu, B. Power flow optimization of intelligent distribution network with distributed energy
resources. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Chengdu, China, 21–24 May
2019; pp. 3452–3457.

109. Tatipally, S.; Ankeshwarapu, S.; Maheswarapu, S. Swarm intelligence methods for optimal network reconfiguration of distribution
system. In Proceedings of the 2022 IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India,
16–18 December 2022; pp. 1–6.

110. Ni, S.; Zheng, J. Generator-grid-load-storage coordinated optimal dispatch considering CO2 emission in active distribution
network. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan,
China, 22–24 October 2021; pp. 1838–1843.

111. Sidea, D.O.; Picioroaga, I.I.; Tudose, A.M.; Bulac, C.; Tristiu, I. Multi-objective particle swarm optimization applied on the optimal
reactive power dispatch in electrical distribution systems. In Proceedings of the 2020 International Conference and Exposition on
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