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Abstract: In the process of parameter identification, sensitivity analysis is mainly used to determine
key parameters with high sensitivity in the model. Sensitivity analysis methods include local
sensitivity analysis (LSA) and global sensitivity analysis (GSA). The LSA method has been widely
used for power system parameter identification for a long time, while the GSA has started to be used
in recent years. However, there is no clear conclusion on the impact of different sensitivity analysis
methods on parameter identification results. Therefore, this paper compares and studies the roles that
LSA and GSA can play in different parameter identification methods, providing clear guidance for
the selection of sensitivity analysis methods and parameter identification methods. The conclusion
is as follows. If the identification strategy that only identifies key parameters with high sensitivity
is adopted, we recommend still using the existing LSA method. If using a groupwise alternating
identification strategy (GAIS) for high- and low-sensitivity parameters, either LSA or GSA can be used.
To improve the identification accuracy, it is more important to improve the identification strategy
than to change the sensitivity analysis method. When the accuracy of the non-key parameters with
low sensitivity cannot be confirmed, using the GAIS is an effective method for ensuring identification
accuracy. In addition, it should be noted that the high sensitivity of a parameter does not necessarily
mean that the parameter is identifiable, which is revealed by the examples used in this paper.

Keywords: global sensitivity analysis; local sensitivity analysis; parameter identification; power
system modeling

1. Introduction

Power system research mainly relies on mathematical model-based simulations. The
complete simulation model of the power system fuses the models of generation, trans-
mission, distribution, and power consumption equipment. Therefore, the accuracy of
various equipment models is a prerequisite for the authenticity of power system simulation
results. Since the working principles of electrical equipment are clear, the equations of these
equipment models can be considered correct. Therefore, the difficulty of power system
modeling is to obtain accurate model parameters. At present, parameter identification is
an important way to obtain the true parameter values of the electrical equipment model.
Therefore, improving the accuracy of parameter identification is of great significance for
power system modeling and simulation.

Parameter identification is essentially an optimization problem that involves finding
the optimal values within the parameters’ possible range of values so the model output is as
consistent as possible with the measured results. The determination of the parameter value
range must conform to the physical background of the parameter but also requires strong
engineering judgment. It is very important to determine the identifiability of parameters
and their exact value range, otherwise the identification results will have no practical
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meaning. The current widely used power system parameter identification process is shown
in Figure 1. There are three main steps in the process. The first step is to analyze the
identifiability of the parameters to ensure that the value of the parameter can be uniquely
determined in theory [1,2]. The identifiability can be analyzed by formula derivation [3]
or numerical methods based on time-domain sensitivity trajectories [4]. Parameters that
are not identifiable do not participate in the identification process. The second step is to
analyze the possibility of the accurate identification of the identifiable parameters based on
sensitivity. Generally, parameters with high sensitivity are regarded as key parameters in
the model and are easy to accurately identify; parameters with low sensitivity are regarded
as non-key parameters, and the identification accuracy is usually low. Since there are often
many parameters in a model, when all the parameters are identified at the same time, the
number of iterations of the identification algorithm needs to be significantly increased as
the risk of falling into a locally optimal solution increases. Therefore, in the engineering
practice of power system parameter identification, only the key parameters are identified,
and the unidentifiable parameters and non-key parameters are usually set to typical val-
ues or empirical values [5–9]. The third step is to identify the selected key parameters
based on the dynamic response of the electrical equipment under the actual disturbance
of the power grid. Parameter identification has been widely used in various electrical
equipment in power systems, such as synchronous generators [10,11], excitation con-
trollers [12,13], transmission lines [14,15], electric loads [16], renewable power generation
equipment [17–19], and energy storage system [20].
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From the existing practical application of parameter identification, it can be found
that sensitivity analysis plays an important role in the identification process. However,
the sensitivity analysis method used in power system parameter identification is mainly
trajectory sensitivity, which is a local sensitivity analysis (LSA) method that considers the
impact of a single parameter change on the model output. In the family of sensitivity
analysis methods, there is also a type of global sensitivity analysis (GSA) method [21–23].
The GSA method analyzes the influence of each input or parameter on the model output
when all model inputs or parameters change randomly. Compared with LSA, GSA can more
comprehensively analyze the impact of the uncertainty of inputs or parameters on model
output. The GSA method has a wide range of applications in many disciplines, such as
hydrological modeling [24], biomedical science [25], earth system modeling [26], evaluating
ecological resilience [27], building performance analysis [28], train traffic scheduling [29],
and wind resource assessment [30]. In recent years, the application of GSA methods
in power systems has gradually increased, including the analysis of the uncertainty of
renewable energy generation [31,32] and its relationship with the reliability of the power
system [33], the voltage control of the distribution network [34] and the voltage stability
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of the transmission grid [35–37], the analysis of the maximum load ability of islanded
microgrids with distributed generation [38,39], the analysis of the key influencing factors
of small disturbance stability [40,41], the analysis of the influence of various parameters
on locational marginal prices in electricity market [42], the analysis and optimization of
key parameters of power generation system [43,44], the improvement of the power output
estimation model [45], and the cost model [46] of wind power generation. In these studies,
the variance-based Sobol method was the main GSA method used. However, there are
few studies on the use of GSA in power system parameter identification. Reference [47]
applies the Sobol method to the parameter identification of the load model. By only
identifying the high-sensitivity parameters, the identification difficulty is reduced, and
the identification efficiency is improved. Reference [48] also used the Sobol method to
analyze the sensitivity of seven parameters in the electrical model of the lithium-ion
battery, divided the parameters into three groups according to the sensitivity, and proposed
a groupwise alternating identification strategy (GAIS) to iteratively identify the three
groups of parameters, achieving a good fit with the experimental data. Compared with
the existing method of only identifying high-sensitivity parameters, although the GAIS
is more complicated in steps, it has the advantage of not only increasing the number of
identification parameters but also improving the identification accuracy, so we believe that
this method has a good application future. We used the GAIS in Section 6 and made some
improvements to it.

Overall, the use of LSA in power system parameter identification has a long history,
and in recent years, GSA has gradually begun to be adopted. However, there is no clear con-
clusion on the impact of different sensitivity analysis methods on parameter identification
results. This paper compares and studies the roles that LSA and GSA can play in different
parameter identification methods, providing clear guidance for the selection of sensitivity
analysis methods and parameter identification methods. The LSA method used in this
paper is the widely used trajectory sensitivity analysis, and the GSA methods used include
the Sobol method, Morris method, regional sensitivity analysis, scatter plots, and Andres
visualization test. In our research, the Sobol method was implemented by programming,
and the other four GSA methods were implemented using an open-source GSA toolbox
named SAFE [49,50]. All these sensitivity analysis methods are introduced in Section 2.
A generator excitation system model is introduced as a parameter identification object in
Section 3. The reason for choosing this model is that the identifiability of its parameters
can be analytically analyzed by formula derivation, which is impossible for other complex
models. In Section 4, we analyzed the sensitivity of excitation system model parameters
using the LSA and GSA methods and compared the differences in the analysis results.
In Sections 5 and 6, we used the traditional parameter identification method shown in
Figure 1 and the improved GAIP method proposed in Section 6 for parameter identification,
respectively. Following that, we compared and analyzed the selection of sensitivity analysis
methods and parameter identification methods from the identification accuracy and other
perspectives, and finally provided clear recommendations.

2. Sensitivity Analysis Methods
2.1. Local Sensitivity Analysis Method

The LSA method described below refers to the trajectory sensitivity analysis method,
which is a kind of time-domain sensitivity analysis method that is widely used in power sys-
tem parameter identification. The trajectory sensitivity reflects the change in the dynamic
response of the power system or power equipment with the change in a certain param-
eter. The trajectory sensitivity is the derivative of the trajectory to the parameter [8], as
in Equation (1):

∂yi(θ, k)
∂θi

= lim
∆θj→0

yi(θj+, k)− yi(θj−, k)
2∆θj

(1)

where yi is the ith output of a multiple input multiple output system; k is the index of the
sampling point in yi; θ represents all parameters in the model; θj+ represents that the jth
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parameter θj in θ is increased by ∆θj; θj− represents that θj is reduced by ∆θj. In the actual
calculation of trajectory sensitivity, the numerical difference method shown in Equation (2)
is usually used [8].

∂[yi(θ, k)/yi0]

∂[θi/θi0]
=

[yi(θj+, k)− yi(θj−, k)]/yi0

2∆θj/θi0
(2)

where θj0 is the actual value of θj and yi0 is the steady-state value of yi(θ, k) when θj equals θj0.
The analysis result of the trajectory sensitivity shows a curve that changes with time,

and it is not convenient to directly compare the parameter sensitivity. Therefore, it is also
necessary to calculate the average value of the trajectory sensitivity for the sorting of the
sensitivity of each parameter [8], as in Equation (3):

Sij =
1
K

K

∑
k=1

∣∣∣∣∣∂[yi(θ, k)/yi0]

∂[θj/θj0]

∣∣∣∣∣ (3)

where Sij represents the sensitivity of the jth parameter to the ith output signal and K is the
number of sampling points of the output signal.

Note that there is no absolute standard for the level of sensitivity and that only
the relative size can be used to evaluate which parameter has a greater impact on the
model output.

2.2. Global Sensitivity Analysis Method

The five GSA methods used in this paper are listed in Table 1. The numerical value in
the results of the numerical GSA method directly represents the sensitivity of the parameter,
which is consistent with the form of the LSA result. The analysis result of a visualized GSA
method is an image rather than specific values. The sensitivity of parameters depends on
the shape of the graph rather than the value represented by the graph. In the following, a
brief explanation of how to interpret the analysis results of each GSA method is given.

Table 1. Five GSA methods used in this paper.

Numerical GSA Method Visualized GSA Method

Sobol method
Morris method

Regional sensitivity analysis
Scatter plots

Andres visualization test

2.2.1. Sobol Method

The Sobol method is based on variance decomposition. For a model with n parameters,
the Sobol method can calculate the first-order sensitivity to the nth-order sensitivity and
the total-order sensitivity. The first-order sensitivity Si represents the influence of a single
parameter on the model output [51] and is calculated as

Si = V(E(Y|Xi))/V(Y) (4)

where V(·) represents the variance; V(Y) is the unconditional variance in Y when all
parameters change; Xi represents a series of possible values of parameter xi within its value
range; E(Y|Xi) represents the average value of Y when the value of xi is fixed and other
parameters except xi are changed. When calculating the second-order sensitivity Sij, the
values of ith and jth parameters are fixed and other parameters are changed, and the other
high-order sensitivities can be deduced by analogy. Sensitivity from the second order to the
nth order can be used to analyze the correlation between the parameters. The total-order
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sensitivity STi is the accumulation of the first-order to the nth-order sensitivity [51] and is
calculated as Equation (5).

STi = Si + Σ
i

Σ
j>i

Sij + Σ
i

Σ
j>i

Σ
l>j

Sijl + · · ·+ S123···n (5)

Note that the relevance of parameters and the identifiability of parameters are not
equivalent, so we paid more attention to the first-order sensitivity and total-order sensitivity
in parameter identification. If the first-order sensitivity of a parameter is small, it cannot
be concluded that its influence must be small because it can also play a role through other
related parameters, while if the total-order sensitivity of a parameter is small, the influence
of this parameter must be small.

2.2.2. Morris Method

The Morris method is also called the elemental effects test [51]. The elementary effect
is calculated as Equation (6).

EEi =
Y(x1, · · · , xi + ∆, · · · , xk)−Y(x1, · · · , xk)

∆
(6)

where ∆ represents a set of preset changes. Equation (6) is similar to the formula of LSA,
but each parameter in Equation (6) is randomly selected. When calculating the elementary
effects, only one parameter changes each time. The Morris method counts the mean µ
and standard deviation (STD) σ of the elementary effects of each parameter. When the
mean value of the elementary effects of a parameter is small, it means that the sensitivity of
the parameter is low; when the STD of a parameter is small, it means that the correlation
between the parameter and other parameters is weak.

2.2.3. Regional Sensitivity Analysis Method

The SAFE toolbox provides a variant of regional sensitivity analysis (RSA) tech-
nology, which is called “RSA based on grouping” [49,50] and is referred to as the RSA
method in this paper. The RSA method first divides the parameter samples into a given
number of groups according to the output of the model. Each group has an equal num-
ber of samples. Following that, the cumulative distribution function (CDF) was calcu-
lated for each parameter in each group. When the parameter sensitivity is high, its CDF
curves are separated; when the parameter sensitivity is low, its CDF curves are close or
even overlapping.

2.2.4. Scatter Plot Method

To draw a scatter plot, the model outputs should be calculated first, corresponding
to the parameter samples. The horizontal axis of the one-dimensional scatter plot is the
value of a certain parameter, and the vertical axis is the value of the model output. In a
one-dimensional scatter plot, if the sensitivity of a certain parameter is high, the graph
composed of its scatter points will be regular rather than scattered. To determine the
correlation between any two parameters, a two-dimensional scatter plot can be drawn.
The horizontal and vertical axes of the two-dimensional scatter plot represent the values
of the two parameters, and the values of the model output are represented by different
colors. If there is a correlation between the two parameters, the maximum or minimum
value of the model output will appear in the two-dimensional scatter diagram as obvious
“spots” instead of “color bands” or scattered in the two-dimensional scatter chart [50].
However, the scatter plot method has difficulty evaluating the correlation between three or
more parameters.

2.2.5. Andres Visualization Test Method

The Andres visualization test (AVT) is also a kind of scatter plot. The AVT first
calculates the following three sets of model output samples [50]:
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Y: Model output samples obtained after all parameters have been changed;
Y1: Model output samples obtained by changing all parameters except the i-th parameter;
Y2: Model output samples obtained by changing only the i-th parameter.
If the scatter plot (Y, Y1) aligns along the diagonal line from the lower-left corner to

the upper-right corner and the scatter plot (Y, Y2) looks like a horizontal line, this suggests
that the i-th input is noninfluential; that is, that the sensitivity of the i-th parameter is low.

Overall, the results of the numerical GSA methods are clearer than those of graphical
GSA methods, and it is easy to compare the sensitivities among parameters. The graphical
GSA methods are suitable for qualitative analysis.

3. Model of Excitation System

There are many types of synchronous generator excitation system models. We took
the excitation system model shown in Figure 2 as an example to compare the LSA method
and the GSA methods. This model is called Type-I AVR Model in a widely used power
system simulation software PSASP V7.35 in China and can be found in the Dynamic
Element Model Library User’s Manual of this software. For the convenience of analysis,
the saturation elements in the model have been omitted, and the element for calculating the
voltage deviation ∆U has been moved before the filter. The input of the model is −∆U, and
the output of the model is the variety of excitation voltages ∆E. There are seven parameters
in this model, as listed in Table 2.
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Table 2. Parameters in the model of the excitation system.

Parameter Symbol Typical Value

Filter gain Kr 1.00
Regulator gain Ka 20.00
Stabilizing circuit gain Kf 0.04
Filter time constant Tr 0.04 s
Regulator time constant Ta 0.04 s
Stabilizing circuit time
constant Tf 0.70 s

Exciter time constant Te 0.80 s

It should be noted that the excitation system model is used as an example not because
obtaining the model parameters is difficult in engineering, as many of them can be obtained
from the OEM datasheet, but because the identifiability of all parameters of this model
can be analytically analyzed by the following formula derivation. Thus, when we discuss
the causes of large errors in parameter identification below, we can clearly point out the
identification error of which parameter comes from the identifiability problem and that of
which parameter comes from the identification method problem. The identification method
can be improved; however, the identifiability problem is determined by the model structure
and input/output variables. Even if the input/output variables can be changed, they may
not be able to solve the identifiability problem.

The identifiability of all parameters in this model is derived as follows:
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According to the block diagram shown in Figure 2, the complete transfer function G(s)
of the excitation system can be obtained as Equation (7). The expressions of each coefficient
in G(s) are shown in Equations (8)–(13).

G(s) =
b1s + b0

a4s4 + a3s3 + a2s2 + a1s + 1
(7)

a4 = TaTeTrTf (8)

a3 = TaTe(Tr + Tf ) + (Ta + Te)TrTf (9)

a2 = TaTe + (Tr + Tf )(Ta + Te) + TrTf + K f KaTr (10)

a1 = (Ta + Te) + (Tr + Tf ) + K f Ka (11)

b1 = KaKrTf (12)

b0 = KaKr (13)

For G(s) in Equation (7), according to the measured data of ∆U and ∆E, the coefficients
{a4, a3, a2, a1, b1, b0} can be identified first. Following that, the seven parameters can be
solved according to Equations (8)–(13). The identifiability of the seven parameters listed in
Table 2 is analyzed through formula derivation as follows.

First, we found that KaKr appears only in Equations (12) and (13) and that KaKr as a
whole can be directly obtained from Equation (13), resulting in values of Ka and Kr that
cannot be uniquely determined. Therefore, KaKr is identifiable, while neither Ka nor Kr
are identifiable.

Then, according to Equations (12) and (13), Tf can be obtained as

Tf = b1/b0 (14)

Substituting Equation (14) into Equations (8) and (11), we obtain

TaTe = a4b0/Trb1 (15)

a1 = (Ta + Te) + Tr +
b1

b0
+ K f Ka (16)

Substituting Equation (15) into Equations (9) and (10), we obtain

a3 =
a4b0

b1
+

a4

Tr
+

b1

b0
Tr(Ta + Te) (17)

a2 =
a4b0

b1Tr
+ Tr(Ta + Te) +

b1

b0
[Tr + (Ta + Te)] + K f KaTr (18)

According to Equations (16)–(18), the values of Tr, (Ta + Te), and KfKa can be deter-
mined as 

T4
r − a1T3

r + a2T2
r − a3Tr + a4 = 0

Ta + Te =
b0
b1

(
T2

r − a1Tr + a2 − a4b0
b1Tr

)
K f Ka = a1 − b1/b0 − Tr − (Ta + Te)

(19)

In Equation (19), the equation of Tr is a one-variable quaternary equation whose
root-finding formula is too complicated to use to analyze the results. Therefore, we adopted
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numerical analysis. According to the typical values of the parameters listed in Table 2, we
can obtain the four roots of Tr as

Tr(1) = 2.0417, Tr(2) = 0.2553
Tr(3) = 0.0430, Tr(4) = 0.0400

(20)

Considering that both (Ta + Te) and KfKa should be greater than zero, Tr(1) can be
excluded. Considering that the value of Tr is usually in the range of [0.00 s, 0.06 s], Tr(2) is
excluded. However, Tr(3) and Tr(4) cannot be further screened. Therefore, we obtained two
groups of solutions for Equation (19) as follows:

Tr = 0.0430
Ta + Te = 0.8334
K f Ka = 0.8036

or


Tr = 0.0400

Ta + Te = 0.8400
K f Ka = 0.8000

(21)

Considering that the difference between the two solutions in Equation (21) is less than
1%, it is approximately considered that Tr, (Ta + Te), and KfKa are identifiable.

Finally, after the value of (Ta + Te) is obtained, the values of Ta and Te can be obtained
according to Equation (15). Therefore, both Ta and Te are identifiable. Although the value
of KfKa can be obtained, KfKa always appears as a whole. Therefore, KfKa is identifiable;
however, neither Kf nor Ka are identifiable.

In summary, in the excitation system model, the parameters KaKr, KfKa, Tr, Ta, Tf, and
Te are identifiable, while Kr, Ka, and Kf are unidentifiable. Therefore, we want to emphasize
that the high sensitivity of parameters does not mean that parameters can be uniquely
identified. The sensitivity analysis results in the next section show that the sensitivities of
Kr, Ka, and Kf are significantly higher than other parameters; however, their values cannot
be uniquely determined according to the identifiability analysis result. In Sections 5 and 6,
both KaKr and KfKa are taken as single parameters for identification.

4. Sensitivity Analysis Results

This section will use the LSA method introduced in Section 2.1 and five GSA methods
introduced in Section 2.2 to perform sensitivity analysis on the excitation system model
parameters introduced in Section 3 and compare the analysis results.

The input used in the following sensitivity analysis is a voltage sag with a duration of
0.2 s and depth of 0.1 p.u.

For GSA, the output of the model is defined as the mean relative error (MRE) between
the response of the excitation system with unchanged parameters and the response after
parameter changes as follows:

MRE =
1
N

N

∑
k=1
|[yc(k)− y0(k)]/y0(k)| × 100% (22)

where N is the number of data points on the excitation system output curve; k is the index
of the data point; y0 is the response with unchanged parameters; yc is the response after
parameter changes; both y0 and yc are the sum of the steady-state value of the excitation
voltage and the variety of excitation voltage output by the excitation system model.

4.1. LSA Results

To facilitate the comparison of the sensitivity of each parameter, we normalized the
LSA results based on the maximum sensitivity value. Figure 3 shows the normalized values
of the local sensitivity of the seven parameters.
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Figure 3. Normalized local sensitivity values of the seven parameters.

There is no uniform standard for determining the key parameters that need to be
identified according to the sensitivity, and it is often determined based on the experience of
the researcher. We took 1/10 of the maximum sensitivity as the boundary for distinguishing
high and low sensitivity. Therefore, the most sensitive parameters Kr and Ka are definitely
recognized as key parameters. Since the sensitivity of Kf, Tf, and Te is larger than 1/10 of
the maximum sensitivity, they are also regarded as key parameters. The sensitivities of Tr
and Ta are only approximately 1/15 and 1/16 of the maximum sensitivity, respectively, and
they can be regarded as non-key parameters.

4.2. GSA Results

We refer to the typical values of the excitation system parameters in a simulation
software named PSASP V7.35 which is developed by China Electric Power Research
Institute and set the value ranges of the seven parameters as listed in Table 3. When
performing GSA, each parameter is set to be uniformly distributed within its value range,
and Latin hypercube sampling is used when sampling the parameters, which is a commonly
used GSA setting. To ensure the convergence of the analysis results of the numerical GSA
methods, the number of parameter samples is 5000. For the graphical GSA methods, the
number of parameter samples is 3000, and the generated graphics are clear enough to judge
the sensitivity of the parameters.

Table 3. Value range of the excitation system parameters.

Parameter Value Range Parameter Value Range

Kr [0.01, 2.00] Tr [0, 0.06]
Ka [1, 100] Ta [0, 0.2]
Kf [0.01, 0.5] Tf [0, 2]

Te [0, 2]

4.2.1. Sobol Method

Figure 4 shows the normalized sensitivity values of the excitation system parameters
obtained using the Sobol method. Although the ranking of parameter sensitivity is consis-
tent with the LSA result, the sensitivity difference between the high- and low-sensitivity
parameters is significantly greater than the LSA result. For either the first-order sensitivity
or the total-order sensitivity, the sensitivity of the three gain parameters Ka, Kr, and Kf is
much greater than the sensitivity of the four time constants Tr, Ta, Tf, and Te; therefore, the
three gain parameters can be selected as the key parameters that need to be identified. The
difference between the sensitivity of the four time constants and the maximum sensitivity
is far greater than 10 times, so they can be considered non-key parameters.
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Figure 4. Result of the Sobol method on excitation system parameters.

4.2.2. Morris Method

Figure 5 shows the normalized sensitivity values of the excitation system parameters
obtained using the Morris method. The sensitivity difference between the high- and low-
sensitivity parameters is also several times the result of the LSA method. The ranking of
parameter sensitivity is consistent with the results of both the LSA and Sobol methods.
In addition to the three gain parameters that should be regarded as key parameters, the
difference between the average value and standard deviation of the elementary effects of
Te and the corresponding maximum value is slightly less than 10 times, so Te can also be
regarded as a key parameter.
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Figure 5. Result of the Morris method on excitation system parameters.

4.2.3. RSA Method

The analysis result of RSA is shown in Figure 6. According to the RSA analysis method
described in Section 3, we also divided the model output into 10 groups to obtain 10 CDF
curves for each parameter. Figure 6 shows that the 10 curves of Kr, Ka, and Kf are scattered,
especially the curves of Kr and Ka, which represent their high sensitivity. Among the four
time constants, the CDF curves of Tr are relatively scattered, but the degree of dispersion
is not as good as the three gain parameters, and the CDF curves of other time constants
are very close. Therefore, only three gain parameters can be considered as key parameters
from the graph, which is consistent with the results of the Sobol method.

4.2.4. Scatter Plot Method

Figure 7 shows the one-dimensional scatter plot of each parameter of the excitation
system. According to the scatter plot interpretation method described in Section 3, the
parameters with high sensitivity are still three gain parameters because the relationship
between the parameter value and the reduction in the MRE can be clearly seen. Because the
scatter plots of the four time constants are very scattered and there is no clear relationship
between the parameter values and the MRE value, their sensitivity is low. The above
conclusion is consistent with the conclusion derived from the RSA graph.
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Figure 7. One-dimensional scatter plots of the excitation system parameters.

Two-dimensional scatter plots can be used to reveal the relationship between two
parameters. Figure 8 shows the two-dimensional scatter plot of the three gain parameters,
where yellow spots can be observed. Taking the two-dimensional scatter plot of Kr–Ka
as an example, according to the position of the yellow spot, it can be concluded that the
MRE only increases when the values of Kr and Ka approach the upper limit of their value
range at the same time. Therefore, there is a correlation between Kr and Ka. Similarly, the
correlation between Ka–Kf and Kr–Kf can be analyzed. Because no correlations are found in
the two-dimensional scatter plots of other parameters, those graphs are omitted.
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4.2.5. AVT Method

Figure 9 shows the AVT results of all parameters of the excitation system. The graphs
of the three gain parameters in the (Y, Y1) scatter plot are obviously asymmetric to the
diagonal; in the (Y, Y1) scatter plot, their graphs are not horizontally distributed. In the
(Y, Y1) scatter plots of four time constants, the graphs are close to the diagonal; in the (Y,
Y2) scatter plot, the graphs of Tr, Ta, and Tf are basically horizontal lines. According to the
interpretation method of the AVT results, the sensitivity of the three gain parameters is
much greater than that of the four time constants. The sensitivity of Te is slightly greater
than that of the other three time constants.

Energies 2023, 16, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 8. Two-dimensional scatter plots of Kr–Ka, Kr–Kf, and Ka–Kf. 

4.2.5. AVT Method 
Figure 9 shows the AVT results of all parameters of the excitation system. The graphs 

of the three gain parameters in the (Y, Y1) scatter plot are obviously asymmetric to the 
diagonal; in the (Y, Y1) scatter plot, their graphs are not horizontally distributed. In the (Y, 
Y1) scatter plots of four time constants, the graphs are close to the diagonal; in the (Y, Y2) 
scatter plot, the graphs of Tr, Ta, and Tf are basically horizontal lines. According to the 
interpretation method of the AVT results, the sensitivity of the three gain parameters is 
much greater than that of the four time constants. The sensitivity of Te is slightly greater 
than that of the other three time constants. 

(g) Te

(e) Ta (f) Tf

(c) Kf (d) Tr

(a) Kr (b) Ka

 

Figure 9. Andres visual analysis results of the excitation system parameters. Figure 9. Andres visual analysis results of the excitation system parameters.

4.3. Comparison of the LSA and GSA Results

Comparing the use of LSA and GSA, as well as the above analysis results, we can
obtain the following conclusions:

• In terms of the amount of calculation, the GSA is far more than that of LSA. The
relationship between the number of times that various sensitivity analysis methods
calculate the model output, the number of parameters N, and the number of parameter
samples Ns is summarized in Table 4. If the single calculation of the model output is
time-consuming, unless a suitable algorithm is found [52,53], the analysis speed of the
GSA method may be unacceptable.

• Both LSA and GSA can be used to distinguish between key and non-key parameters.
Although the LSA method and the numerical GSA method have the same parameter-
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sensitive ordering, the key parameters determined by the two kinds of methods are
different. The key parameters in the LSA result are {Kr, Ka, Te, Kf, Tf}. When integrating
the results of the five GSA methods, the key parameter is {Kr, Ka, Kf}. The reason is that
the difference in parameter sensitivity is more significant in the GSA results, resulting
in fewer key parameters being found.

• Although the analysis process and result display form of the five GSA methods are
different, the conclusions are the same. Therefore, there is no need to use multi-
ple GSA methods at the same time. Because the results of numerical methods are
clearer and can be used to rank parameter sensitivity, we recommend the numerical
GSA method.

Table 4. Calculation amount of the sensitivity analysis methods.

Method Amount of
Calculation Method Amount of

Calculation

LSA 2 × N RSA Ns
Sobol (N + 2) × Ns Scatter plot Ns

Morris (N + 1) × Ns AVT Ns

We compared the differences in the use and analysis results of LSA and GSA in this
section. However, it is difficult to evaluate which method better achieves parameter identi-
fication from these two aspects only. In the next two sections, we used different parameter
identification strategies to analyze the impact of different key parameter combinations
obtained by GSA and LSA on the identification accuracy.

5. Comparison under Existing Parameter Identification Strategy

This section will use the commonly used parameter identification methods to identify
the parameters of the excitation system and discuss the effectiveness of various sensitivity
analysis methods according to the accuracy of parameter identification.

According to the existing parameter identification process shown in Figure 1, the key
parameters are identified, and the non-key parameters take typical values or empirical
values. Since the value of the non-key parameters of the actual equipment is not clear, it is
difficult to determine how accurate the typical value or the empirical value is. Therefore,
we randomly selected non-key parameters within their value ranges and then analyzed the
identification results of key parameters.

According to the identifiability analysis result in Section 3, both the KaKr and KfKa
should be identified as a whole, and their accurate values are 20.00 and 0.800, respectively.

A PSO algorithm with linearly decreasing weight coefficients [54] was adopted for
parameter identification. The number of particles is 20, the number of iterations is 200, the
learning factors C1 and C2 are set to 2, and the weight factor decreases linearly from 0.9 to
0.4. The fitting error index uses the MRE in Equation (22).

5.1. Identification Result According to LSA

According to the LSA results, the key parameters to be identified are KaKr, KfKa,
Te, and Tf. The non-key parameters Tr and Ta take random values, and their different
values have a significant impact on the identification results. Table 5 lists the results of
10 identifications. Emin, Emax, and Eavr in Table 5 refer to the minimum, maximum, and
average values of the identification errors, respectively.
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Table 5. Identification results of the excitation system parameters according to LSA.

Result
Parameters

Fitting Error
* Tr * Ta KaKr KfKa Tf Te

1 0.049 0.181 18.54 1.018 0.472 0.546 0.29%
2 0.060 0.077 19.46 0.887 0.626 0.693 0.16%
3 0.056 0.083 19.44 0.890 0.620 0.688 0.16%
4 0.047 0.112 19.26 0.938 0.579 0.629 0.20%
5 0.018 0.106 19.72 0.865 0.626 0.704 0.11%
6 0.056 0.044 19.86 0.837 0.680 0.754 0.05%
7 0.032 0.086 19.71 0.845 0.645 0.735 0.11%
8 0.017 0.050 20.26 0.784 0.712 0.809 0.04%
9 0.050 0.030 19.90 0.815 0.766 0.846 0.07%

10 0.015 0.075 20.00 0.799 0.682 0.789 0.03%
Emin — — 0.02% 0.11% 1.78% 1.13% 0.03%
Emax — — 7.30% 27.3% 32.6% 31.8% 0.29%
Eavr — — 2.19% 8.90% 10.7% 11.5% 0.12%

*: Tr and Ta take random values.

From the identification results, only the combination of the two highest sensitive
parameters KaKr has good identification accuracy, while the identification accuracy of other
parameters is not good because their average identification error exceeds 10%. Therefore,
although the sensitivity of the non-key parameters Tr and Ta is very small, their imprecision
has a significant negative impact on the identification accuracy of the key parameters.
Although the key parameters in the model can be found through sensitivity analysis,
identifying only the key parameters cannot ensure the improvement of identification
accuracy. The accuracy of non-key parameters also plays an important role in improving
the accuracy of parameter identification.

5.2. Identification Result According to GSA

Combining the results of the five GSA methods, we set the key parameters that need
to be identified as KaKr and KfKa, while Tr, Ta, Tf, and Te take random values. Table 6
lists the results of 10 identifications. A comparison of the results of Tables 5 and 6 indi-
cates that since a total of four non-key parameters do not participate in the identification
according to the GSA results, the identification accuracy of the two key parameters KaKr
and KfKa is significantly lower than that of the LSA-result-based identification. This re-
sult again shows that the accuracy of low-sensitivity parameters cannot be ignored in
parameter identification.

Table 6. Identification results of the excitation system parameters according to GSA.

Result
Parameters

Fitting Error
* Tr * Ta * Tf * Te KaKr KfKa

1 0.053 0.200 1.599 1.558 16.04 0.369 0.77%
2 0.032 0.036 0.461 1.995 15.58 0.078 0.69%
3 0.035 0.116 0.045 0.548 16.73 1.198 0.59%
4 0.011 0.169 1.571 1.191 18.25 0.648 0.63%
5 0.048 0.003 0.953 1.625 17.20 0.262 0.46%
6 0.021 0.065 1.315 0.649 18.90 0.984 0.55%
7 0.022 0.043 0.475 1.002 18.99 0.668 0.27%
8 0.042 0.159 1.534 1.503 16.75 0.408 0.68%
9 0.051 0.170 0.539 1.301 16.26 0.501 0.55%

10 0.027 0.123 1.157 0.669 20.07 0.950 0.51%
Emin — — — — 0.36% 16.5% 0.27%
Emax — — — — 22.1% 90.3% 0.77%
Eavr — — — — 12.7% 42.5% 0.57%

*: Tr, Ta, Tf, and Te take random values.
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5.3. Example of High Sensitivity Not Equating to Identifiability

The derivation of the formula in Section 3 has shown that the single parameters Kr, Ka,
and Kf are not uniquely identifiable, and only their products KaKr and KfKa are uniquely
identifiable. Table 7 shows the identification results of Kr, Ka, and Kf corresponding to the
KaKr and KfKa in Table 5. As can be seen from Table 7, since the errors of KaKr and KfKa are
small, the fitting error of the model output is already small, but the identification results of
the three gain parameters Kr, Ka, and Kf are still very scattered. Small model fitting errors
but scattered parameter identification results are typical features of identifiability problems,
which also proves the correctness of the derivation in Section 3. According to the sensitivity
analysis results in Section 4, the sensitivity of parameters Kr, Ka, and Kf is significantly
greater than that of other parameters. This example clearly shows that the high sensitivity
of a parameter is not equivalent to a parameter being identifiable.

Table 7. The identification results of the three gain parameters of Table 5.

Result
Parameters

Fitting Error
Kr Ka Kf KaKr KfKa

1 0.678 27.35 0.037 18.54 1.018 0.29%
2 1.457 13.36 0.066 19.46 0.887 0.16%
3 0.218 89.00 0.010 19.44 0.890 0.16%
4 0.911 21.15 0.044 19.26 0.938 0.20%
5 1.187 16.61 0.052 19.72 0.865 0.11%
6 0.764 26.00 0.032 19.86 0.837 0.05%
7 1.582 12.45 0.068 19.71 0.845 0.11%
8 0.258 78.38 0.010 20.26 0.784 0.04%
9 0.344 57.89 0.014 19.90 0.815 0.07%

10 0.250 79.91 0.010 20.00 0.799 0.03%
Emin 8.92% 5.73% 6.94% 0.02% 0.11% 0.03%
Emax 78.2% 344% 75.0% 7.30% 27.3% 0.29%
Eavr 48.0% 128% 49.3% 2.19% 8.90% 0.12%

5.4. Discussion of the LSA-Based and GSA-Based Identification Results

By comparing the LSA-based and GSA-based parameter identification results, we
found that the small sensitivity of the parameter means that it has only a small impact on
the model output. This does not mean that its deviation from the true value has little effect
on the identification accuracy of other parameters. Without knowing the exact value of the
non-key parameter, when more non-key parameters do not participate in the identification,
the possibility of the key parameters being accurately identified decreases. Because GSA
amplifies the sensitivity difference between the high- and low-sensitivity parameters, the
non-key parameters that are not involved in the identification increase, resulting in a
decrease in the identification accuracy of the key parameters.

In general, under the existing identification strategy that identifies only key parameters,
GSA does not show advantages over LSA. In the next section, to solve the negative impact
of inaccurate non-key parameters on the identification accuracy, a modified groupwise
alternating identification method of high- and low-sensitivity parameters was used to
compare the effects of LSA and GSA.

6. Comparison under an Alternating Identification Strategy of High- and
Low-Sensitivity Parameters

Alternating the identification of high- and low-sensitivity parameters is a novel
method, but it is rarely used at present. In this section, some problems in the exist-
ing alternate identification method are first improved, and then the improved method is
used to identify the excitation system parameters. Finally, the guiding significance of the
LSA method and GSA methods for parameter identification is discussed according to the
improvement of identification accuracy.
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6.1. Process of the Alternating Identification

Reference [48] proposed the GAIS to identify all the parameters in the electric model
of Li-ion batteries successfully by alternately identifying parameter groups with different
sensitivity levels. We consider the GAIS an effective method to improve the accuracy
of parameter identification. We made some modifications to the GAIS to adapt to our
research, and the modified GAIS process is shown in Figure 10. The modifications made are
as follows:

• Parameter identifiability analysis uses formula derivation or numerical methods [3]
instead of the GSA methods. The identifiability analysis results in Section 3 and the
sensitivity analysis results in Section 4 clearly show that the high sensitivity of the
parameters does not mean that the parameters can be uniquely identified, such as
three gain parameters Kr, Ka, and Kf.

• Sensitivity can be analyzed by LSA or GSA. The parameters are divided into only two
groups, namely, the high-sensitivity parameter group and the low-sensitivity parameter
group. The boundary of the grouping is 1/10 of the highest sensitivity value.

• The initial value of each parameter is obtained by identifying all the parameters at the
same time once.

• Alternating identification starts from the low-sensitivity parameter group because, in
the first identification of all parameters, the accuracy of the high-sensitivity parameter
group is higher than that of the low-sensitivity parameter group.

• The random search of the PSO algorithm does not guarantee that each round of search
can obtain a better fitting accuracy of the model output. Therefore, 10 opportunities
are set for the identification of each parameter group. If the fitting error cannot be
reduced within 10 identification iterations, the entire identification process ends.

• The expected final value of the fitting error is set to less than 0.01%.
• In the following comparison, when the GAIS can at least improve the identification

accuracy of all key parameters, the identification is considered successful.
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6.2. Application of LSA and GSA in the Alternate Identification Process

We used LSA and GSA to perform the alternating identification process 100 times each.
The high- and low-sensitivity parameter grouping results are the same as those in Section 5.

Figure 11 shows the statistical results of many parameters whose identification accu-
racy can be improved each time in a total of 100 times of alternating identification. We
found the following.

• For parameter groups obtained by LSA, the success rate of GAIS is 78%. In the
100 identifications, the identification accuracy of all parameters was improved in
34 identifications, and the identification accuracy of all key parameters and one non-
key parameter was improved in 44 identifications. Table 8 gives an example that only
the accuracy of the parameter Tr did not improve, while the identification accuracy of
other parameters and the fitting error of the model were significantly improved.

• For parameter groups obtained by GSA, the success rate of GAIS is 99%. In
99 successful identifications, the accuracy of at least three parameters (two key param-
eters and one non-key parameter) can be improved. The identification accuracy of all
parameters is improved in 32 identifications, which is very close to the identification
results based on LSA. Table 9 gives an example that the identification accuracy of only
the three parameters KaKr, KfKa, and Tf are improved, and the identification accuracy
of other parameters remains unchanged or slightly reduced.
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ErrorKaKr KfKa Tr Ta Tf Te
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5.26% 8.88% 14.4% 242% 34.7% 14.0%

Final
19.99 0.812 0.052 0.032 0.687 0.778
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0.07% 1.45% 28.7% 20.5% 1.81% 2.72%

Table 9. Example of the identification results of the GAIS based on the parameter grouping result of GSA.

Result
Parameters Fitting

ErrorKaKr KfKa Tr Ta Tf Te

Initial
20.42 0.893 0.031 0.052 0.800 0.812

0.11%
2.09% 11.6% 23.8% 30.0% 14.3% 1.49%

Final
20.03 0.826 0.057 0.028 0.701 0.767

0.01%
0.16% 3.19% 42.6% 30.3% 0.12% 4.09%
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Figure 12 shows the statistical results of the identification errors of each parameter
in the successful results of groupwise alternating identification. The blue in the figure
represents the result of using LSA, and the orange represents the result of using GSA. The
length of the line segment represents the range of identification errors, the top-of-the-line
segment is the maximum error, the bottom-of-the-line segment is the minimum error,
and the circle-on-the-line segment represents the average value of the error. In general,
when GAIS is used, the parameter identification accuracy obtained by using LSA or GSA
is equivalent, and the average identification error using LSA is slightly better than that
using GSA. The ranking of parameter identification accuracy and the ranking of sensitivity
(regardless of LSA or GAS) correspond. However, the difference between the parameter
identification accuracy and the sensitivity difference of LSA is more compatible. In the GSA
results, the sensitivity of the four time constants is much smaller than that of the three gain
parameters, but the identification accuracy of Tf and Te in the identification result is similar
to that of KaKr and KfKa.
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Figure 12. Statistical results of the identification accuracy of each parameter after 100 alternating
identifications.

The comparison results in this section show that to improve the identification accuracy,
it is more important to improve the identification strategy than to change the sensitivity
analysis method. When there is a good parameter identification strategy, both GSA and
LSA can play a role.

7. Conclusions

Sensitivity analysis plays an important role in the parameter identification of power
systems. The use of LSA has a long history, and in recent years, GSA has gradually begun
to be adopted. However, there is no clear conclusion on the impact of different sensitivity
analysis methods on parameter identification results. Therefore, this paper compares and
studies the roles that LSA and GSA can play in different parameter identification methods,
providing clear guidance for the selection of sensitivity analysis methods and parameter
identification methods. The conclusions are as follows:

• The calculation amount of the GSA methods is much larger than that of the LSA
method, especially the numerical GSA methods. The GSA method may be inconve-
nient to use in a model that takes a long time for a single calculation;

• The results of the five GSA methods on the grouping of high- and low-sensitivity
parameters are the same. Because the difference in the high- and low-sensitivity values
is more prominent in the GSA results, the grouping results of the key and non-key
parameters are different from the LSA method;

• Under the strategy of identifying only key parameters, the identification accuracy
based on the GSA is not as good as that based on the LSA when the non-key pa-
rameters are inaccurate because the GSA enlarges the difference between high- and
low-sensitivity values, resulting in more non-key parameters found;

• When the groupwise alternating identification strategy of high- and low-sensitivity
parameters is used, the identification accuracy based on the LSA or GSA is equivalent.
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However, LSA is better than GSA in terms of the corresponding relationship between
identification accuracy and sensitivity values.

In summary, for the example used in this paper, both the GSA and LSA can be used to
find the key parameters in the model; however, the GSA methods do not show absolute
advantages over the LSA method. To improve the identification accuracy, it is more
important to improve the identification strategy than to change the sensitivity analysis
method. If the identification strategy that identifies only key parameters is adopted, we
still recommend using the existing LSA method. If the GAIS of high- and low-sensitivity
parameters is adopted, either LSA or GSA can be used. In addition, through the example
used, we also want to emphasize that the high sensitivity of a parameter does not prove
that this parameter must be identifiable.
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