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Abstract: Fouling in heat exchanger tubes is a common problem in the operation of condensers. The
deposition of fouling can affect the thermal efficiency and safety of the condenser. Therefore, it is
necessary to predict the impact of fouling on time and carry out scientific treatment. Firstly, fault
prognosis methods require a significant amount of historical fault data, which is often lacking in
practical applications. This paper proposes a method based on dynamically adjusting parameters
of the fouling thermal resistance empirical equation to establish a fouling thermal resistance digital
twin model. It is combined with simulation tools to rapidly generate a large amount of fault data for
the research of prognosis methods. Secondly, in the research of fault prognosis methods, prognosis
accuracy relies on establishing a reliable and accurate model that describes the behavior of faults. The
uncertainty in the modeling process significantly affects the results. Classic modeling methods do
not effectively quantify uncertainty. Therefore, this paper proposes a method that applies differential
modeling to predict fouling faults in condensers, automatically obtaining uncertain parameters while
establishing a reliable model. By calculating the performance evaluation indicator, the accuracy error
indicator of the differential modeling-based prognosis method is further reduced to 0.35. The results
demonstrate that this method can provide effective reference opinions for handling fouling faults
in condensers.

Keywords: condenser fouling; prognosis; differential modeling; particle filter; digital twin

1. Introduction

During the operation of a condenser, various impurities in the circulating water
inevitably result in fouling within the condenser’s heat exchange tubes over time [1].
The accumulation of fouling significantly decreases the heat exchange efficiency of the
condenser [2], leading to an increase in exhaust pressure and exhaust temperature of the
steam turbine and reducing the output power. Additionally, fouling increases the flow
resistance within the tubes, resulting in higher total energy consumption for the condenser.
Moreover, the removal of fouling requires the use of auxiliary equipment, cleaning agents,
and labor, along with the need for periodic shutdowns for cleaning. These additional
operational and maintenance expenses, coupled with a shortened normal operation cycle,
lead to economic losses. Furthermore, the accumulation of fouling in specific areas of the
heat exchange tubes can lead to overheating, local corrosion, or even tube perforation.
These issues pose a significant risk to the safe operation of the condenser [3]. Therefore, it
is of utmost significance to accurately predict the fouling effect and address it scientifically
and timely for condenser energy savings, reducing consumption, improving economic
efficiency, and ensuring its safe operation [4].

In engineering practice, to mitigate the risk of equipment failure and implement appro-
priate maintenance measures, the application of fault prognosis technology has emerged as
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a prominent research area within the field of reliability [5]. By utilizing such technology,
proactive measures can be taken to identify potential faults and address them before they
lead to equipment failure. The fault prognosis is employed to anticipate equipment failures.
These methods can be broadly classified into two categories [6]: physical model-based
prognosis methods and data-driven prognosis methods. Physical model-based prognosis
methods utilize mathematical formulations that embody physical laws to simulate the
progression of failure in the target system over time. Nevertheless, this approach demands
a high level of precision in physical modeling, making it challenging to establish an accurate
mathematical model for the dynamic and stochastic nature of condenser fouling processes.
Data-driven prognosis methods are frequently employed to address the aforementioned
challenges [7]. These methods do not rely on prior knowledge (such as mathematical mod-
els and expert experience) of the target system but instead utilize sensor data to monitor the
fault progression and estimate the future state evolution trend, as well as the remaining use-
ful life (RUL) of the system. Soualhi M. et al. [8] proposed an adaptive prognosis approach
for heat exchanger fouling prediction that combined long- and short-term predictors. The
method utilized the long short-term memory model to capture the long-term dynamic
evolution of fouling. Four nonlinear autoregressive exogenous models were employed to
predict fouling levels over discrete short-term horizons. The accuracy of fouling prognos-
tics was enhanced by integrating short-term predictors to update the predictions of the
long-term models through a fusion mechanism. Zachary Welz et al. [9] applied a devel-
oped lifecycle prognostic approach to a heat exchanger fouling test bed under accelerated
degradation conditions. Hanchi H. et al. [10] proposed an adaptive neurofuzzy inference
system for fouling prediction. This model incorporated not only the operating time, but
also the rate of humidity condensation in the compressor. The model parameters effectively
memorized the variation records of fouling symptoms concerning the ratio of humidity
to condensation. The obtained results demonstrated a better fit between the predicted
and observed fouling factors. YF Jin et al. [11] proposed a hybrid framework based on
long short-term memory neural networks and a thermodynamic model. The thermody-
namic model was used to obtain the expected parameters in the healthy state, calculated
by comparing the expected value with the actual measured value, and then combined
with the prognosis model to predict the next washing cycle. GH Zhou et al. [12] designed
a fouling factor prediction model combining the K-mean algorithm and the Chebyshev
neural network. The curve of fouling factor development over time was divided into three
stages: the starting stage, the adhesion stage, and the aging stage. Results showed that the
modified Chebyshev neural networks can effectively predict the law of condenser fouling
factor development.

Data-driven fault prognosis methods often rely on a substantial amount of historical
fault datasets. However, in practical applications, acquiring typical data for certain key
equipment can be costly. Furthermore, even if such data is obtained, there may be significant
uncertainties and incomplete information associated with it. The digital twin can solve such
problems using emulation tools [13]. These tools simulate the behavior and characteristics
of the physical equipment or system being modeled. By utilizing these emulation tools,
virtual test data can be generated to compensate for the lack of real-world data. This
capability enables data-driven fault prognosis methods to overcome limitations, such as
the high cost or incomplete nature of acquiring historical data, thereby facilitating more
accurate and robust prognoses. Hence, the study of fault prognosis methods for complex
systems driven by the digital twin has emerged as a prominent and trending topic in current
research on system health management. The digital twin is an important technology to
realize intelligent manufacturing [14]. As a new technology in the field of information-
physical system integration, the physical entity is reconstructed in the information space.
Through the dynamic digital model, the digital twin constantly updates with the change in
the physical entity, simulating and describing its state and attributes synchronously [15].
The concept of the digital twin was first introduced by Professor Grieves from the University
of Michigan [16]. Initially, it found significant application in the aerospace field. A digital



Energies 2023, 16, 5961 3 of 23

twin involves creating an information model within the virtual space of a computer that
is a complete replica of the physical entity. The information model makes it possible
to simulate, analyze, and optimize the physical entity [17]. In recent years, digital twin
technology has experienced rapid development in both theory and application. This
progress can be attributed to advancements in reliability modeling, model-based system
engineering, product modeling, simulation, and other digital expression technologies.
These innovations have enabled more comprehensive and effective implementation of the
digital twin in various fields and industries. As a result, digital twin technology continues
to evolve [18], offering immense potential for enhancing system performance, optimizing
operations, and enabling data-driven decision-making. A digital twin possesses several
key characteristics that effectively address challenges related to real-time data acquisition,
analysis, and prediction. These characteristics include high-fidelity modeling of physical
entities, real-time and efficient data acquisition and analysis of operational processes, and
the fusion of models and data. The digital twin provides a solution to the problem of
limited or difficult-to-collect real-time data, as well as the insufficiency of data volume for
accurate predictions. By leveraging these characteristics, the digital twin enables more
comprehensive and accurate prognoses, facilitating better decision-making and problem-
solving [19].

In addressing the issue of insufficient fault data for data-driven fault prognosis meth-
ods, this paper leverages the characteristics of the digital twin to swiftly generate a sub-
stantial amount of reliable fault data. Specifically, based on the empirical equation for
fouling growth that reflects the basic trend of fouling thermal resistance changes, and
in combination with measurement data, a fouling thermal resistance digital twin model
is established by using the particle swarm optimization (PSO) algorithm for parameter
optimization. Subsequently, fouling faults are injected into the condenser simulation loop,
and fault data related to fouling are obtained through simulation tools to compensate
for the lack of fouling fault data. In the research of prognosis methods, the performance
of prognosis, is to some extent, related to the model describing the fault behavior of the
research object. Establishing a reliable model is beneficial for obtaining accurate predic-
tion results. However, the uncertainties in the modeling process significantly affect the
accuracy and precision of the prognosis results. In the typical state space model, there
are uncertain parameters in both the state transition equation and the state observation
equation. Classical modeling methods do not take uncertainties into account or subjectively
set uncertain parameters, lacking a theoretical basis [20,21]. The appropriate selection of
uncertainties can further improve modeling. Therefore, this paper proposes a method
that applies differential modeling to predict fouling faults in condensers. By effectively
quantifying the uncertainty factors in the fault process, this approach enhances the accuracy
of the prediction results, providing rational maintenance recommendations for the safe
operation of condensers.

2. Digital Twin of Fouling Thermal Resistance
2.1. Empirical Equation for Fouling Thermal Resistance

One of the most important features of the digital twin is the ability to perform online
state correction based on real-time measurement data [22]. In this paper, an optimization
algorithm is utilized to adjust the parameters of the empirical equation for fouling thermal
resistance based on real-time measurement data. This approach aims to establish a digital
twin model for fouling thermal resistance, enabling continuous updates to the model based
on changes in the actual values.

Due to the presence of unclear mechanisms in the formation process of fouling, it is
challenging to conduct rigorous theoretical analyses to propose a universally applicable and
precise fouling theoretical model. Considering the current status of fouling research and the
practical needs of heat exchange equipment design and operation, some simplified methods
are proposed under certain assumptions based on the physical and chemical analysis of the
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main mechanisms involved in fouling formation and combined with experimental data.
The main simplified assumptions are as follows [23]:

1. Each type of fouling exists independently, and the influence of fouling roughness can
be neglected.

2. The characteristic parameters of the fouling deposit layer are the same and uniformly
distributed in all directions.

3. Changes in the fluid’s physical properties during the fouling formation process can
be neglected.

4. The initial state of the heat exchange surface can be neglected.

Research and observations indicate that the variation of fouling thermal resistance
over time can be mainly categorized into four types: linear, power-law, rate reduction, and
progressive, as illustrated in Figure 1. In the figure, the vertical axis represents thermal
resistance values, and the horizontal axis represents time. The curves are primarily used
to depict the variation trends of different types of fouling thermal resistance over time,
and the values in the figure do not represent the corresponding actual thermal resistance
values of fouling. In practical measurements, the relationship between the fouling thermal
resistance on the inner wall of the condenser cooling tubes and time is generally of a
progressive type, as shown by the blue curve in Figure 1 [24]. Hence, the progressive
empirical equation can be chosen to accurately represent the fundamental trend of fouling
thermal resistance growth in condensers. The local fluctuations in the curve are due to the
existence of two mechanisms of action during the fouling accumulation: the deposition of
fouling substances on the heat transfer surface (leading to an increase in thermal resistance)
and the fluid flow exerting a scouring effect (causing some of the accumulated dirt to be
stripped off from the heat exchange surface, thereby reducing the thermal resistance). The
actual variation of fouling thermal resistance over time is the result of the combined effects
of deposition and scouring. Based on the conclusions of Kern and Seaton, this process can
be described as follows:

dm f

dτ
= md −mr (1)

where mf represents the mass of fouling on the unit heat transfer surface, md and mr
represent the deposition rate and denudation rate of fouling, and τ represents the time.
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Under the aforementioned assumptions, it can be derived from the definition of
thermal resistance combined with Equation (1):

dR f

dτ
=

md −mr

ρλ
(2)
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where R f represents the fouling thermal resistance, ρ represents the fouling density, and λ
represents the fouling thermal conductivity coefficient.

For condensers, their tube diameter and arrangement are determined during the
design phase and do not change during operation. Therefore, under unchanged operation
modes and stable water quality conditions, the fouling deposition rate is mainly influenced
by the cooling water flow rate. Regarding denudation studies, Kern and Seaton, among
others, suggested that the denudation rate is directly proportional to the fouling mass
on the wall surface. Under the mentioned conditions, the variation of fouling thermal
resistance in the condenser over time can be described as follows [25]:

R f =
α

βρλv

(
1− exp

(
−βv2τ

))
(3)

where α, β, and v are coefficients that are related to the structure of the condenser, cooling
water quality, cooling water flow rate, and the operational mode of the cooling system.
Due to the difficulty in measuring some of the parameters mentioned above during actual
condenser operation, the coefficients can be simplified by letting A = α/βρλv, B = βv2.
Then, Equation (3) can be simplified as:

R f = f (τ) = A(1− exp(−Bτ)) (4)

After simplification, the number of parameters in the empirical equation has been
reduced. Based on the actual measurement values of fouling thermal resistance, suitable
parameters A and B can be identified, and an accurate variation law of fouling thermal
resistance over time can be obtained through the above equation calculation.

2.2. Parameter Update

First, initialize the model. By incorporating historical data from condenser operations,
the least square method is employed to develop an initial model for fouling thermal
resistance. Through this method, initial values for parameters A and B denoted as A0 and
B0, are obtained. The objective of utilizing the least square method is to minimize the
sum of squared errors between the calculated values and the actual values. This can be
expressed as follows:

θ̂ = argminθ

n

∑
i=1

(Ri − f (τ, θ))2 (5)

E(θ) =
n

∑
i=1

(Ri − f (τ, θ))2 (6)

where θ is parameter set {A, B}, and E(θ) is the loss function. By taking the derivative
of the equation and setting it equal to zero, a system of equations is obtained. Solving
this system of equations will yield the initial values of the parameters in the thermal
resistance equation.

The equation R f0 = A0(1− exp(−B0τ)) can be derived from the initial values. If
the parameters remain constant, the resulting fouling thermal resistance variation curve
over time would be smooth, as shown by the blue curve in Figure 2 However, the actual
variation is indicated by the red dots in Figure 2. The actual fouling thermal resistance data
is from reference [24]. In the objective world, the physical entity is constantly undergoing
changes and developments. The digital twin model needs to continuously adjust itself
based on the changes in the physical entity, thus accurately reflecting and mapping the
physical entity [26]. To ensure that the model evolves and updates automatically to align
with the actual thermal resistance, and to enhance the accuracy of the thermal resistance
equation in calculating real-time thermal resistance, the PSO can be utilized to update the
parameters when the deviation between the calculated thermal resistance and measurement
data exceeds a set threshold.
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PSO is a population-based search algorithm that evolved from simulating the foraging
behavior of bird flocks. It was initially proposed by Eberhart and Kennedy in 1995 [27].
Additionally, to balance the local search capability and global search capability in PSO,
Shi, and Eberhart introduced the concept of inertia weight to the algorithm in 1998 [28].
PSO simulates the cooperative behavior observed in the foraging behavior of organisms in
nature, utilizing collaboration and information sharing among individuals in a population
to find optimal solutions. Due to its simple principles and mechanisms, which involve
continuously evolving towards the global optimum by updating velocity and position with-
out requiring gradient information, PSO has gained significant attention from researchers.
It has been extensively explored, improved upon, and applied to numerous real-world
problems. Based on the characteristics of PSO in obtaining optimal solutions, it can be
applied to update parameters.

Due to the fluctuation of actual fouling thermal resistance, there may be deviations
between the calculated values and the actual values. When the difference between the
two exceeds the set threshold, it can be determined that the model accuracy does not meet
the requirements, and calibration is needed. Updating parameters allows the model to
better align with the changing trend of the actual thermal resistance, improving the overall
accuracy. In terms of threshold setting, an excessively large threshold will reduce the
sensitivity of the model to errors, resulting in a deviation of the final calculated results from
the actual values and an inability to accurately track the changes in actual thermal resistance.
On the other hand, a threshold that is too small will increase the number of parameter
update operations, thereby increasing the computational workload for correction.

When the deviation between the calculated thermal resistance and the measurement
data exceeds the threshold for the first time, a neighborhood range is defined, centered
around the parameters A0 and B0 that are used to calculate the thermal resistance at this
moment. This neighborhood range is denoted as [A0 − ϕ, A0 + ϕ], [B0 − ϕ, B0 + ϕ]. Where
ϕ is a positive constant. When it comes to the selection of the parameter ϕ, according to the
diversity principle of PSO, to search for better-quality solutions, it is required that particles
in the swarm should be distributed in different areas of the search space during the initial
stages of the search. Therefore, setting ϕ too small would result in the particles being too
concentrated in a local search space, failing to satisfy the diversity principle. On the other
hand, setting ϕ too large may prevent particles from finding suitable solutions within the
given number of iterations, thereby affecting the accuracy of the computed results. Within
this range, a set of initial particles is randomly generated, Xj =

(
x1j, x2j

)
, j = (1, 2 · · · , m),

x1j corresponds to the parameter A of the jth particle, while x2j corresponds to the parameter
B. Initialize particle velocity Vj =

(
v1j, v2j

)
, v1j, v2j respectively represent the velocities

of the corresponding parameters for the jth particle. Then, the fitness of each particle
is evaluated to determine the global best particle gbest and individual historical best
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particle pbestj. During the iterative process that does not satisfy the stopping condition, the
positions and velocities of particles are continuously updated:

Vk+1
j = wpsoVk

j + c1r1

(
pbestk

j − Xk
j

)
+ c2r2

(
gbestk − Xk

j

)
(7)

Xk+1
j = Xk

j + Vk+1
j (8)

where wpso is the inertia weight, k is the iteration step, r1 and r2 are random numbers
distributed between [0, 1], and c1 and c2 are the learning factors.

After each iteration update, the fitness value of each particle is evaluated, and the
individual historical best position of each particle and the global best position are updated.
When the stopping condition is met, the optimal particle, namely the optimal parameters
Abest and Bbest, are obtained. Then, the calculation equation of fouling thermal resistance
is R f = Abest(1− exp(−Bbestτ)). When the deviation exceeds the threshold again, the
parameters Abest and Bbest obtained in the previous round of optimization are used as the
center, and the above steps are repeated. The process of the above method is shown in
Figure 3.
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The evolution results of the digital twin of fouling thermal resistance are presented in
Figure 4, where the blue line represents the calculated results of the digital twin, and the red
dots represent the real-time measurement data. Each change in the blue lines in the figure
represents a parameter update. The threshold for triggering parameter updates is set to the
standard deviation of the calculated result error in Figure 4. Through the comparison of
the two graphs, it is evident that continuously updating parameters A and B can effectively
align the calculated values of the model with the actual changes.
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The constructed simulation loop represents a specific ship’s condensate feedwater
system. Its main equipment includes a condenser, deaerator, feedwater pump, condensate
pump, and steam jetting aspirator. Figure 5 illustrates a portion of the structure of the
condenser loop. The main thermal process of the condenser is the process of condensing
the steam into water. The model consists of three parts: the shell side, the tube wall, and
the tube side. In the simulation model, the condenser heat exchange system is divided into
two subsystems: “tube side” and “shell side”.
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The mathematical form of the shell side in the simulation model is as follows:
The following equation can be obtained from the law of conservation of mass and

energy:

ρsVs
dhs

dt
= Gsi(hsi − hs) + ∑[Goi(hoi − hs)] (9)

where ρs is the saturated steam density, kg/m3, Gsi, and Goi are the steam flow of the
low-pressure turbine and other branches into the condenser, respectively, kg/s, Vs is the
volume of condenser steam space, m3, hs is the specific enthalpy of saturated steam in the
condenser, hsi is the specific enthalpy of exhaust steam entering the condenser of the low-
pressure turbine, kJ/kg, and hoi is the specific enthalpy of steam-water mixture entering
the condenser by other branches, kJ/kg.
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According to the heat balance equation:

Qc = Kc∆tc A = Gc(hs − hw) (10)

where Qc is the heat dissipation of steam during condensation, kW, Kc is the heat transfer
coefficient of the condenser, kJ/(m2·◦C), ∆tc is heat transfer temperature difference, ◦C, Gc
is the condensation amount of main steam after condensation, kg/s, Ar is the heat transfer
area, m2, and hw is the saturation water enthalpy corresponding to the condenser steam
space pressure, kJ/kg.

For the tube side, its mathematical form in the simulation model is as follows:

Qc = Kc∆tc Ar = Gxcp(T2 − T1) (11)

where cp is the specific heat of condenser tube side cooling water, kJ/(kg·◦C), Gx is the
circulating water flow rate in the cooling tube, kg/s, T1 is the temperature of condenser
tube side inlet cooling water, ◦C, and T2 is the temperature of condenser tube side outlet
cooling water, ◦C.

For the heat transfer process of a condenser, the total heat transfer coefficient can be
expressed as the sum of the heat transfer coefficients of each series link in the entire heat
transfer process, as follows:

Kc =
1

Rc
=

1
R0 + Rw + R f + Ri

(12)

where Rc is the total thermal resistance, Rg is the steam side convection heat resistance, Rw
is the thermal resistance of the heat exchange tube wall, R f is the fouling thermal resistance,
and Ri is the cooling water side convection heat resistance.

Data-driven prognosis methods require a sufficient amount of fault data. Due to
the lack of condenser fouling fault data, the simulation tools can be combined with the
established fouling thermal resistance digital twin model to generate test sample data, thus
compensating for the shortage of fault data. Specifically, by incorporating the continuously
updated fouling thermal resistance into the condenser simulation model, the fouling
thermal resistance in the condenser will continuously change with the simulation time,
affecting the total heat transfer coefficient during the condensation process. The fouling
fault is set into the condenser loop to collect experimental data that represents the effect
of fouling thermal resistance variation on the heat transfer performance of the condenser.
(e.g., data on the cooling water inlet-outlet temperature difference over time).

3. Prognosis Theory and Methods

The classic Riemann sampling prognosis method is highly effective in monitoring di-
verse performance parameters and mathematically modeling their changing processes [29].
Subsequently, various prognosis methods are employed to forecast their future changes
accurately and calculate the specific time of the occurrence of faults [30]. This section
mainly introduces the theoretical background of the state-space model, the Particle Filter-
ing algorithm (PF), and the differential modeling method.

In reality, most dynamic processes can be analyzed theoretically by a continuous time
system [31]. In continuous time systems, the nonlinear dynamic process of state variables
can be defined as follows:

.
x = F(x, t) (13)

where x represents the state, t represents the time instant, F(·) represents the linear or
nonlinear evaluation function, and

.
x represents the derivative of x on t.

However, applications such as state estimation and control are often realized by digital
circuits in discrete operating environments, so the continuous time system can be converted
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to a discrete time system based on Riemann integral calculation. The result can be expressed
as follows:

x(t + ∆t) = x(t) +
∫ t+∆t

t
F[x(t), t]dt (14)

where x(t) is the state at time t, ∆t is the length of time, and [t, t + ∆t] represents a small
discrete time range, which is usually very short in length. Therefore,

∫ t+∆t
t F[x(t), t]dt can

be approximated and simplified as a time varying function f (·).
The state space model is commonly used to address various problems in fields such as

statistics and signal processing. In the study of life prognosis, a considerable number of
degradation processes can also be described using state-space models. Some common appli-
cation areas include the crack growth process [32], the degradation process of bearings [33],
the degradation process of lithium-ion batteries [34], and so on. Due to the variations
in requirements across different application scenarios, the state space models also have
different structural forms. The following provides the most general and common solutions.

The state space model comprises a state transition model and a state observation
model. The state transition model can be expressed as follows:

xt+1 = f (xt, t) + ωt (15)

where xt is the corresponding state value at time t, f (·) is used to describe state changes,
and ωt is the uncertain parameter of the state transition process. The state value at time t is
dependent on the state value at the previous time, thus the aforementioned model can be
considered as a first-order Markov process [21,35].

The state observation model can be expressed as follows:

y = h(x) + νt (16)

where y is the observed value of the state value x, νt is the uncertain parameter in the
observation process. In practical applications, the state value often has a one-to-one
correspondence with its observed value [36], thus the state observation model can be
simplified as follows:

y = x + νt (17)

There are lots of uncertainties in the degradation process. To obtain better results,
appropriate treatment of the abovementioned uncertain parameters is necessary.

As for the prognosis part, the Bayesian estimation method is an efficient recursive
estimation technique that enables real-time and dynamic state estimation and prognosis
with good robustness. Common Bayesian estimation methods include the particle filter
algorithm, the Kalman filter algorithm, and related derivative methods [37–39]. In the
Bayesian recursive estimation process, Equation (15) is utilized to predict the next state
value and obtain the corresponding prior estimate. Subsequently, with the acquisition
of new observations, the prior estimate is updated using Equation (17) to derive the
corresponding posterior estimate. Specifically, at time t − 1, the posterior probability
distribution function (pdf) of the state value is denoted as p(xe

t−1|y1:t−1). Then, by applying
the state transition equation, the prior pdf p(xe

t |y1:t−1) of the state at time t can be derived,
where y1:t−1 = {y1, y2, · · · , yt−1}. Thereafter, after obtaining the observations yt at time
t, the posterior pdf p(xe

t |y1:t) at time t is updated, and the mathematical equation can be
expressed as:

p(xe
t |y1:t−1) =

∫
p(xe

t |xe
t−1)p(xe

t−1|y1:t−1)dxe
t−1 (18)

p(xe
t |y1:t) =

p(yt|xe
t )p(xe

t |y1:t−1)

p(yt|y1:t−1)
(19)

where p(xe
t |xe

t−1) represents the likelihood function of the state transition process, deter-
mined by Equation (15), p(yt|xe

t ) represents the likelihood function of the observation
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process, determined by Equation (17), p(yt|y1:t−1) represents the normalization factor,
which is calculated as follows:

p(yt|y1:t−1) =
∫

p(yt|xe
t )p(xe

t |y1:t−1)dxe
t (20)

In practice, analytical solutions for Equations (18) and (19) are often not available. The
Particle Filter algorithm employs Monte Carlo methods to approximate the probability
distribution using a set of particles

{
xi

t, wi
t
}N

i=1. The basic idea of Monte Carlo can be
expressed as follows: when solving a problem that involves the probability of a certain
random event occurrence or the expected value of a certain random variable, the probability
of the event occurrence is approximated by the frequency of the event occurrence through
“experimental” methods. Alternatively, the numerical characteristics of the random vari-
able are obtained to estimate its expected value [40]. The posterior pdf p(xe

t |y1:t) can be
expressed as follows:

p(xe
t |y1:t) ≈

N

∑
i=1

wi
tδ(xt − xi

t) (21)

where xi
t represents the particle, wi

t represents the weight of the corresponding particle, N
represents the total number of particles, and δ(·) is the Dirac delta function.

Since the posterior probability distribution is often multivariate, high-dimensional,
nonanalytical, and difficult to sample directly, the importance sampling method is adopted,
which is easy to implement. The weight calculation of particles is shown in Equation (22).

wi
t ∝

p(xi
t|y1:t)

π(xi
t|y1:t)

(22)

where π(xi
t|y1:t) represents the importance distribution used. When using the probability

distribution of state transition as the importance distribution, the weight calculation of
particles can be simplified as follows:

w̃i
t = wi

t−1 p(yt|xi
t) (23)

From the above equation, it can be observed that the weight magnitude represents the
probability of obtaining the corresponding observation value yt when the state value xt is
taken as xi

t. In other words, particles with higher weights are more likely to generate the ob-
served value. Throughout the entire process, prognosis information is incorporated into the
particle distribution, while observation information is incorporated into the corresponding
particle weights.

Normalize the weights thereafter:

wi
t =

w̃i
t

∑N
j=1 w̃i

t
(24)

During the recursive iteration process, it is common for the weight distribution to
become increasingly skewed over time. As the iteration progresses, a small number of
particles tend to have significantly higher weights, while the weights of other particles
become negligible. This phenomenon is known as particle degradation. To address this
phenomenon, resampling can be used as a solution. Additionally, to avoid the diversity
loss of particles after resampling, which may result in an insufficient representation of
the posterior probability distribution, the following resampling method is implemented.
Randomly select a number u from the interval [0, 1] and sequentially sum the weights of the
particles. In the resampling process, when the cumulative sum of weights of the first M − 1
particles is less than the generated random number u(∑M−1

i=1 wi
t < u, M ∈ [0, N]), and the

cumulative sum of weights of the M particles is greater than or equal to u(∑M
i=1 wi

t > u,
M ∈ [0, N]), the Mth particle is selected as the new particle after resampling. This ensures
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that particles with higher weights have a higher chance of being selected, while particles
with lower weights have a lower chance of being selected. The resampling process is

repeated N times to obtain the new particle set
{ .

xj
t

}N

j=1
. After resampling, the weights of

the particles are updated to wi
t = 1/N.

The purpose of life prognosis is to obtain the future development of the degradation
process and then calculate the expected time to failure (TTF) for the state indicators to reach
the failure threshold. In the prognosis, the estimation results at the current time are used
as the initial values. During the prognosis stage, a multistep prognosis approach is used
to recursively obtain the predicted values of state indicators at any future time, and the
prognosis process continues until the predicted value of the state indicator exceeds the
preset failure limit. Afterward, based on the prognosis results, the final TTF probability
distribution can be obtained. As shown in Figure 6, the green probability distribution
presents the state prognosis results at times tk+1, tk+2, and tk+3, and the red region represents
the corresponding TTF probability distribution. The calculation process for a multistep
prognosis can be expressed as follows:

p(xe
t+m|y1:t) = p(xe

t |y1:t)p(xe
t+1|xe

t )dxe
t p(xe

t+2|xe
t+1)dxe

t+1 · · · p(xe
t+m|xe

t+m−1)dxe
t+m−1 (25)

where p(xe
t+m|y1:t) represents the probability distribution of the state after the next m steps,

p(xe
t+1|xe

t ), p(xe
t+2|xe

t+1), and p(xe
t+p|xe

t+p−1) represent the state transition process of the
prognosis process. Afterward, the distribution of TTF is calculated based on the preset
failure limit. The calculation process can be represented as follows:

p f (t) = p( f |xt > Ff ) =
N

∑
i=1

Pr( f |xi
t > Ff )wi

t (26)

where p f (t) represents the failure probability at time t, Ff represents the failure threshold.
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In multistep prognosis, the future observed values are not available in advance, mak-
ing it impossible to perform posterior updates on the predicted values. As the prognosis
progresses, the uncertain parameters in the model accumulate during the iteration process,
which can impact the effectiveness of the prognosis results. The above analysis indicates
that uncertain parameters have a significant impact on prognosis results, but the clas-
sic modeling method lacks theoretical descriptions of uncertainties, failing to provide
appropriate values for uncertain parameters. Manual adjustments of parameter values
are necessary to obtain acceptable results. Therefore, to address this issue, a differential
modeling method can be utilized to accurately model the heat transfer process of condenser
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fouling, effectively quantify the uncertain parameters in the process, and maximize the
effectiveness of the prognosis results.

Describe the change in state between any two adjacent moments using the Differential
law:

xt+1 − xt

(t + 1)− t
= g′(xt, t) + ωt (27)

where g′(·) is the differential equation, and ωt represents the differential uncertainty present
in the process. Transforming it into the state transition equation, the resulting state space
model based on differential modeling is as follows:

xt+1 = g′(xt, t) + xt + ωt (28)

yt = xt + νt (29)

The above equation utilizes the differential law to describe the actual dynamic process.
After performing the differential operation on the original fault data, fitting the obtained
differential feature allows for the determination of model parameters corresponding to g′(·)
and uncertainty parameters corresponding to ωt. The steps for model establishment and
obtaining parameter values are as follows:

1. Data smoothing: Due to the influence of internal components, circuit elements, and
external factors such as human or environmental interference, actual equipment often
exhibits noise when using sensors to collect performance parameters. The presence of
random noise makes it difficult to directly and accurately identify valid differential
laws through differential operations. Therefore, at the beginning of establishing the
differential model, it is necessary to smooth the data to eliminate the random noise
present in the raw data and obtain a smoothed dataset that still retains the primary
characteristic information from the original data.

2. Extracting and quantifying state observation uncertainty: Subtract the smoothed
data from the original data to obtain the removed random noise and treat it as the
uncertainty of the state observation process. According to its distribution, it is possible
to quantify νt and determine the specific values.

3. Extracting dynamic differential features: The dataset obtained after smoothing, which
retains the main information of the original data, can be utilized to construct a differ-
ential model. Performing a differential operation on the values corresponding to any
two adjacent moments with a fixed interval, and then fitting the obtained differential
data to construct the corresponding differential model g′(·).

4. Extracting and quantifying the uncertainty in the state transition: Using a similar
method as mentioned above, extract the uncertainty in the state transition process.
Subtract the results of the differential model from the actual differential data, and
determine the value of ωt based on the distribution of the differences.

5. Establishing a state transition model: Based on the obtained differential model g′(·),
substitute it into Equation (28) to establish the corresponding state-space model.
Afterward, the state space model can be combined with the Particle Filtering algorithm
to predict the future state and RUL of the system.

4. Case Study

In the previous section, the theoretical aspects involved were explained. The following
is a specific case to illustrate the above content.

Based on the methods mentioned in Section 2, the inlet and outlet temperatures of
cooling water under the fouling fault can be obtained through simulation tools. The
established simulation model has a condenser inlet temperature of 48.5 ◦C, a cooling water
inlet temperature of 28 ◦C, and a cooling water flow rate of 129 kg/s. Under the condition
of not changing the trends of fouling thermal resistance, adjust the size of thermal resistance
in a certain proportion to simulate different fault scenarios and obtain multiple sets of
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fault data. To simulate the temperature data collected by the actual temperature sensor,
noise is added to the calculated temperature data from the simulation model. The resulting
data is shown in Figure 7. The vertical axis represents the temperature difference between
the inlet and outlet, measured in degrees Celsius (◦C). (The data has been normalized.)
The horizontal axis represents time, and the curve represents the changes of multiple
sets of temperature difference data over time. The figure contains 8 sets of fault data
under different conditions, labeled as DATA04, Data1, Data3600, Data9, Data412-2, Data1.2,
Data1.1-2, and Data9.2.
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For the heat exchange process of a condenser, the efficiency of the heat exchanger is
defined as [41]:

ε =
(t′ − t′′)max

t′1 − t′2
(30)

The denominator represents the maximum temperature difference between the fluids
in the heat exchanger, while the numerator represents the larger of the actual temperature
differences between the cold or hot fluids in the heat exchanger.

In the heat exchange process of the condenser mentioned above, the temperature
difference of the cooling water plays a crucial role in determining the heat exchange
efficiency. Specifically, the numerator of the heat exchange efficiency equation represents
the temperature difference between the inlet and outlet of the cooling water. When the
temperatures of the inlet steam and the inlet cooling water remain relatively constant,
the heat exchange efficiency is directly influenced by the temperature difference between
the inlet and outlet of the cooling water. As the temperature difference decreases, the
heat exchange efficiency also decreases proportionally. To establish a failure limit for the
condenser, a certain value Ff can be set as a threshold for the temperature difference. When
the temperature difference is below Ff , the heat exchange efficiency also decreases to a
certain extent, indicating a potential failure condition. The deposition of fouling will reduce
the temperature difference between the inlet and outlet of the cooling water, which will
reduce the heat transfer efficiency. Therefore, the change in temperature difference between
the inlet and outlet of the cooling water can, to some extent, characterize the impact of
fouling on the heat transfer process of the condenser.

4.1. Classic Modeling Method

For the classic modeling method, using a portion of the acquired fault data as the train-
ing set, the classic curve fitting method is employed to model the data. The mathematical
form of the polynomial model can be expressed as follows:

∆T = a0 + a1t + a2t2 + a3t3 + a4t4 (31)
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where ∆T is the temperature difference between the inlet and outlet of the cooling water,
and a = [a0, a1, a2, a3, a4] are the coefficients of the model. Four datasets (Data04, Data3600,
Data9, and Data1) from the fault data were selected as the training set, and the fitting
results are presented in Figure 8. The axes in Figure 8 have the same meaning as in Figure 7,
and the black solid line represents the results obtained from the fitted model calculation.
From the figure, it can be observed that the polynomial model fits the actual values very
well, indicating that the fitted model effectively describes the changing process of the
temperature difference between the inlet and outlet of cooling water.
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Equation (15) represents the recursive relationship between states, so it is necessary to
perform certain transformations on Equation (31). Firstly, for the temperature difference
∆Tt+1 at time t + 1, it can be expressed as follows:

∆Tt+1 = a0 + a1(t + 1) + a2(t + 1)2 + a3(t + 1)3 + a4(t + 1)4 (32)

After the mathematical transformation of Equations (31) and (32), the following recur-
sive relation can be obtained:

∆Tt+1 = ∆T + a1 + a2(2t + 1) + a3(3t2 + 3t + 1) + a4(4t3 + 6t2 + 4t + 1) (33)

Then, incorporating the uncertain parameter in the model, the state space model based
on the polynomial model can be expressed as follows:

xt+1 = xt + a1 + a2(2t + 1) + a3(3t2 + 3t + 1) + a4(4t3 + 6t2 + 4t + 1) + wt (34)

yt = xt + νt (35)

where wt ∼ N
(
0, σ2(wt)

)
and νt ∼ N

(
0, σ2(νt)

)
are Gaussian noises with zero mean and

standard deviations of σ(wt) and σ(νt), respectively.
After establishing a suitable state space model, particle filter algorithms can be com-

bined to predict the future development status of state indicators. Based on the significant
impact of uncertain parameters on the prognosis results, it is necessary to make reasonable
choices for their values. According to the modeling process mentioned above, it can be seen
that the classic modeling method lacks a theoretical description and analysis of uncertain
parameter values, and the parameter settings are often subjective. As shown in Figures 9–11,
the test results obtained by using different uncertain parameters for prognosis are shown.
The model parameters (a= [a0, a1, a2, a3, a4]) are kept constant, and the standard deviation
of the difference between the curve fitting result and the actual data is 0.0359. Based on
their order of magnitude, three levels of uncertain parameters are selected for testing: 0.01,
0.001, and 0.0001. The predicted results are presented in Figures 9–11, respectively. The
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dark blue line in the figure represents the measurement data, the light blue dots represent
the predicted results obtained after each particle filter, and the red area represents the prob-
ability distribution of TTF. Through the comparison of the three results, it can be observed
that reducing the uncertain parameters has a significant impact on the prognosis results. As
the uncertain parameters decrease, the predicted values of the state indicators become more
concentrated, indicating higher confidence in the prognosis. Additionally, the confidence
interval of the TTF probability distribution also decreases, indicating increased accuracy.
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Figure 9. Uncertain parameters σ(νt) = σ(wt) = 0.01.
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Figure 10. Uncertain parameters σ(νt) = σ(wt) = 0.001.
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Figure 11. Uncertain parameters σ(νt) = σ(wt) = 0.0001.
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To provide a better reference for operation and maintenance, the corresponding RUL
can be predicted and calculated. RUL refers to the duration from the predicted start time
until the TTF is reached. In practical applications, prognoses are often initiated when the
system’s performance has degraded significantly. This is conducted by setting an initial
threshold to determine whether performance deterioration has occurred. This threshold
determines the starting prediction time, denoted as Ts. However, for fouling faults in
the condenser, the accumulation of fouling in the coolant occurs continuously once the
condenser is in use. Therefore, in the case of condenser fouling faults, Ts can be set to 0,
indicating that predictions can be made from the beginning of the system’s operation. The
results of the corresponding RUL obtained through predictive operations throughout the
entire cycle under various settings of uncertain parameters are depicted in Figure 12. In
the figure, the solid black line represents the true values of the RUL. The black dashed
line represents the upper and lower limits of the error (with α set to 0.25). The red line
represents the mean of the prognosis results, while the blue line represents the range of the
results. Based on the standard deviation (0.0359) of the above fitting results, the prognosis
results obtained by setting uncertain parameters (0.01) of the same magnitude are poor, and
satisfactory prognosis results cannot be achieved. As the uncertain parameters decrease,
there is an improvement in the predictive performance of the RUL.
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Figure 12. RUL prognosis results under the prognosis method based on classic modeling:
(a) uncertain parameters σ(νt) = σ(wt) = 0.01; (b) uncertain parameters σ(νt) = σ(wt) = 0.001;
(c) uncertain parameters σ(νt) = σ(wt) = 0.0005; (d) uncertain parameters σ(νt) = σ(wt) = 0.0001.

Two performance evaluation indicators, CMAPE (cumulative mean absolute percent-
age error) and CMPCIL (cumulative mean percentage 95% confidence interval length), are
employed to assess the overall performance of the prognosis results throughout the entire
cycle. CMAPE takes into account the temporal accuracy of the prognosis results, while
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CMPCIL considers the temporal precision of the prognosis results. The calculation methods
for both are as follows:

CMAPE =
1

E− S + 1

E

∑
i=s

|r′(ti)− r(ti)|
r′(ti)

(36)

CMPCIL =
1

E− S + 1

E

∑
i=S

sup(CI(ti))− inf((CI(ti))

r′(ti)
(37)

where ts is the starting time of the prognosis, tE is the end time of the prognosis, r′(ti)
represents the RUL result obtained after executing the prognosis at time ti, r(ti) represents
the actual RUL result at time ti, sup(CI(ti)) represents the upper limit of the confidence
interval for the prognosis result at time ti, inf((CI(ti)) represents the lower limit of the con-
fidence interval for the prognosis result at time ti. The two evaluation indicators, CMAPE
and CMPCIL, consider all prognosis results from the start to the end of the prognosis phase
and are subjected to arithmetic averaging.

The performance testing was conducted on multiple datasets, and the calculated
results for the indicators are shown in Table 1. The table showcases the variation in
prognosis performance as the values of νt and wt change. The test results from multiple
datasets further indicate that setting uncertain parameters based on the standard deviation
of the curve fitting results does not yield effective results. As the parameters decrease,
CMAPE and CMPCIL show significant improvements, indicating a substantial enhancement
in prognosis performance. However, when the parameters reach a sufficiently low value,
further reducing the settings only leads to improvements in precision but marginal gains in
the accuracy of the prognosis results. The aforementioned results indicate that, when using
the prognosis method based on classic modeling, the setting of uncertain parameters has a
significant impact on the prognosis results. But obtaining appropriate parameter values
during the modeling process is not directly achievable, and it requires manual adjustment
to obtain suitable values.

Table 1. Calculation results of performance evaluation indicators for the prognosis method based on
classic modeling.

Uncertain Parameter 0.01 0.001 0.0005 0.0001 0.00005

CMAPE

Data9.2 1.58 1.96 1.42 1.18 1.16
Data412-2 4.07 1.50 0.51 0.39 0.39

Data1.2 5.55 0.80 0.57 0.50 0.50
Data1.1-2 4.35 0.51 0.25 0.22 0.22

average 3.89 1.19 0.69 0.57 0.57

CMPCIL

Data9.2 4.32 3.72 1.88 0.42 0.21
Data412-2 8.94 4.03 0.91 0.13 0.07

Data1.2 11.48 1.57 0.60 0.10 0.05
Data1.1-2 9.44 1.74 0.48 0.09 0.04

average 8.55 2.77 0.97 0.19 0.09

4.2. Differential Modeling Method

According to the performance test results, it is evident that the setting of uncertain
parameters significantly affects the prognosis’s performance. Prognosis methods based
on classic modeling can achieve acceptable results when uncertain parameters are appro-
priately configured. Indeed, the process of obtaining appropriate values for uncertain
parameters often involves multiple manual adjustments and lacks a clear determination
of the optimal values and quantification criteria for these parameters. The differential
modeling method can effectively address such issues. Follow the differential modeling
steps mentioned in the previous section to establish the differential model and quantify the
uncertain parameters.
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According to Step 1, the Savitzky–Golay algorithm is used to smooth the data. Random
noise in the original data can be eliminated. The obtained random noise is shown in
Figure 13a. The vertical axis in the figure represents the magnitude of the noise. Figure 13b
shows the statistical distribution of the noise, and it can be seen that it resembles a Gaussian
distribution. The “Frequency” axis represents the frequency of the noise in the statistical
sense. Based on its distribution and the standard deviation calculated as 0.0094, σ(νt) can be
set as this standard deviation. i.e., νt ∼ N

(
0, 0.00942). According to Step 3, the differential

operation is performed on the smoothed dataset, and the results are shown in Figure 14a.
The vertical axis in the figure represents the magnitude of the differential feature. The
distribution range of this is primarily within [0.0002, −0.001]. This range is smaller in
magnitude compared to the noise depicted in Figure 13a, indicating that the differential
feature is susceptible to being overwhelmed by random noise, making it challenging to
directly extract it. From the figure, it can be seen that the differential feature exhibits a clear
time-varying pattern. Therefore, it is possible to perform curve fitting on the differential
data to construct a corresponding differential model. The results of this modeling process
are illustrated in Figure 14b. The black curve in the figure represents the fitting results of
the differential model.
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The mathematical model obtained by fitting the differential feature using a 4-order
polynomial model is as follows:

g′(xt, t) = b0 + b1t + b2t2 + b3t3 + b4t4 (38)

where b = [b0, b1, b2, b3, b4] are the coefficients of the differential model.
The results obtained by subtracting the fitted data from the original data in Figure 14b

are depicted in Figure 15a. The vertical axis in the figure represents the magnitude of the er-
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ror between the calculated results of the differential model and the actual differential feature.
Figure 15b shows the statistical distribution of the error, where the “uncertainty” axis also
represents “error/◦C”. Similarly, based on its distribution, it closely resembles a Gaussian
distribution. Therefore, it can be treated as the uncertainty in the state transition process,
and its standard deviation is calculated to be 1.98× 10−4. i.e., ωt ∼ N

(
0,
(
1.98× 10−4)2

)
.

Based on the fitted g′(·), the corresponding state transition model is established, and then
combined with particle filtering for prognosis. The predicted RUL results are shown in
Figure 16a.
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Figure 15. Dynamic difference features and the fitting results: (a) State transition uncertainty;
(b) distribution of state transition uncertainty.
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Figure 16. RUL prognosis results under differential modeling and the comparison of prognosis results
under two modeling methods: (a) RUL prognosis results under differential modeling; (b) comparison
of prognosis results under two modeling methods.

Compared with the classic method, the prognosis method based on differential mod-
eling can simultaneously obtain the specific settings of model parameters and uncertain
parameters. Based on the comparison of the prognosis results in Figure 16b, the red line
represents the prognosis results based on classic modeling with uncertain parameters of
0.0005, while the blue line represents the prognosis results based on differential modeling.
The latter demonstrates an advantage in terms of stability in the prognosis results. In
prognosis results based on classic modeling, when dealing with data that contains noise,
the final results often exhibit significant random fluctuations. Similarly, performance testing
was conducted on multiple test datasets, and the evaluation indicator calculation results
obtained are shown in Table 2. The best CMAPE reached 0.09, with an average value of
0.35. Compared to the classic modeling method, the accuracy of the prognosis results was
further improved, and the best CMPCIL reached 0.13, with an average value of 0.18. Based
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on this, it can be seen that the prognosis method based on differential modeling can achieve
superior results in the prognosis of condenser fouling. It possesses excellent modeling
capabilities and effective management of uncertainties, eliminating the need for manual
adjustment and optimization of parameters to obtain acceptable prediction performance.

Table 2. Calculation results of performance evaluation indicators for the prognosis method based on
differential modeling.

Indicator Data9.2 Data412-2 Data1.2 Data1.1-2 Average

CMAPE 0.40 0.19 0.73 0.09 0.35
CMPCIL 0.21 0.18 0.21 0.13 0.18

5. Conclusions

According to the features of the digital twin being able to perform online parameter
correction based on real-time measurement data, this paper adopts an empirical equation
of fouling thermal resistance to reflect the basic law of fouling growth over time and then
uses measured data to calibrate the model parameters online. This approach enables the
establishment of a digital twin model for predicting condenser fouling thermal resistance.
Set the fouling fault into the simulation loop of the condenser and obtain the fault data of the
condenser heat transfer process, thus addressing the issue of insufficient data. Subsequent
research on fault prognosis methods is conducted using this fault dataset. This paper
adopts both the classic modeling method and the differential modeling method. In the
classic modeling method, the values of uncertain parameters are subjectively set. Therefore,
by setting different uncertain parameters, the impact of uncertainty on the prediction
results is analyzed. The results indicate that the setting of uncertain parameters has
a significant impact on the accuracy and precision of the prognosis results. However,
classic methods often focus only on obtaining high-quality model parameters without
systematically studying the issue of uncertain parameters. Although optimizing parameter
settings manually can effectively improve prognosis performance, there are limitations
to the extent to which parameter optimization can enhance the accuracy of the prognosis
results when the parameters are sufficiently small. Furthermore, this method is unable to
provide the optimal values for uncertain parameters and their quantification criteria. On
the contrary, the differential modeling method can directly obtain the values of uncertain
parameters during the modeling process while establishing a reliable model. Through the
quantitative analysis of prognosis results using performance evaluation indicators such as
CMAPE and CMPCIL, it is evident that the differential method achieves a lower average
CMAPE value of 0.35, surpassing the performance of the prognosis method based on classic
modeling. This indicates that the differential modeling method can achieve better results
without the need for manual adjustments. Based on the above analysis, it can be concluded
that the differential modeling method exhibits excellent overall performance when used
for the prognosis of condenser fouling.
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Nomenclature

Abbreviations
PSO Particle swarm optimization algorithm RUL Remaining useful life
PF Particle filtering algorithm CMAPE Cumulative mean absolute Percentage error
pdf Probability distribution function CMPCIL Cumulative mean percentage 95% Confidence

interval length
TTF Time to failure CI Confidence interval

Parameters
mf The mass of fouling on the unit heat transfer surface Goi The steam flow of other branches into the condenser
md The deposition rate of fouling Vs The volume of condenser steam space
mr The denudation rate of fouling hs Specific enthalpy of saturated steam in the condenser
hoi Specific enthalpy of steam-water mixture entering hsi Specific enthalpy of exhaust steam entering the

the condenser by other branches condenser of the low-pressure turbine
R f The fouling thermal resistance τ Time
ρ The fouling density Qc The heat dissipation of steam during condensation
λ The fouling thermal conductivity coefficient Kc The heat transfer coefficient of the condenser
v The cooling water flow rate ∆tc Heat transfer temperature difference
α, β Coefficients that are related to the Gc The condensation amount of main

structure of the condenser steam after condensation
θ The parameter set {A, B} Ar The heat transfer area
E(θ) Loss function hw The saturation water enthalpy
wpso The inertia weight of the Particle cp The specific heat of the condenser

swarm optimization algorithm tube side cooling water
r1, r2 Random numbers distributed between [0, 1] Gx The circulating water flow rate in the cooling tube
T2 The temperature of the condenser tube T1 The temperature of the condenser tube

side outlet cooling water side inlet cooling water
ρs The saturated steam density c1, c2 The learning factors
Gsi The steam flow of the low-pressure turbine Rc The total thermal resistance
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