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Abstract: Obtaining wind energy for the production of electric energy plays a key role in overcoming
the problems associated with climate change and the dwindling reserves of traditional types of
energy resources. The purpose of this work is to analyze current methods of energy estimation and
forecasting, to consider the main classifications of forecasts and methods used in their construction
and to review the main types of mathematical distributions used to calculate the speed and power
of wind flow, depending on specific geographical conditions. In recent years, there has been an
increase in the capacity of modern wind generators, which has significantly improved the efficiency
of wind energy parks. The initial stage in determining the feasibility of involving a particular energy
source in the overall energy system of the region is a preliminary assessment of the energy potential,
allowing one to determine the possible percentage of substitution of traditional energy. To solve
such a problem, it is necessary to use models of energy supply. Evaluation of wind as a resource
creates certain difficulties in modeling because this resource is stochastic and variable. In this regard,
this paper proposes to consider various models for estimating wind energy potential, which can
be classified into empirical models and models based on the application of modern intelligent data
analysis technologies. The paper presents an analysis of the existing models for estimating the amount
of energy, which can be used in a system designed to determine the most optimal configuration of
the energy system based on the use of different conversion technologies most relevant to the case
under study, and it also serves as the basis for creating digital twins designed to model and optimize
the operation of the projected energy complex.

Keywords: energy potential assessment models; intelligent models; renewable energy sources;
wind energy

1. Introduction

The increase in total costs and the adverse environmental impacts of traditional carbon
energy have led to an increase in research in the field of alternative energy. Wind energy has
been the fastest growing source of electricity generation in the world since the 1990s. One of
the main hindering restrictions on the use of wind energy is its changeable nature, as well as
the complex mechanism for storing wind energy generated by a wind turbine, which means
that such energy must be quickly integrated into the electric grid. As more and more wind
energy is included in the electricity markets, the ability to correctly and accurately predict
wind speed and power is becoming an increasingly important and urgent task. Since
many countries around the world are expanding their sources of renewable energy [1], it is
important to ensure stable generation when they are involved in energy systems. The scope
of renewable energy sources varies from large-scale and autonomous power generation
(for rural and remote areas) [2,3] to heating/cooling systems and transport.
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Power generation with renewable energy technologies (RES), such as solar, wind,
hydro, biomass and geothermal energy, involves sustainable energy sources and mitigates
detrimental environmental problems such as global warming and climate change [4]. To
prevent global climate change, many countries in the world have begun to adhere to the
goals of the decarbonization policy [5], according to which there is a transformation of
the energy sector aimed at significantly increasing the share of environmentally friendly
energy capacities in the world, such as photovoltaic and wind energy [6,7] and reducing
the use of hydrocarbon resources.

According to the International Energy Agency (IEA) and their Global Energy Outlook
2021 [8], the total use of renewable energy sources increased significantly from 4098 TWh
in 2010 to 7627 TWh in 2020.

According to projections [9], the total renewable energy generation will continue
to grow further, as shown in Figure 1. It can be seen that the leading position is taken
by hydropower generation; however, according to various sources, it is not attributed
to renewable energy sources, but a separate category [10], as a result of which the first
place in the amount of energy generated from the use of green energy is taken by wind
energy generation.
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The choice of location for wind turbines depends on the specifically localized wind
resource, which must be sufficient to generate the estimated power needed to replace
conventional energy. For example, flat terrain with high elevation or a seashore is ideal for
collecting wind energy on land, as opposed to terrain with a complex landscape (e.g., moun-
tainous terrain). Recently, there has been a significant increase in power generation capacity
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from offshore wind farms located in the world’s oceans, which is especially noticeable
in Europe, where there has been an annual increase in power generation since 2016 [11].
However, wind speed is subject to various seasonal and stochastic characteristics [12].
Accurate forecasts of wind speed and wind power are necessary for the stable and reliable
operation of the power system, and for increasing the competitiveness of the electricity
market. As a result, wind power prediction has become a hot topic in renewable energy, and
numerous researchers around the world have been directed to develop the most accurate
wind prediction models, leading to tremendous progress in the recent past. Variability in
wind speed directly affects wind power, resulting in unsteady power generation, which is
detrimental to the power system [13]. This creates serious problems when integrating wind
power into the power grid and can lead to system failures and performance degradation,
resulting in additional operation and maintenance costs.

Now the concept of organizing distributed electric networks [14] is becoming increas-
ingly widespread, which can combine several different sources of generation (not only by
location, but also by nature). When organizing such systems involving renewable energy
sources, many difficulties arise, the most significant of which is a wide range of power
fluctuations associated with the introduction of renewable energy generators, as a result of
which the task arises of combating the emerging fluctuations in the generated capacities
within the operated network, for which it is necessary to apply various technological
solutions and models that allow for taking into account the influence of the nature of
existing wind power fluctuations and resources on the modes of operation of the entire
network [15,16]. Optimization of planning and operation of distribution networks, includ-
ing transmission, substation, distribution and power equipment, is an intensively studied
topic in the energy sector [17,18]. With the integration of a large number of distributed
pieces of energy equipment, such as wind power, photovoltaic systems, and energy storage
equipment, it is necessary to use new planning approaches for a modern distribution net-
work in order to increase economic efficiency and determine the schedule of new connected
equipment for renewable energy production.

The second important aspect of the use of such distributed networks is the organi-
zation of storage systems, the functioning of which also differs depending on the type of
alternative energy source used (different models and algorithms are used for the operation
of batteries) [19], which are an integral part of modern energy systems with renewable
energy sources (both autonomous and distributed).

All these aspects require the use of specialized methods that differ from each other
depending on the type of energy involved: solar, wind, biogas, hydro, etc. However, these
stages follow after evaluating the efficiency of wind energy use in specific conditions of the
region, for which various approaches to forecasting and evaluating wind energy are used,
which will be considered in this work.

Currently, there are a large number of reviews on models and approaches in forecasting
wind resources, which are devoted to various aspects: forecasting the power of wind flows,
forecasting the amount of energy generated, estimates of the theoretical potential of energy,
some of which are presented in Table 1. A distinctive feature of this work is the combination
of approaches to estimating and forecasting energy, which, although similar to each other
conceptually, have some differences. Various types of methods are also considered: from
mathematical to models based on intelligent data processing and artificial intelligence
technologies. Another task of this review is to update the information by considering
the latest achievements and approaches in the field of forecasting and evaluation of wind
energy resources.



Energies 2023, 16, 5926 4 of 24

Table 1. Some of the existing reviews of wind energy assessment and forecasting methods.

Literature Year Advantages Limitations

Wen-Yeau Chang [20] 2014
The classification of forecasting models is
considered, various approaches, including

hybrid ones, are considered.

Classical mathematical models and models
of wind energy distributions are not

presented, there are outdated approaches.

Yuying Xie et al. [21] 2022

Various intelligent forecasting algorithms
are presented, metrics for evaluating their

accuracy are considered, and the
performance of models is evaluated.

No attention is paid to the existing
distribution of wind resources for the

theoretical assessment of the potential.

S Rajendra Prasad et al. [22] 2022 Current intelligent forecasting models
are presented.

There is no classification of methods, only
classification according to the prediction

horizon is presented.

Sanjeev Kumar Agarwal [23] 2013 Various statistical approaches for making
forecasts are presented.

There is no clear classification, other
approaches have not been considered,

some of the methods have lost relevance.

Bo Yang et al. [24] 2020

Extensive classifications of methods for
forecasting not only the power of the wind
flow, but also the prediction of uncertain
and unforeseen situations are presented.

Forecasting criteria are presented.

Distribution models for estimating the
theoretical potential are not considered.

This work is organized as follows: Section 2 presents the main approaches used
for the theoretical assessment of wind potential and contains mathematical expressions
necessary to calculate the amount of incoming energy. Section 3 examines an extensive
class of forecasting methods based on various approaches: statistical intelligent and hybrid
methods. Section 4 is a conclusion containing a summary of the results of this work and
possible applications of the methods considered.

2. Methods for Assessing the Potential of Wind Energy

The rapid growth of energy capacities in the world is associated with various factors,
such as the rapid development of society and the growth of the economic potential of
various countries. Against this background, there is a need to involve new types of energy,
one of which is wind energy, which has a number of advantages: abundance, prevalence,
low cost and negligible impact on the environment. However, this type of energy has its
own characteristic features (for example, changeable nature), as a result of which one of the
necessary stages of involving this resource is the need to assess the theoretical potential of
the amount of energy. A preliminary assessment of the energy potential is the first and most
important stage of the involvement of this resource in the energy system [25], since these
data are necessary for further forecasting the amount of energy received and generated,
and as a consequence the effectiveness of the introduction of an energy complex based on
wind turbines. In order to determine the most suitable location for installing a wind power
plant, it is necessary to obtain wind data [26] for which one or more anemometers, capable
of collecting data for a sufficiently long period of time (usually at least a year), are placed
at the proposed locations, for which such a system must be autonomous and record the
collected values [27,28], after which the obtained data are supplemented with the available
data from meteorological stations, on the basis of which it is possible to start assessing the
efficiency of the use of wind farms in the region under consideration. Another possible way
to obtain data is to refer to statistical long-term observations that are available to various
meteorological stations or can be obtained as a result of the operation of an existing wind
complex [29,30], which has a large number of measuring instruments, collecting data for
the implementation of internal monitoring procedures and optimization of the operation
process. As a result, the data obtained can be used for further refined assessment of the
potential of wind resources in a given area and the construction of more accurate and
long-term forecasts for electricity generation.
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Estimation of Wind Energy Potential Using Different Types of Distributions (Stochastic Wind
Energy Estimation)

One of the common ways to estimate the wind energy resource is the use of models
based on the probability Weibull distribution [31]. There are various approaches [32,33]
aimed at estimating the energy potential of wind energy, but methods based on the Weibull
and Rayleigh distributions have been found to be most applicable in practice [34].

The Weibull distribution function (probability density function) can be defined as [35]:

f (v) =
(

k
c

)(v
c

)k−1
e−(

v
c )

k
, (1)

where f (v) is the probability of wind speed, v is the wind velocity, and k and c are the
shape and scale parameters. k has no dimensional units, whereas the c parameter has the
dimensional unit as (m/s), similar to wind speed.

After integrating this expression, a cumulative Weibull distribution function can be
obtained [33,36], which is defined as follows:

F(v) =
∫ α

0
f (v)dv = 1− e−(

v
c )

k
, (2)

where α represents the highest wind speed under consideration and it changes according
to the site.

The predicted value of the wind speed, which is also known as the mean value, is
obtained from the Weibull distribution parameters k and c and can be defined as:

vm = cΓ
(

1 +
1
k

)
, (3)

where “Γ” is known as the gamma function.
The standard deviation for the Weibull distribution is defined as:

σ = c

√
Γ
(

1 +
2
k

)
− Γ2

(
1 +

1
k

)
(4)

After calculating the values of σ and vm, the shape and scale parameters can be defined
as: (

σ

vm

)2
=

Γ
(
1 + 2

k
)

Γ2
(

1 + 1
k

) (5)

From Expression (6), k can be found, and once k is calculated c is determined from the
following:

c =
vm

Γ
(

1 + 1
k

) (6)

If the coefficient k = 2, the Weibull distribution is converted to a Rayleigh distribution
calculated from the following expression:

f (v) =
( v
α2

)
e−

v2

2s2 , (7)

where α is the scale parameter and its units are m/s.
The following expressions are used to determine the most likely velocity of belief and

the energy produced:

VMP = c
(k− 1)k−1

k
, (8)
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VMaxE = c
k + 2

1
k

k
(9)

To determine the shape and scale parameters that are used in the Weibull distribution,
there is a number of different methods, the main of which include: the maximum likelihood
method, the method of moments, the least squares method, the graphical method, and
so on.

A particular case of the method of moments is the empirical method [37], according to
which:

k =

(
σ

vm

)−1.086
(10)

A number of papers [38–50] are devoted to consideration of models based on Weibull
and Rayleigh distributions. These papers describe various possible modifications applied
to models based on Weibull and Rayleigh distributions.

For example, [38] considers the Grinevich distribution and a modification of the
Weibull distribution, the Weibull–Hudrich distribution:

F(v, v, ∆v) =
∆v
v

a
(

∆v
v

)
e−k( va

v ), (11)

where F(v) is the wind speed repeatability, v is the average speed over the calculation
period, v is the speed whose relative repeatability is defined in the interval from (v− ∆v⁄(2))
to (v + ∆v⁄(2)), ∆v is the value of selected wind speed gradation. The values of the coefficient
a and the indices of degrees p and n characterize local features of the wind regime and may
vary within quite wide limits.

F(v) = k
vk−1

Ak e−(
v
A )k

, (12)

where k is the shape parameter (depends on the area of the terrain), A is the scale parameter
(depends on the average wind speed, A ~ 1.13 v).

According to the conclusion of the author of the paper, the Weibull–Hudrich distribu-
tion in various sources of literature is recognized as the most universal.

In [40], the authors additionally use expressions for determining the average energy
power and energy density:

PD =
P(V)

A
=

1
2

ρV3
m, (13)

where P(V) is defined as the wind power (in watt), PD is defined as the power density of
the wind (watt per square meter), ρ is defined as the site density of air that is assumed to
be 1.225 kg/m3 in this study, and A is the rotor blades’ swept area (in square meter).

The energy density is calculated as:

ED =
1
2

ρc3Γ
(

1 +
3
k

)
T, (14)

where Γ is defined as a gamma function and T is the specific period of time.
The authors also considered expressions to take into account changes in the Weibull

distribution parameters with height, because wind values that correspond to the height at
which the blades of the wind turbine are located are not always available:

V
V0

=

(
h
h0

)α

, (15)

where v is defined as the wind speed hub height (h), v0 is defined as wind speed original
height (h0), and α is defined as the surface roughness coefficient and is commonly assumed
to be 0.143.
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The parameters for the Weibull distribution, at the height difference, can be obtained
from the following expressions:

k(h) =
k0

[
1− 0.088ln

(
h0
10

)]
[
1− 0.088ln

(
h

10

)] (16)

c(h) = c0

(
h
h0

)n
(17)

n = [0.37− 0.088 ln(c0)]/
[

1− 0.088ln
(

h
10

)]
(18)

In [45], versions for two-parameter and three-parameter Weibull distributions are pre-
sented. The two-parameter Weibull distribution density function (PDF) and the cumulative
distribution function for wind, respectively, are given as:

f (v) =
k
A

( v
A

)k−1
e−(

v
A )k

; v > 0; k > 0; A > 0 (19)

F(v) = 1− e−(
v
A )k

(20)

For the case with three parameters, these functions take the following form:

f (v) =
k
A

(
v− θ

A

)k−1
e−(

v−θ
A )

k
;v > 0; k > 0; A > 0;−∞ < θ < ∞ (21)

F(v) = 1− e−(
v−θ

A )
k

(22)

where f (v) is the probability of observing wind, k is the shape parameter, A is the scale
parameter (m/s) and θ is the shift or location parameter (m/s) of the distribution.

Using such distributions improves prediction accuracy but requires more input pa-
rameters and increases computational complexity.

It was determined that the three-parameter distribution is the most versatile, however,
when it comes to low wind speeds. The two-parameter distribution is better suited.

In [47], the authors investigated fourteen different models based on the Weibull
distribution to determine which ones provide the best results. In particular, such methods
were investigated to estimate the parameters of the Weibull distribution: Graphical Method
(GM) [51], Moment Method (MM) or standard deviation method [52], Empirical Method of
Justus (EMJ) [53], Empirical Method of Lysen (EML) [54], Energy Pattern Factor Method
(EPFM) [55], Maximum Likelihood Method (ML) [56], Modified Maximum Likelihood
Method (MMLM) [54], Alternative Maximum Likelihood Method (AMLM) [57], Least
Square Method (LSM) [58], Weighted Least Square Method (WLSM) [58], Curve Fitting
Method (CFM) [53], Wind Variability Method (WVM) [55], Moroccan Method (MoroM) [55],
and Median and Quartile Method (MQM).

As a result, the authors determined that the wind variability methods and the Moroc-
can method are the worst at different wind speeds, in contrast to the coefficient method of
the energy model, which shows the best performance when evaluated by statistical criteria.
Similar results were obtained when estimating the density of wind energy distribution.

In [59], a study of five methods for estimating parameters of the Weibull distribution
was presented, and it was found that two methods, namely, the empirical method and
the method of moments, give the best approximation for all months considered during
the year.

It is worth noting that, in addition to the Weibull and Rayleigh distributions, other
types of distributions can be used to estimate wind energy, as presented in Table 2.
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Table 2. Different models characterizing the distribution of wind energy and wind speed.

Name Wind Power Density Function

Rayleigh [60] f (x, α) = x
α2 exp

[
− 1

2

( x
α

)2
]

Normal [52] f (x, α, µ) = 1
α
√

2π
exp
[
− 1

2

(
x−µ

α

)2
]

Log normal [61] f (x, α, µ) = 1
xα
√

2π
exp
[
− 1

2

(
ln(x)−µ

α

)2
]

Truncated normal [62]
f (x, α, µ) = 1

I(α,µ)α
√

2π
exp
[
− 1

2

(
x−µ

α

)2
]

where

I(α, µ) = 1
α
√

2π

∞∫
0

exp
[
− 1

2

(
x−µ

α

)2
]

dx

Logistic [62] f (x, α, µ) = 1

α
[
1+exp

(
x−µ

α

)]2 exp
(

x−µ
α

)
Log logistic [63] f (x, α, µ) = 1

xα
[
1+exp

(
ln(x)−µ

α

)]2 exp
(

ln(x)−µ
α

)
Generalised extreme value [52]

f (x, α, k, µ) =

1
α

[
1− k

α (x− µ)
]1/k−1

exp
{
−
[
1− k

α (x− µ)
]1/k

}
Nakagami [62] f (x, α, k) = 2kk

Γ(k)αk x2k−1exp
(
− k

α x2
)

Inverse Gaussian [60] f (x, α, µ) =
√

α
2πx3 exp

[
− 1

2
α
x

(
x−µ

µ

)2
]

Inverse Weibull [62] f (x, α, k) = k
α

(
α
x
)k+1exp

[
−
(

α
x
)k
]

Weibull [63] f (x, α, k) = k
α

(
α
x
)k−1exp

[
−
( x

α

)k
]

In [64,65], approaches to wind energy estimation using non-Gaussian models are
presented, the distinctive feature of which is the possibility of taking into account the
asymmetry inherent in wind indicators, which has a detrimental effect on the prediction
accuracy when using traditional models to work with time series for which asymmetric
gamma distribution is used.

In the study [66], the authors propose the concept of using mixed distribution models,
such as mixed Gaussian distribution, the mixed logistic distribution model and the mixed
Weibull distribution model, to estimate wind flow power fluctuations. The mixed Gaussian
distribution has the following form:

fMG(x) = u1
1√

2πσ1
e
− (x−µ1)

2

2σ2
1 + u2

1√
2πσ2

e
− (x−µ2)

2

2σ2
2 , (23)

where µ is the position parameter and expectation of the Gaussian distribution, σ is the
scale parameter and variance of the Gaussian distribution, and u1 u2—weighted coefficients
such that u1 + u2 = 1.

The mixed logistic distribution model can be defined as:

fML(x) = v1
e−

x−a1
b1

b1

(
1 + e−

x−a1
b1

)2 + v2
e−

x−a1
b1

b2

(
1 + e−

x−a2
b2

)2 , (24)

where a1, a2 are position parameters of each logistic distribution, b1, b2 are scale parameters,
and v1, v2 are weighted coefficients, with v1 + v2 = 1.

The mixed Weibull distribution model is presented below:

fMW(x) =

{
ω1

k1
λ1

(
x

λ1

)k1−1
e(

x
λ1

)k1+
ω2

k2
λ2

(
x

λ2

)k2−1
e(

x
λ2

)k2
, x ≥ 0

0, x < 0
, (25)

Mixing models allows for increasing the overall accuracy when using a certain kind of
distribution, but such an increase in the number of mixed models increases the nonlinearity
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of the model and can translate into excessive approximations, as a result of which incorrect
results may be obtained.

Another model presented by the authors is the maximum entropy distribution model,
which allows for the most complete consideration of all fluctuations. Emerging during
wind power generation. The maximum entropy distribution model is presented below:

S = −
∫ Pmax

Pmin

f (P) ln f (P)dP , (26)

where Pmax and Pmin—maximum and minimum output power, respectively, and ln f(P)—
self-information f (P).

The authors of the study [67] investigate various types of Lindley distribution, such
as Lindley’s power distribution, Marshall–Olkin Lindley distribution, Lindley’s Quasi
distribution, Lindley’s Gamma distribution, and Lindley’s Extended distribution. Based on
the analysis, the authors proposed the following new kind of distribution: “New Alpha
Power Transformed Power Lindley Distribution (NAPTPL)”, as presented below.

f (x) =
βθ2(1 + xθ

)
(1 + θ)

xβ−1e−θxβ
α−(1+

θ
1+θ xβ)e−θxβ

[
1 + log(α)

{
1−

(
1 + 1 +

θ

1 + θ
xβ

)
e−θxβ

}]
, (27)

where β and θ are scale parameters.
This distribution is much more flexible and versatile compared to the most common

Weibull and Rayleigh distributions.

3. Methods of Forecasting the Amount of Wind Energy

After assessing the theoretical potential of wind energy in a particular region, it is
possible to proceed to forecasting the amount of incoming and generated energy, taking
into account the use of specific conversion technologies. The use of various algorithms
and forecasting methods makes it possible to achieve a timely prediction of wind flow
fluctuations, which makes it possible to optimize the operation of power plants, and the
use of long-term forecasting methods makes it possible to estimate the amount of energy
generated and the economic efficiency of the operation of a wind power plant. Currently,
there are a huge number of forecasting methods, which are most often divided into long
-term and short-term. Long-term forecasts allow for making an assessment for several days
or months ahead, which requires a sufficiently large amount of data and consideration
of a variety of input variables, allowing for different weather factors [68]. In contrast to
short-term forecasts, long-term forecasts are most applicable for estimating the gross energy
potential, while short-term forecasts allow for real-time optimization of the energy system.

Some sources divide forecasts into four categories [69]: ultra-short-term, short-term,
medium-term, long-term, which are shown in Figure 2.
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The work [21,70] presents the time limits for the allocated forecast scales presented in
Table 3.

Table 3. Characteristics of forecast horizons.

Forecast Horizon Characteristic

Ultra-short-term Wind energy prediction from a few seconds
to 30 min

Short-term Wind energy forecast from 30 min to 6 h
Medium-term Wind power forecast from 6 h to 1 day

Long-term Wind energy forecast for more than 1 day

In this case, all methods can be divided into three groups—physical, statistical, and
intelligent methods—based on the use of modern approaches in data processing and hybrid
approaches [71], as illustrated in Figure 3.
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Each of these groups of methods has its own specific advantages and disadvantages.
Thus, the simplest and least expensive are the statistical methods, which are most applicable
for short-term forecasts, in contrast to the physical methods that can provide a sufficiently
long period of the forecast [69].

3.1. Physical Methods of Wind Energy Forecasting

These methods are the most fundamental approach to wind energy forecasting, based
on the use of various geographic parameters and meteorological data: humidity, air temper-
ature, pressure, etc. [72]. Sometimes, such models are called numerical weather prediction.

Most of the physical methods are based on computational fluid dynamics (CFD)
models. The most common models based on physical methods are:

• Regional ocean model system;
• Weather Research and Forecasting Model (WRF);
• Fifth generation mesoscale model (MM5);
• Numerical Weather Prediction Models (NWPMs).

These models are capable of accurate long-term prediction and have a higher spatial
and temporal resolution. Moreover, physical methods generally do not require large
amounts of historical data, and data are usually only needed to validate the model, but
they have large computational burdens, which makes them time-consuming [73].

Current physical models are complex computational methods, organized using mod-
ern technology. For example, in [74], a physical model for wind distribution mapping was
proposed, based on the use of Weibull distribution, geostatistical methods and machine
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learning. A distinctive feature of this model is its relative simplicity, since there is no need
to solve complex systems of equations describing thermal phenomena affecting the state of
the wind flow.

There are models [75] to simulate wind flow on rough terrain, resulting in the con-
struction of a map of wind energy distribution, which is necessary for the effective imple-
mentation of wind power plants.

In [76], the authors presented an approach, based on neural networks, which allows
for the simulation of turbulent flow and takes into account various physical effects (such as
the velocity trail), but this method is subject to errors in conditions of complex topography
and the presence of various obstacles, which are a priori facet of wind farm operation,
which does not allow one to make an accurate assessment of turbulent flows throughout
the wind power plant.

The study [77] presents an approach based on several numerical weather prediction
models. As a result, it is possible to improve the accuracy by 8–20%. The following known
NWPM models were applied in the study:

• ECMWF-ifs (IFS): a high-resolution global integrated forecasting system;
• Ukmo-euro 4 (EURO): a European model operated by the UK Meteobureau;
• MEPS: Norway’s operational weather forecast model, which is an ensemble model

with 10 members [78].

This combined use of several physical modeling methods has resulted in a new model
that performs better than each of the PPP models alone. At the same time, this model
makes it possible to successfully implement forecasts both at the point level and on a larger
scale, for example, at the level of a power plant.

In [79], a study aimed at assessing the capabilities of numerical weather forecasts to
estimate the energy potential of wind is presented. A specialized experimental setup was
used for verification, and the model used distributions such as normal distribution, oblique
normal distribution, stable distribution, and t-distribution. The authors hope in the future
to combine their developments in statistical modeling with some model of NPP with a
higher resolution, as a result of which the difference between the theoretically obtained
values and real data sets can be reduced.

The study [80] considers a physical model capable of providing the results of modeling
the movement of air flows in the atmosphere based on a large set of meteorological data.
Thus, the work [81] presents a model, which is based on the Kalman filter, using a Gaussian
distribution to describe and determine the meteorological parameters. Such approaches
are capable of providing high forecast accuracy, but this requires a high degree of reliability
of the input meteorological data, represented by a very extensive data set consisting of
observations over a long period of time.

There are a number of models proposed by different authors [82–84], which are
based on spatial correlation, which are used to build forecasts for wind speed and energy
generation on different time scales: from a few minutes to several hours. At the same time,
there is evidence [85] proving that physical models are aimed at medium- and long-term
forecasts, while they are more prone to calculation errors when making short-term forecasts.

The general algorithm of the forecast action when using numerical weather prediction
is shown in Figure 4 [86].
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3.2. Statistical Methods of Wind Energy Forecasting

Existing statistical methods for wind energy forecasting are usually based on various
time series models to characterize existing trends in the data under study based on the
maximum likelihood method or the least squares method. Historical wind speed data are
often used to build such models, without taking into account the various meteorological
information that is used when building physical forecasting methods.

The following approaches are used as basic statistical prediction models [73]:

• Autoregression;
• Stationary time series model;
• Moving average method;
• Markov chains;
• Autoregressive integrated moving average;
• Simple autoregressive moving average;
• Vector autoregressive moving average.

The main advantage of this approach is its low computational complexity and the
low requirement for input parameters (often, we need only wind speed data obtained
over a period of 12 months). However, we should also note a significant disadvantage of
this approach. These models do not always give adequate and satisfactory results, which
is most pronounced when the data are complex and purely nonlinear [87]. To solve this
problem and improve the overall accuracy of forecasting, classical statistical methods are
often used together with various filtering methods [88,89].

The most common approach to time series modeling is autoregressive moving average
(ARIMA), used for forecasting based on historical data, consisting of the autoregressive
(AR) model and moving average (MA) [90]:

ψ(B)(yt − µ) + ξq(B)at (t = 1, 2, . . . , m) , (28)

where yt is the actual values and at is the white noise at time t.
In [91], the ARIMA time series analysis model for short-term forecasting is presented.

The authors’ innovation is the use of an indirect approach to forecasting the amount of
energy produced, since initially the value of the wind speed forecast is determined, on
the basis of which the model of energy production is built. As a result, it is possible to
reduce the number of necessary input data for the model operation, but as a comparative
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study showed, the use of the direct approach provides greater accuracy than the use of the
indirect approach.

In a study [92], the authors propose the creation of a model for time series estimation
based on the autoregressive moving average model (ARIMA) and neural networks. To do
this, they conducted a study of five combinations of models: ARIMA; ARIMA + wavelet
transform; ARIMA + NN1 (neural network); ARIMA + NN1 + NN2; NN. The block
diagram of the model proposed by the authors is presented in Figure 5.
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Forecasting was carried out on four forecast horizons, which were previously pre-
sented in this work in Table 1; as a result, it was found that the combined model shows
acceptable results for all forecast horizon options, and the smallest contribution was ob-
tained when using the wavelet transform, in combination with which the model is little
different from the usual ARIMA model.

There are a large number of works based on the use of autoregressive methods: in [93],
the authors use the ARMA-GARCH model (generalized autoregressive with heteroscedastic
process), for interval wind estimates, which leads to improved overall model accuracy;
in [94,95], various approaches to wind energy forecasting based on historical data, including
the use of autoregressive methods; research [96] is devoted to considering different models
to work with linear and nonlinear time series: MSARIMA, ARIMA-GARCH, MSARIMA-
GARCH and MSARIMA-EGARCH. As a result, it was found that the ARIMA-GARCH
model provides the highest accuracy; researchers in [97] performed a combination of the
ARIMAX model with a machine learning model, resulting in the realization of monthly
and hourly wind speed forecasts; in [98], a hybrid regression-based model (sARIMA)
was proposed, which allows for analysis of seasonal features in historical data, applied
in conjunction with an artificial neural network designed for complex evaluation of non-
stationary components; in [99,100], a large comparative analysis of the performance of
classical methods of time series analysis and new intelligent approaches such as deep
learning and artificial neural networks was presented, as a result of which it was determined
that new intelligent approaches are extremely promising methods of forecasting and
estimation of time series.

In addition to such regression approaches, one can quite often find models using
different filters in the literature. In particular, the Kalman filter, which allows for reducing
the level of Gaussian noise in the studied variables and input data [101]: in [102], an
approach using the Kalman filter was proposed, which allows for improving the quality
of forecasts in numerical weather modeling; in [103], the Kalman filter was applied as a
tool for reducing potentially possible errors when making a regional forecast; in [104], two
models, namely, the ARIMA model and its modification with the joint application of the
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Kalman filter (ARIMA-KF) are considered, as a result of which it was determined that the
hybrid model based on the use of an autoregressive model and additional filtering allows
us to obtain a more accurate prediction and has better computational power.

3.3. Intelligent Models for Wind Energy Prediction

Recently, intelligent methods have been gaining popularity in all fields, allowing, with
proper tuning and optimization, one to ensure a high probability of solving the problem
and achieving better performance compared to traditional approaches [105,106]. The field
related to wind energy forecasting is not an exception, since the application of approaches
based on artificial intelligence technologies allows for solving one of the main problems
arising when using statistical approaches—the nonlinearity of the data [107].

The use of artificial intelligence technologies in modern systems based on renewable
energy sources is important at all stages of system design and operation [108]:

• Prediction of energy potential;
• Analysis of the stochastic uncertainty inherent in RES;
• Intelligent control of the entire energy system;
• System fault detection;
• Multipurpose optimization.

All AI methods used for solutions with RES can be divided into three main classes of
tasks: data processing, building predictions about the amount of theoretical energy values
and the amount of energy produced using specific conversion technologies [109], and
practical methods for the management and optimization of energy systems used, which is
shown in Figure 6.

Compared to physical and classical methods of statistical forecasting, which were
discussed earlier in this paper, methods based on artificial intelligence technologies and, in
particular, based on neural networks, allow for obtaining more accurate results, especially
when forecasting the amount of electricity generation and determining the performance of
a power plant based on RES [110].

Among the variety of such methods, let us mention the most common ones:

• Support Vector Machine (SVM);
• Back-propagation neural networks (BP);
• General Regression Neural Networks (GRNN);
• Radial Basis Function Neural Networks (RBFNN);
• Extreme Learning Machines (ELM);
• Deep and convolutional neural networks;
• Fuzzy logic.

A distinctive feature of such approaches is the ability to work with large data sets,
as well as the ability to generalize and identify hidden dependencies [111], but there are
a number of problems associated with overtraining, problems with convergence and the
emergence of local optima to eliminate, which requires much attention being given to the
process of forming an intelligent model for a particular problem and its training parameters.

Figure 7 presents a basic classification of intelligent methods that can be used for wind
energy prediction [112].

Table 4 shows some of the smart approaches for predicting wind speed and power.
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Table 4. Methods based on artificial intelligence technologies for wind energy forecasting.

Proposed Model Data Used Calculation Index

Artificial Neural Network (ANN) [113] Average 10 min wind speed data Average hourly wind speed
Back propagation neural network (BP) [114] Wind generation data from a wind turbine Wind speed and power

Artificial Neural Network (ANN) [115] Humidity, temperature, pressure information Wind flow energy
Artificial neural network with direct

connection (ANN) [116] Meteorological data Wind power

Artificial neural networks with forward and
backward feedback [117] Wind speed data (retrospective) Wind speed

An ensemble recurrent neural network [118] Wind speed data at 15 min intervals, obtained
at 50 m altitude Probabilistic wind speed prediction

Extreme learning machines [119] Historical time series with wind or solar
energy data Solar radiation and wind speed

Wavelet transform and neuro-fuzzy logic
inference [120]

Wind speed data, weather forecasts based on
NWP

Generation of amount of energy by a wind
farm

Variational decomposition model and
convolutional neural network [121]

Wind speed observation data, at 30-min
intervals (5760 observation points) Wind speed (medium-term forecast)

Support vector machine (SVM) [122] Data sets from three wind stations Wind speed (short-term forecast)

Neural networks with memory (LSTM) [123] Data from a wind farm Wind speed and wind power output (long
term prediction up to 72 h)

Machine learning algorithms [124] Historical wind speed data Wind power (long-term prediction)
Deep neural networks [125] Wind speed data from four wind farms Wind speed
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Figure 7. Classification of intelligent methods for predicting wind energy potential.

3.4. Hybrid Models for Wind Energy Forecasting

Hybrid forecasting methods refer to the ability to use different physical, statistical, and
intelligent methods together. This combination of methods makes it possible to increase
the accuracy of forecasting, which cannot be achieved using standard approaches, be
it probabilistic or statistical methods for time series analysis [69]. Figure 8 presents a
classification of different hybrid model structures for wind energy forecasting:
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According to a study [21], hybrid prediction models can be divided into two large
categories: models based on metaheuristic optimization and models based on ensem-
ble learning.

Table 5 presents some of the hybrid wind energy estimation methods.

Table 5. Hybrid methods for estimating wind energy potential and predicting wind flow capacity.

Proposed Model Data Used Calculation Index

Regression model based on fuzzy logic [126] Time series with data and wind speeds Wind speed and direction
Neural networks and the k-nearest neighbor

method [127] Incomplete time series with chaotic behavior Wind speed

Linear regression and nonlinear machine
learning algorithm [128]

Hourly meteorological records 9(from three
different cities) wind direction, temperature,
dew point, atmospheric pressure, humidity

Wind speed

Empirical mode decomposition combined with
autoregressive integrated moving average and

generalized autoregressive estimation [129]
Time series Wind speed

Wavelet packet decomposition, full ensemble
empirical decomposition with adaptive noise

and artificial neural networks [130]
Time series Wind speed and wind flow energy

Decomposition methods and artificial
intelligence (ANN), an artificial neuro-fuzzy

inference system [131]
Historical wind speed data Forecasting wind power one hour ahead

Time series analysis and multi-criteria
optimization by differential evolution

algorithm [132]
Fuzzy time series Wind speed

Jensen’s mathematical trace theory, stochastic
reliability model and failure tree [133] Given from a wind power plant Predicting the amount of energy generated

ARIMA- ANN [97] Wind speed, pressure, temperature,
precipitation Wind speed

Holt-Winters model, ANN [97] Wind speed data Wind speed
Long-term short-term memory neural network

(LSTM), enhanced variation mode
decomposition (IVMD), and sampling entropy

(SE) [134]

Historical wind speed data Short-term wind energy prediction

ARIMA-KalmanARIMA-ANN [135] Wind speed data Wind speed
Weibull-ANN [136] Monthly wind speed data Seasonally wind speed data
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4. Conclusions

In this work, different types of existing models were considered, which can be divided
into probabilistic models based on different types of distributions, physical models designed
to accurately estimate and model physical processes in the distribution of wind flows,
statistical models that allow one to determine trends based on historical time series, models
based on artificial intelligence methods aimed at predicting the amount of wind energy
and wind speed in different geographical regions, and hybrid models. It is also possible to
define the main distinguishing features of the models considered, depending on their type:

• Physical: They are based on different meteorological values (wind direction and speed,
temperature, humidity, pressure, etc.), allow medium- and long-term forecasting, but
require sufficient computing power and are very complex, but provide high accuracy.

• Statistical: They use different time series (wind velocity, wind flow energy, amount
of generated energy, etc.), allow for making forecasts for all considered horizons and
are the simplest to implement, but have a large forecasting error, reaching values of
20–40%.

• Probabilistic models: They use different kinds of distributions in their basis and allow
for determining theoretical values of wind velocity for a selected point and wind flow
power, and with the right choice of scale parameters allow for achieving high accuracy
in calculations.

• Models based on machine learning: They are based on different artificial intelligence
methods taking wind speed and wind flow power data (including chaotic time series
with incomplete data) as input, are able to make forecasts for all forecast horizons, but
show the best results for short-term forecasts.

• Hybrid methods: They are based on a combination of different methods, are able to
realize any forecast horizon on available data and provide the best forecast accuracy
compared to all other approaches.

Separately, we note that these estimation and forecasting models were considered for
the cases of designing power plants, and they differ from the approaches used to assess the
potential of power plants located at sea, since additional fluctuations in atmospheric flows
are introduced by the movement of sea waves [137].

These models are often used to implement forecasting systems that allow for estimat-
ing the amount of energy production, which is presented in various software products
for assessing the energy potential of RES [138]. However, given the current trends, the
forecasting subsystem can be reorganized into a digital twin [139], designed for the in-
tegrated modeling of various systems, including energy systems using RES [140]. Thus,
a completely different system is obtained, which significantly expands its functionality,
allowing the transition from simple forecasting to comprehensive modeling and testing of
the energy system to determine the efficiency of its functioning.

The digital twin includes several different subsystems [141], such as the control system,
data acquisition and processing system, data transmission system and the system of model-
ing and forecasting, the implementation of which is exactly what the models discussed in
this paper require. Since the digital twin can have different levels of representation, such as
prototype, instance, and aggregated twin [142], it is necessary to form the most appropriate
combination of the models used, which allows one to implement the necessary structure of
the implemented digital twin.

Thus, this work allows researchers to get acquainted with existing developments in
the field of modeling and forecasting wind energy and to choose the most appropriate
models for their research. Of course, this work does not cover the whole list of existing
models and approaches, but it describes all the main types of existing models and describes
their main characteristics and merits, allowing one to determine the most appropriate type
of model for a particular study.
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Abbreviations

f (v) the probability of wind speed;
v the wind velocity (m/s);
k shape parameters;
c scale parameters (m/s);
Γ gamma function;
F(v) the wind speed repeatability;
v average speed (m/s);
A the scale parameter (depends on the average wind speed, A ~ 1.13 v);
P(V) defined as the wind power (in watt);
PD defined as the power density of the wind (watt per square meter);
ρ is defined as the site density of air that is assumed to be 1.225 kg/m3;
T the specific period of time;
v0 defined as wind speed original height (h0);
θ the shift or location parameter (m/s);
u1u2 weighted coefficients such that u1 + u2 = 1;
Pmax maximum output power (Wt);
Pmin minimum output power (Wt);
ln f (P) self-information f (P).
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